1
|
Yang M, Hu Y, Wang J, Zhang W, Liu B. Trueperella pyogenes promotes the synthesis and maturation of IL-1β in murine macrophages. Front Immunol 2025; 16:1614952. [PMID: 40568580 PMCID: PMC12187652 DOI: 10.3389/fimmu.2025.1614952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/25/2025] [Accepted: 05/27/2025] [Indexed: 06/28/2025] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen in animals and can also cause diseases in humans. Previous studies have shown that T. pyogenes infection can upregulate the levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), in host tissues. However, the underlying mechanisms are not yet fully understood. In the current study, we found that both inactivated T. pyogenes cells (iTP) and pyolysin (PLO, a major virulence factor of T. pyogenes) can promote the transcription of the IL-1β gene both in vivo and in vitro. iTP-caused upregulation of IL-1β gene transcription is dependent on nuclear factor-kappa B (NF-κB). On the other hand, we determined that PLO, but not iTP, can promote the maturation of IL-1β by activating caspase-1-mediated processing of pro-IL-1β. Further, we confirmed that PLO can induce potassium ion (K+) efflux in mouse macrophages, thereby activating caspase-1 in a Nod-like receptor protein 3 (NLRP3)-dependent manner. Blocking K+ efflux or knocking down the expression of NLRP3 both inhibited caspase-1 activation and pro-IL-1β processing. Taken together, these findings demonstrate that T. pyogenes can promote IL-1β expression at both the transcriptional and post-translational levels in a murine macrophage model. These results significantly enhance our understanding of the pathogenesis of T. pyogenes and the interactions between T. pyogenes and host immune system.
Collapse
Affiliation(s)
- Meimei Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunhao Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bin Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Pan J, Li Z, Zhu M, Guo L, Chen W, Yu L. Vitamin E exerts a mitigating effect on LPS-induced acute lung injury by regulating macrophage polarization through the AMPK/NRF2/NF-κB pathway. Int Immunopharmacol 2025; 159:114893. [PMID: 40403505 DOI: 10.1016/j.intimp.2025.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Acute Lung Injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are major threats to human health, characterized by high mortality rates and a lack of effective treatments. Given the significant role of an over-activated inflammatory response and macrophage polarization in the development of ALI, and the unknown effect of vitamin E in this context, our study aimed to explore vitamin E's potential in alleviating ALI. We established an ALI mouse model by intratracheal instillation of LPS and isolated BMDMs for in-vitro experiments. Results indicated that vitamin E treatment significantly reduced LPS-induced lung injury, as shown by decreased lung wet/dry weight ratio, lower levels of pro-inflammatory factors in bronchoalveolar lavage fluid, and improved mouse survival rates. Vitamin E also alleviated oxidative stress by modulating oxidative and reducing products. Mechanistically, it activated the AMPK signal, upregulated NRF2, scavenged reactive oxygen species, inhibited the NF-κB signal pathway, and regulated macrophage polarization towards the anti-inflammatory M2 phenotype while suppressing the pro-inflammatory M1 polarization. In conclusion, vitamin E may serve as a potential adjuvant treatment for ALI through the AMPK/NRF2 signaling axis, although further research on optimal dosage and combination therapies is needed.
Collapse
Affiliation(s)
- Jianwei Pan
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Zhongyue Li
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Menglu Zhu
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Lina Guo
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Wangxing Chen
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Lin Yu
- Department of Pediatrics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China; Department of Pediatric Pulmonology, Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 102600 Beijing, China.
