1
|
Shin H, Hwang S, Jeong JH, Shin SC, Oh Y, Kim J, Hwang I, Kim EE, Choo H, Song EJ. Targeting USP47 enhances the efficacy of KRAS inhibitor in KRAS G12C mutated non-small cell lung cancer by controlling deubiquitination of c-Myc. Pharmacol Res 2025; 215:107722. [PMID: 40180254 DOI: 10.1016/j.phrs.2025.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
FDA-approved KRASG12C inhibitors, like Sotorasib, target G12C-mutated KRAS in NSCLC. However, issues with insensitivity and drug resistance have emerged, requiring the development of new combination therapies to overcome these limitations. USP47 has been identified as a regulator of cancer-related signaling pathways such as Wnt, Hippo, and p53. However, its role in the KRAS signaling pathway remains largely unexplored and USP47 inhibitors are less developed than those targeting its homolog, USP7. Here, we identify USP47 as a novel therapeutic target in KRASG12C-mutated NSCLC and report K-552, a selective USP47 inhibitor, as a potential treatment strategy. We demonstrate that USP47 stabilizes c-Myc by preventing its proteasomal degradation through deubiquitination, thereby promoting NSCLC cell proliferation. Additionally, the compound K-552, a USP47 inhibitor identified through virtual screening, effectively destabilizes c-Myc and inhibits KRASG12C-mutated NSCLC cell proliferation. Furthermore, USP47 inhibition-either by siRNA knockdown or K-552 treatment-enhances the efficacy of Sotorasib in vitro and in vivo. Together, our findings establish USP47 as a promising therapeutic target in KRASG12C-mutated NSCLC and introduce K-552 as a USP47 inhibitor with potential for combination therapy with KRASG12C inhibitors.
Collapse
Affiliation(s)
- Hyungkyung Shin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - SuA Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeonji Oh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyeok Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyunah Choo
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yang P, Li Y. Progress of KRAS G12C inhibitors in the treatment of refractory colorectal cancer and strategies for drug resistance response. Invest New Drugs 2025; 43:357-364. [PMID: 39956882 DOI: 10.1007/s10637-025-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Colorectal cancer is the third most prevalent cancer in the world. Early screening and detection of tumours, active surgical radical treatment, postoperative adjuvant chemotherapy, targeted therapy, and immunotherapy are performed based on pathological staging and immunohistochemistry. Even with these measures, the 5-year survival rate of colorectal cancer is only 65%, and a considerable number of patients still experience tumour recurrence or even metastasis. The KRAS G12C mutation accounts for 3 to 4% of refractory colorectal cancer (advanced or metastatic colorectal cancer), and it was once believed that KRAS did not have a drug target until the emergence of KRAS G12C inhibitors provided targeted treatment for KRAS-mutated colorectal cancer. However, KRAS G12C inhibitors only produce moderate efficacy, and resistance occurs after a short remission. The mechanism of drug resistance in tumour cells is complex and diverse, and existing research has limited understanding of it. This review aims to elucidate the clinical trial progress of KRAS G12C inhibitors in refractory colorectal cancer, the research progress of drug resistance mechanisms, and the combined treatment strategies for drug resistance.
Collapse
Affiliation(s)
- Peiyuan Yang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Xiantai Street, Changchun, 130000, Jilin, China
| | - Yongchao Li
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Xiantai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
3
|
Isermann T, Sers C, Der CJ, Papke B. KRAS inhibitors: resistance drivers and combinatorial strategies. Trends Cancer 2025; 11:91-116. [PMID: 39732595 DOI: 10.1016/j.trecan.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/30/2024]
Abstract
In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRASG12C inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Channing J Der
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Megid RA, Ribeiro GG, Gomes INF, Laus AC, Ferro Leal L, Sussuchi da Silva L, Ariwoola ABA, Dias JM, Reis RM, Jose da Silva-Oliveira R. Sotorasib resistance triggers epithelial-mesenchymal transition and activates AKT and P38-mediated signaling. Front Mol Biosci 2025; 12:1537523. [PMID: 39950162 PMCID: PMC11821485 DOI: 10.3389/fmolb.2025.1537523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Background The molecular non-genetic changes of resistance to sotorasib are currently uncertain. The aim of this study was to generate a sotorasib-resistant cell line via selective pressure and systematically examine the molecular and phenotypic alterations caused by resistance. Methods Mutant NCI-H358 (KRASG12C) were exposed to incremental doses (2-512 nM) of sotorasib. Then, resistant clones were separated by single-cell sorting. Proliferation was analyzed in real-time by xCELLigence; protein profiles were quantified by protein arrays; and mRNA expression profile was measured using the PanCancer Pathways panel by NanoString. In silico analyses were conducted from a database comprising patient-derived xenograft (PDX) models and cell lines resistant to sotorasib. AKT and p38. The synergistic effect of combining AKT, p38, and EGFR inhibitors was assessed using the SynergyFinder platform. Additionally, AKT and p38 genes were silenced using esiRNA. Results Sotorasib-resistant H358-R cell line displayed markers of the mesenchymal-epithelial transition and loss of cell adhesion. Were identified 30 overexpressed genes in the resistance model, implicating in signaling pathways that leads to AKT activation and heightened protein expression levels of phosphorylated AKT and p38. To identify potential therapeutic strategies for overcoming sotorasib resistance, we investigated the combination of AKT and p38 inhibitors. Notably, combined inhibition of AKT (MK2206) and p38 (adezmapimod) restored sensitivity to sotorasib in resistant cell lines, as did silencing AKT expression. Conclusion These findings underscore the importance of adaptive mechanisms in sotorasib resistance in NSCLC cells contributing by EMT activation and demonstrates synergic combination with AKT and p38 inhibitors to restore sotorasib sensitivity in KRASG12C cells.
