1
|
Yin R, Gao J, Liu Y, Guo C. Functional analysis of the effects of propofol on tamoxifen‑resistant breast cancer cells: Insights into transcriptional regulation. Oncol Lett 2025; 29:194. [PMID: 40041408 PMCID: PMC11878209 DOI: 10.3892/ol.2025.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Although 70% of patients with estrogen receptor-positive breast cancer benefit from tamoxifen (TAM) therapy, the development of resistance to TAM leads to high rates of metastasis and a poor prognosis. Propofol, a commonly used anesthetic, can inhibit the occurrence and progression of breast cancer. In the present study, the effects of propofol on TAM-resistant (TR) breast cancer cells were evaluated. MCF7-TR cells were treated with or without propofol. Subsequently, cell cycle progression and the induction of apoptosis were detected by flow cytometry, whereas cell proliferation was assessed using Cell Counting Kit-8 and colony formation assays. Furthermore, the potential transcriptional regulatory effects of propofol on MCF7-TR cells were investigated using RNA sequencing. The results indicated that propofol significantly promoted cell cycle arrest, induced apoptosis, and inhibited proliferation and colony formation in MCF7-TR cells. Furthermore, transcriptome sequencing analysis revealed 1,065 differentially expressed genes between propofol-treated MCF7-TR and untreated MCF7-TR cells. Gene Ontology annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Set Enrichment Analysis indicated that propofol affected the expression levels of genes located on the 'plasma membrane' and 'cell periphery', while mainly regulating signals involved in cancer biology, immune response and metabolic pathways. These results identified the potential effects of propofol on TR breast cancer cells and provided a theoretical basis for clinical treatment, particularly for individuals with TAM resistance.
Collapse
Affiliation(s)
- Runyang Yin
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jing Gao
- First Clinical Medical College, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
2
|
Wang J, Zhang HM, Zhu GH, Zhao LL, Shi J, Dai ZT, Li JP, Li XR, Sun F, Wu Y, Chen SY, Li HN, Liao XH, Xiang Y. STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer. Acta Pharmacol Sin 2025; 46:1097-1110. [PMID: 39668180 PMCID: PMC11950364 DOI: 10.1038/s41401-024-01419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Materials Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Human Anatomy&Histoembryology, School of Basic Medical sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Guan-Hua Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Li-Li Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ji Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Sun
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Shao-Yong Chen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuan Xiang
- Department of Medical Laboratory, Tongji Medical College, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
3
|
Qi X, Zhou J, Wang X, Shen Y, Cao Y, Jiang L, Shen M, Zhang H, Wang T, Wei P, Xu R, Yang Y, Ding X, Wang C, Jia X, Yan Q, Li W, Lu C. HPV E6/E7-Induced Acetylation of a Peptide Encoded by a Long Non-Coding RNA Inhibits Ferroptosis to Promote the Malignancy of Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414018. [PMID: 39836502 PMCID: PMC11905060 DOI: 10.1002/advs.202414018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Although a fraction of functional peptides concealed within long non-coding RNAs (lncRNAs) is identified, it remains unclear whether lncRNA-encoded peptides are involved in the malignancy of cervical cancer (CC). Here, a 92-amino acid peptide is discovered, which is named TUBORF, encoded by lncRNA TUBA3FP and highly expressed in CC tissues. TUBORF inhibits ferroptosis to promote the malignant proliferation of CC cells. Mechanistically, human papillomavirus (HPV) oncogenes E6 and E7 upregulate TUBORF through CREB-binding protein (CBP)/E1A-binding protein p300 (p300)-mediated histone H3 lysine 27 acetylation (H3K27ac) of lncTUBA3FP enhancer. Furthermore, E6 and E7 elevate and recruit acetyltransferase establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) to bind to and acetylate TUBORF, which facilitates the degradation of immunity-related GTPase Q (IRGQ) via a ubiquitin-proteasome pathway, resulting in the inhibition of ferroptosis and promotion of the malignant proliferation of CC cells. Importantly, silencing ESCO1 or TURORF amplifies anticancer effects by paclitaxel both in CC cells and in vivo. These novel findings reveal oncopeptide TUBORF and its acetyltransferase ESCO1 as important regulators of ferroptosis and tumorigenesis during cervical cancer pathogenesis and establish the scientific basis for targeting these molecules for treating CC.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of GynecologyWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjing Medical UniversityNanjing210004P. R. China