| |
Collapse
|
3
|
Swami R, Popli P, Sal K, Challa RR, Vallamkonda B, Garg M, Dora CP. A review on biomacromolecular ligand-directed nanoparticles: New era in macrophage targeting. Int J Biol Macromol 2025; 306:141740. [PMID: 40058437 DOI: 10.1016/j.ijbiomac.2025.141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Traditional drug delivery strategies often have side effects due to uneven drug distribution leading to the subtherapeutic impacts. Ligand-modified nanoparticles offer a revolutionary approach to precise drug delivery. These modified nanoparticles can potentially target macrophages, which is crucial for defense and disease progression efficiently. Out of many classes of ligands, biomacromolecular ligands emerged as potential ligands for directing these nanoparticles to macrophages due to their consecutive receptors over the macrophage surface, assisting easy internalization and thus supporting elevated efficacy and reduced toxicity. This approach could significantly improve treatment for diseases like cancer, tuberculosis, etc. by directing drugs to macrophages and reducing side effects. By leveraging nanotechnology and biomacromolecular-based ligand-directed targeting, we can achieve more precise and effective treatments, paving the way for advancements in precision medicine.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Komal Sal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
4
|
Xu C, Chen J, Tan M, Tan Q. The role of macrophage polarization in ovarian cancer: from molecular mechanism to therapeutic potentials. Front Immunol 2025; 16:1543096. [PMID: 40330466 PMCID: PMC12052780 DOI: 10.3389/fimmu.2025.1543096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecological malignancy, primarily due to its late-stage diagnosis, frequent recurrence, and resistance to conventional chemotherapy. A critical factor contributing to OC's aggressiveness is the tumor microenvironment (TME), particularly the presence and polarization of tumor-associated macrophages (TAMs). TAMs, often skewed toward an immunosuppressive M2-like phenotype, facilitate tumor growth, angiogenesis, metastasis, and resistance to therapy. This comprehensive review delves into the multifaceted regulation of macrophage polarization in OC, highlighting key molecular pathways such as PTEN loss, Wnt/β-catenin signaling, NF-κB, Myc, STAT3, and JNK, among others. Additionally, it explores the role of chemokines, non-coding RNAs, and various proteins in modulating TAM phenotypes. Emerging evidence underscores the significance of extracellular vesicles (EVs) and ovarian cancer stem cells (CSCs) in promoting M2 polarization, thereby enhancing tumor progression and therapy resistance. The review also identifies critical biomarkers associated with macrophage polarization, including CD163, LILRB1, MUC2, and others, which hold prognostic and therapeutic potential. Therapeutic strategies targeting TAMs are extensively discussed, encompassing oncolytic viruses, engineered EVs, immunotherapies, nanoparticles, targeted therapies, and natural products. These approaches aim to reprogram TAMs from a pro-tumorigenic M2 state to an anti-tumorigenic M1 phenotype, thereby enhancing immune responses and overcoming resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Furthermore, the review addresses the interplay between macrophage polarization and therapy resistance, emphasizing the need for novel interventions to modulate the TME effectively. By synthesizing current knowledge on macrophage polarization in ovarian cancer, this study underscores the potential of targeting TAMs to improve clinical outcomes and personalize treatment strategies for OC patients. Continued research in this domain is essential to develop robust therapeutic frameworks that can mitigate the immunosuppressive TME and enhance the efficacy of existing and novel cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Qingqing Tan
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
Li X, Hayashi R, Imaizumi T, Harrington J, Kudo Y, Takayanagi H, Baba K, Nishida K. Extracellular vesicles from adipose-derived mesenchymal stem cells promote colony formation ability and EMT of corneal limbal epithelial cells. PLoS One 2025; 20:e0321579. [PMID: 40257992 PMCID: PMC12011229 DOI: 10.1371/journal.pone.0321579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Corneal diseases are a leading cause of visual impairment, and their treatment remains challenging. Corneal epithelial stem cells exist in the limbus, the peripheral region of the cornea, and play an important role in corneal regeneration. Here, we evaluated the effects of extracellular vesicles from human adipose-derived mesenchymal stem cells (AdMSC-EVs) on limbal epithelial cells (LECs). Colony formation assays showed that the colony-forming efficiency of LECs significantly increased in the presence of AdMSC-EVs. We next demonstrated that AdMSC-EVs accelerated the migration of LECs in a scratch assay, whereas the proliferation of LECs was decreased by AdMSC-EVs in the cell proliferation assay. RNA sequencing analysis of LECs indicated that AdMSC-EVs maintained their stem cell properties and improved epithelial-mesenchymal transition (EMT). Furthermore, after identifying the six most abundant microRNAs (miRNAs) in AdMSC-EVs, LEC transfection with miRNA mimics indicated that miR-25, miR-191, and miR-335 were the most probable miRNA factors within AdMSC-EVs at improving colony formation ability and EMT. Taken together, our findings indicated that AdMSC-EVs enhanced the colony formation ability and EMT of LECs, and the effects of AdMSC-EVs were in-part mediated by the miRNAs within the AdMSC-EVs.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Jodie Harrington
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, England, United Kingdom
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Research, Development and Production Department of RAYMEI Inc, Suita, Osaka, Japan
| | - Koichi Baba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Advanced Device Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Visual Regenerative Medicine, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Shoeran G, Anand N, Kaur U, Goyal K, Sehgal R. Identification and characterization of yeast SNF1 kinase homologs in Leishmania major. Front Mol Biosci 2025; 12:1567703. [PMID: 40196396 PMCID: PMC11973601 DOI: 10.3389/fmolb.2025.1567703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Background Sucrose Non Fermenting1 (SNF1) constitutes a family of protein kinases conserved in eukaryotes, plants, and fungi. SNF1 has been known to play a crucial role in stress adaptation and metabolism, enabling organisms to respond to changing environmental conditions. Initially identified in yeast, SNF1 is essential for shifting from the primary carbon source, glucose, to secondary carbon sources like sucrose. Homologs of this protein family were identified in Leishmania major, a protozoan parasite and we aimed to determine their role in this parasite. Methods In the present study, we identified the putative homologs of SNF1 kinase in L. major and knock out strains were prepared using the CRISPR-Cas9 knock-out strategy. The developed strains were evaluated for their growth, characteristics, protein expression and ultra structural changes in vitro and virulence in a mouse model. Results One of the strain named N2, was found to be completely avirulent and showed limited growth, lack of glycosomes and had a fewer mitochondria with deformed cristae. The N2 strain failed to produce infection in mice when compared to WT mice. Proteome analysis revealed an increase in ribosomal proteins in the N2 strain, highlighting the role of ribosomes in stress adaptation. Conclusion The essentiality of this gene for developing infections in mice underscores its potential in the development of future antileishmanial therapies and live attenuated strains.