Collapse
Affiliation(s)
| | | | | | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, São Paulo, Brazil
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
| | - Renato Jose da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, São Paulo, Brazil
| |
Collapse
|
5
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Xiao A, Fakih M. KRAS G12C Inhibitors in the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2024; 23:199-206. [PMID: 38825433 DOI: 10.1016/j.clcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
KRAS mutations contribute substantially to the overall colorectal cancer burden and have long been a focus of drug development efforts. After a lengthy preclinical road, KRAS inhibition via the G12C allele has finally become a therapeutic reality. Unlike in NSCLC, early studies of KRAS inhibitors in CRC struggled to demonstrate single agent activity. Investigation into these tissue-specific treatment differences has led to a deeper understanding of the complexities of MAPK signaling and the diverse adaptive feedback responses to KRAS inhibition. EGFR reactivation has emerged as a principal resistance mechanism to KRAS inhibitor monotherapy. Thus, the field has pivoted to dual EGFR/KRAS blockade with promising efficacy. Despite significant strides in the treatment of KRAS G12C mutated CRC, new challenges are on the horizon. Alternative RTK reactivation and countless acquired molecular resistance mechanisms have shifted the treatment goalpost. This review focuses on the historical and contemporary clinical strategies of targeting KRAS G12C alterations in CRC and highlights future directions to overcome treatment challenges.
Collapse
Affiliation(s)
- Annie Xiao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA.
| |
Collapse
|
7
|
Wang X, Su L, Niu C, Li X, Wang R, Li B, Liu S, Xu Y. Targeted degradation of KRAS protein in non-small cell lung cancer: Therapeutic strategies using liposomal PROTACs with enhanced cellular uptake and pharmacokinetic profiles. Drug Dev Res 2024; 85:e22241. [PMID: 39104176 DOI: 10.1002/ddr.22241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
The role of KRAS mutation in non-small cell lung cancer (NSCLC) initiation and progression is well-established. However, "undruggable" KRAS protein poses the research of small molecule inhibitors a significant challenge. Addressing this, proteolysis-targeting chimeras (PROTACs) have become a cutting-edge treatment method, emphasizing protein degradation. A modified ethanol injection method was employed in this study to formulate liposomes encapsulating PROTAC drug LC-2 (LC-2 LPs). Precise surface modifications using cell-penetrating peptide R8 yielded R8-LC-2 liposomes (R8-LC-2 LPs). Comprehensive cellular uptake and cytotoxicity studies unveiled that R8-LC-2 LPs depended on concentration and time, showcasing the superior performance of R8-LC-2 LPs compared to normal liposomes. In vivo pharmacokinetic profiles demonstrated the capacity of DSPE-PEG2000 to prolong the circulation time of LC-2, leading to higher plasma concentrations compared to free LC-2. In vivo antitumor efficacy research underscored the remarkable ability of R8-LC-2 LPs to effectively suppress tumor growth. This study contributed to the exploration of enhanced therapeutic strategies for NSCLC, specifically focusing on the development of liposomal PROTACs targeting the "undruggable" KRAS protein. The findings provide valuable insights into the potential of this innovative approach, offering prospects for improved drug delivery and heightened antitumor efficacy.
Collapse
Affiliation(s)
- Xiaowen Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Linyu Su
- MabPlex International, Yantai, Shandong, China
| | - Chong Niu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Xiao Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Ruijie Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Bo Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Sha Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Yuwen Xu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| |
Collapse
|
8
|
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRAS G12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189108. [PMID: 38723697 DOI: 10.1016/j.bbcan.2024.189108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yue Qiao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
10
|
Kumarasamy V, Wang J, Frangou C, Wan Y, Dynka A, Rosenheck H, Dey P, Abel EV, Knudsen ES, Witkiewicz AK. The Extracellular Niche and Tumor Microenvironment Enhance KRAS Inhibitor Efficacy in Pancreatic Cancer. Cancer Res 2024; 84:1115-1132. [PMID: 38294344 PMCID: PMC10982648 DOI: 10.1158/0008-5472.can-23-2504] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that lacks effective treatment options, highlighting the need for developing new therapeutic interventions. Here, we assessed the response to pharmacologic inhibition of KRAS, the central oncogenic driver of PDAC. In a panel of PDAC cell lines, inhibition of KRASG12D with MRTX1133 yielded variable efficacy in suppressing cell growth and downstream gene expression programs in 2D cultures. On the basis of CRISPR-Cas9 loss-of-function screens, ITGB1 was identified as a target to enhance the therapeutic response to MRTX1133 by regulating mechanotransduction signaling and YAP/TAZ expression, which was confirmed by gene-specific knockdown and combinatorial drug synergy. Interestingly, MRTX1133 was considerably more efficacious in 3D cell cultures. Moreover, MRTX1133 elicited a pronounced cytostatic effect in vivo and controlled tumor growth in PDAC patient-derived xenografts. In syngeneic models, KRASG12D inhibition led to tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicated that MRTX1133-mediated KRAS inhibition enhanced IFNγ signaling and induced antigen presentation that modulated the tumor microenvironment. Further investigation of the immunologic response using single-cell sequencing and multispectral imaging revealed that tumor regression was associated with suppression of neutrophils and influx of effector CD8+ T cells. Together, these findings demonstrate that both tumor cell-intrinsic and -extrinsic events contribute to response to MRTX1133 and credential KRASG12D inhibition as a promising therapeutic strategy for a large percentage of patients with PDAC. SIGNIFICANCE Pharmacologic inhibition of KRAS elicits varied responses in pancreatic cancer 2D cell lines, 3D organoid cultures, and xenografts, underscoring the importance of mechanotransduction and the tumor microenvironment in regulating therapeutic responses.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Andrew Dynka
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ethan V. Abel
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Agnieszka K. Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
11
|
Morel M, Long W. FBXL16 promotes cell growth and drug resistance in lung adenocarcinomas with KRAS mutation by stabilizing IRS1 and upregulating IRS1/AKT signaling. Mol Oncol 2024; 18:762-777. [PMID: 37983945 PMCID: PMC10920083 DOI: 10.1002/1878-0261.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinomas (LUADs) are a major subtype of non-small-cell lung cancers (NSCLCs). About 25% of LUADs harbor GTPase KRAS mutations associated with poor prognosis and limited treatment options. While encouraging tumor response to novel covalent inhibitors specifically targeting KRASG12C has been shown in the clinic, either intrinsic resistance exists or acquired therapeutic resistance arises upon treatment. There is an unmet need to identify new therapeutic targets for treating LUADs with activating KRAS mutations, particularly those with resistance to KRASG12C inhibitor(s). In this study, we have revealed that F-box/LRR-repeat protein 16 (FBXL16) is selectively upregulated in LUAD with KRAS mutations. It promotes LUAD cell growth and transforms lung epithelial cells. Importantly, FBXL16 depletion greatly enhances sensitivity to the KRASG12C inhibitor (sotorasib) in resistant cells by downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB; also known as AKT) signaling. Mechanistically, FBXL16 upregulates insulin receptor substrate 1 (IRS1) protein stability, leading to an increase of IGF1/AKT signaling, thereby promoting cell growth and migration. Taken together, our study highlights the potential of FBXL16 as a therapeutic target for treating LUAD with KRAS activating mutations.