Collapse
Affiliation(s)
- Gaurav Shoeran
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Upninder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Manu DR, Bǎlaşa R, Pruteanu LL, Curean V, Barbu-Tudoran L, Şerban GM, Chinezu R, Bǎlaşa A. Identification of distinct profiles of glioblastoma through the immunocapture of extracellular vesicles from patient plasma. PLoS One 2025; 20:e0315890. [PMID: 40106404 PMCID: PMC11922215 DOI: 10.1371/journal.pone.0315890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits intratumoral heterogeneity and dynamic spatial-temporal changes. GBM-derived extracellular vesicles (EVs), reflecting tumor characteristics, present potential as liquid-biopsy markers for early diagnosis and monitoring. This study aims to evaluate molecular signatures of plasma-derived EVs from GBM patients using a conventional flow cytometer. EVs have been isolated from glioma patients and healthy controls (HCs) plasma using density gradient ultracentrifugation (DGU). EVs were evaluated by bead-based multiplex analysis in a conventional flow cytometer. Principal component analysis (PCA), hierarchical clustering, and correlation analysis provided comprehensive insights into EV characteristics. EVs successfully isolated were visualized in transmission and scanning electron microscopy (STEM). Bead-based multiplex analysis in flow cytometer detected the level of 37 EV surface markers, including tumor-related, cancer stem cell, endothelial cell, and immune cell- specific antigens. PCA identified the EV surface markers that are most significant for differentiating the subjects, and hierarchical clustering revealed four distinct clusters based on EV surface marker levels. EV molecular signature demonstrated considerable heterogeneity across patient clusters. The presence of CD29 emerged not only as a defining factor for a cluster of patients, but also served as a marker to differentiate patients from HCs.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania,
| | - Rodica Bǎlaşa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Victor Curean
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Georgiana-Mihaela Şerban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
| | - Rareş Chinezu
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Adrian Bǎlaşa
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| |
Collapse
|
8
|
Wang X, Wang J, Mao L, Yao Y. Helicobacter pylori outer membrane vesicles and infected cell exosomes: new players in host immune modulation and pathogenesis. Front Immunol 2024; 15:1512935. [PMID: 39726601 PMCID: PMC11670821 DOI: 10.3389/fimmu.2024.1512935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) and exosomes are essential mediators of host-pathogen interactions. Elucidating their mechanisms of action offers valuable insights into diagnosing and treating infectious diseases and cancers. However, the specific interactions of Helicobacter pylori (H. pylori) with host cells via OMVs and exosomes in modulating host immune responses have not been thoroughly investigated. This review explores how these vesicles elicit inflammatory and immunosuppressive responses in the host environment, facilitate pathogen invasion of host cells, and enable evasion of host defenses, thereby contributing to the progression of gastric diseases and extra-gastric diseases disseminated through the bloodstream. Furthermore, the review discusses the challenges and future directions for investigating OMVs and exosomes, underscoring their potential as therapeutic targets in H. pylori-associated diseases.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, The First People’s Hospital of
Kunshan, Kunshan, Jiangsu, China
| | | | | | | |
Collapse
|
9
|
Wang J, Wang L, Han L, Han Y, Gu J, Chen Z. Formononetin attenuates hepatic injury in diabetic mice by regulating macrophage polarization through the PTP1B/STAT6 axis. Int Immunopharmacol 2024; 140:112802. [PMID: 39088924 DOI: 10.1016/j.intimp.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.
Collapse
Affiliation(s)
- Jinchun Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Yiwen Han
- Department of Clinical Medicine, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Jun Gu
- Department of Public Health, Nanjing Medical University, 140 Hanzhong Rd, Gulou, Nanjing, Jiangsu 211166, China
| | - Zhujing Chen
- Department of Outpatient, Jurong People's Hospital, Jurong, No 66. Two holy road, Jurong, Zhenjiang, Jiangsu 212400, China.
| |
Collapse
|
10
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|