Collapse
Affiliation(s)
- Marion Morel
- Department of Biochemistry and Molecular Biology, Boonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of MedicineWright State UniversityDaytonOHUSA
| |
Collapse
|
12
|
Wang SH, Cao Z, Farazuddin M, Chen J, Janczak KW, Tang S, Cannon J, Baker JR. A novel intranasal peptide vaccine inhibits non-small cell lung cancer with KRAS mutation. Cancer Gene Ther 2024; 31:464-471. [PMID: 38177307 DOI: 10.1038/s41417-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
KRAS mutations occur commonly in the lung and can lead to the development of non-small cell lung cancer (NSCLC). While the mutated KRAS protein is a neoantigen, it usually does not generate an effective anti-tumor immune response on mucosal/epithelial surfaces. Despite this, mutated KRAS remains a potential target for immunotherapy since immune targeting of this protein in animal models has been effective at eliminating tumor cells. We attempted to develop a KRAS vaccine using mutated and wild-type KRAS peptides in combination with a nanoemulsion (NE) adjuvant. The efficacy of this approach was tested in an inducible mutant KRAS-mouse lung tumor model. Animals were immunized intranasally using NE with KRAS peptides. These animals had decreased CD4+FoxP3+ T cells in both lymph nodes and spleen. Immunized animals also showed higher IFN-γ and IL-17a levels to mutated KRAS that were produced by CD8+ T cells and enhancement in KRAS-specific Th1 and Th17 responses that persisted for 3 months after the last vaccination. Importantly, the immunized animals had significantly decreased tumor incidence compared to control animals. In conclusion, a mucosal approach to KRAS vaccination demonstrated the ability to induce local KRAS-specific immune responses in the lung and resulted in reduced tumor incidence.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Zhengyi Cao
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mohammad Farazuddin
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesse Chen
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katarzyna W Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Rekowska AK, Rola P, Kwiatkowska A, Wójcik-Superczyńska M, Gil M, Krawczyk P, Milanowski J. Abnormalities in the KRAS Gene and Treatment Options for NSCLC Patients with the G12C Mutation in This Gene-A Literature Review and Single-Center Experience. Biomedicines 2024; 12:325. [PMID: 38397927 PMCID: PMC10886466 DOI: 10.3390/biomedicines12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Mutations in the KRAS gene are among the most common mutations observed in cancer cells, but they have only recently become an achievable goal for targeted therapies. Two KRAS inhibitors, sotorasib and adagrasib, have recently been approved for the treatment of patients with advanced non-small cell lung cancer with the KRAS G12C mutation, while studies on their efficacy are still ongoing. In this work, we comprehensively analyzed RAS gene mutations' molecular background, mutation testing, KRAS inhibitors' effectiveness with an emphasis on non-small cell lung cancer, the impact of KRAS mutations on immunotherapy outcomes, and drug resistance problems. We also summarized ongoing trials and analyzed emerging perspectives on targeting KRAS in cancer patients.
Collapse
Affiliation(s)
- Anna K. Rekowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland (M.W.-S.); (M.G.); (J.M.)
| | | | | | | | | | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland (M.W.-S.); (M.G.); (J.M.)
| | | |
Collapse
|
14
|
Kulkarni P, Mohanty A, Ramisetty S, Duvivier H, Khan A, Shrestha S, Tan T, Merla A, El-Hajjaoui M, Malhotra J, Singhal S, Salgia R. A Nexus between Genetic and Non-Genetic Mechanisms Guides KRAS Inhibitor Resistance in Lung Cancer. Biomolecules 2023; 13:1587. [PMID: 38002269 PMCID: PMC10668935 DOI: 10.3390/biom13111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Several studies in the last few years have determined that, in contrast to the prevailing dogma that drug resistance is simply due to Darwinian evolution-the selection of mutant clones in response to drug treatment-non-genetic changes can also lead to drug resistance whereby tolerant, reversible phenotypes are eventually relinquished by resistant, irreversible phenotypes. Here, using KRAS as a paradigm, we illustrate how this nexus between genetic and non-genetic mechanisms enables cancer cells to evade the harmful effects of drug treatment. We discuss how the conformational dynamics of the KRAS molecule, that includes intrinsically disordered regions, is influenced by the binding of the targeted therapies contributing to conformational noise and how this noise impacts the interaction of KRAS with partner proteins to rewire the protein interaction network. Thus, in response to drug treatment, reversible drug-tolerant phenotypes emerge via non-genetic mechanisms that eventually enable the emergence of irreversible resistant clones via genetic mutations. Furthermore, we also discuss the recent data demonstrating how combination therapy can help alleviate KRAS drug resistance in lung cancer, and how new treatment strategies based on evolutionary principles may help minimize or even preclude the emergence of drug resistance.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
- Department of Systems Biology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Herbert Duvivier
- Department of Medical Oncology, City of Hope Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA;
| | - Ajaz Khan
- Department of Medical Oncology, City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA;
| | - Sagun Shrestha
- Department of Medical Oncology, City of Hope Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA;
| | - Tingting Tan
- Department of Medical Oncology, City of Hope National Medical Center, Newport Beach Fashion Island, Duarte, CA 92660, USA;
| | - Amartej Merla
- Department of Medical Oncology, City of Hope, Lancaster, CA 93534, USA;
| | - Michelle El-Hajjaoui
- Department of Medical Oncology, City of Hope Medical Center, West Covina, CA 91790, USA;
| | - Jyoti Malhotra
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Sharad Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| |
Collapse
|
15
|
Bteich F, Mohammadi M, Li T, Bhat MA, Sofianidi A, Wei N, Kuang C. Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review. Int J Mol Sci 2023; 24:12030. [PMID: 37569406 PMCID: PMC10418782 DOI: 10.3390/ijms241512030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with a myriad of alterations at the cellular and molecular levels. Kristen rat sarcoma (KRAS) mutations occur in up to 40% of CRCs and serve as both a prognostic and predictive biomarker. Oncogenic mutations in the KRAS protein affect cellular proliferation and survival, leading to tumorigenesis through RAS/MAPK pathways. Until recently, only indirect targeting of the pathway had been investigated. There are now several KRAS allele-specific inhibitors in late-phase clinical trials, and many newer agents and targeting strategies undergoing preclinical and early-phase clinical testing. The adequate treatment of KRAS-mutated CRC will inevitably involve combination therapies due to the existence of robust adaptive resistance mechanisms in these tumors. In this article, we review the most recent understanding and findings related to targeting KRAS mutations in CRC, mechanisms of resistance to KRAS inhibitors, as well as evolving treatment strategies for KRAS-mutated CRC patients.
Collapse
Affiliation(s)
- Fernand Bteich
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
| | - Mahshid Mohammadi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Terence Li
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Muzaffer Ahmed Bhat
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amalia Sofianidi
- Oncology Unit, Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ning Wei
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaoyuan Kuang
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Guo MZ, Marrone KA, Spira A, Rosner S. Adagrasib: a novel inhibitor for KRASG12C-mutated non-small-cell lung cancer. Future Oncol 2023. [PMID: 37133216 DOI: 10.2217/fon-2022-1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Adagrasib is a recently US FDA-approved novel KRASG12C targeted therapy with clinical efficacy in patients with advanced, pretreated KRASG12C-mutated non-small-cell lung cancer. KRYSTAL-I reported an objective response rate of 42.9% with median duration of response of 8.5 months. Treatment-related adverse events were primarily gastrointestinal and occurred in 97.4% of patients, with grade 3+ treatment-related adverse events occurring in 44.8% of patients. This review details the preclinical and clinical data for adagrasib in the treatment of non-small-cell lung cancer. We also outline practical clinical administration guidelines for this novel therapy, including management of toxicities. Finally, we discuss the implications of resistance mechanisms, summarize other KRASG12C inhibitors currently in development and outline future directions for adagrasib-based combination therapies.
Collapse
Affiliation(s)
- Matthew Z Guo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kristen A Marrone
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Alexander Spira
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
- NEXT Oncology, San Antonio, TX, USA
| | - Samuel Rosner
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
17
|
Kumarasamy V, Frangou C, Wang J, Wan Y, Dynka A, Rosenheck H, Dey P, Abel EV, Knudsen ES, Witkiewicz AK. Pharmacologically targeting KRAS G12D in PDAC models: tumor cell intrinsic and extrinsic impact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533261. [PMID: 37162905 PMCID: PMC10168422 DOI: 10.1101/2023.03.18.533261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which new therapeutic interventions are needed. Here we assessed the cellular response to pharmacological KRAS inhibition, which target the central oncogenic factor in PDAC. In a panel of PDAC cell lines, pharmaceutical inhibition of KRAS G12D allele, with MRTX1133 yields variable efficacy in the suppression of cell growth and downstream gene expression programs in 2D culture. CRISPR screens identify new drivers for enhanced therapeutic response that regulate focal adhesion and signaling cascades, which were confirmed by gene specific knockdowns and combinatorial drug synergy. Interestingly, MRTX1133 is considerably more efficacious in the context of 3D cell cultures and in vivo PDAC patient-derived xenografts. In syngeneic models, KRAS G12D inhibition elicits potent tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicates that MRTX1133 activates interferon-γ signaling and induces antigen presentation that modulate the tumor microenvironment. Further investigation on the immunological response using single cell sequencing and multispectral imaging reveals that tumor regression is associated with suppression of neutrophils and influx of effector CD8 + T-cells. Thus, both tumor cell intrinsic and extrinsic events contribute to response and credential KRAS G12D inhibition as promising strategy for a large percentage of PDAC tumors.
Collapse
|