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Jing Zhou
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Xinyue Wang
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Yan Shen
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Yuxun Cao
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Liangzi Jiang
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Miaomiao Shen
- Department of Pathologythe First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210029P. R. China
| | - Haoran Zhang
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Tianjiao Wang
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Pengjun Wei
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Ruoqi Xu
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Yue Yang
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Xiangya Ding
- Department of GynecologyWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjing Medical UniversityNanjing210004P. R. China
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
| | - Cong Wang
- Department of Pathologythe First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210029P. R. China
| | - Xuemei Jia
- Department of GynecologyWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjing Medical UniversityNanjing210004P. R. China
| | - Qin Yan
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu ProvinceNanjing Medical UniversityNanjing211166P. R. China
| | - Wan Li
- Department of GynecologyWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjing Medical UniversityNanjing210004P. R. China
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu ProvinceNanjing Medical UniversityNanjing211166P. R. China
- Department of Infectious DiseasesChangzhou Third People's HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166P. R. China
| | - Chun Lu
- Department of GynecologyWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjing Medical UniversityNanjing210004P. R. China
- Department of MicrobiologyNanjing Medical UniversityNanjing211166P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu ProvinceNanjing Medical UniversityNanjing211166P. R. China
- Department of Infectious DiseasesChangzhou Third People's HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166P. R. China
| |
Collapse
|
4
|
Zhang K, Guo L, Li X, Hu Y, Luo N. Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J Transl Med 2025; 23:247. [PMID: 40022222 PMCID: PMC11871786 DOI: 10.1186/s12967-025-06246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been identified to drive chemotherapy resistance in triple-negative breast cancer (TNBC). This study evaluated the functions of CAFs-mediated suppressive ferroptosis in doxorubicin (DOX) resistance in TNBC and its detailed molecular mechanisms. METHODS TNBC cell lines were co-cultured with CAFs isolated from DOX-sensitive (CAF/S) or DOX-resistant (CAF/R) breast cancer tissues. Cell viability and death were assessed by cell counting Kit-8 (CCK-8) and propidium iodide (PI) staining. Ferroptosis was evaluated by detection of Fe2+, malondialdehyde (MDA), glutathione (GSH), and lipid reactive oxygen species (ROS) levels. Histone lactylation was determined by lactate production, pan-Kla and H3K18la expression. Molecular mechanism was determined by chromatin immunoprecipitation (ChIP) and dual luciferase reporter system. Molecule and protein expression was detected by quantitative Real-Time PCR (RT-qPCR), Western blotting, immunofluorescence and immunohistochemical staining. TNBC cells were injected into the mammary fat pad of nude mice to investigate DOX sensitivity in vivo. RESULTS CAFs-derived lactate repressed ferroptosis to confer resistance of TNBC cells to DOX. Moreover, zinc finger protein 64 (ZFP64) expression was elevated in DOX-resistant TNBC and was associated with high histone lactylation level. CAFs facilitated histone lactylation to enhance ZFP64 expression, which triggered ferroptosis inhibition and DOX resistance. In addition, ZFP64 bound to the promoters of GTP cyclohydrolase-1 (GCH1) and ferritin heavy chain 1 (FTH1), thereby promoting their expression. Rescue experiments indicated that ZFP64 silencing-induced ferroptosis and high sensitivity of TNBC cells to DOX could be counteracted by GCH1 or FTH1 overexpression. CONCLUSION CAFs acted as a ferroptosis inhibitor to cause DOX resistance of TNBC via histone lactylation-mediated ZFP64 up-regulation and subsequent promotion of GCH1-induced lipid peroxidation inhibition and FTH1-induced intracellular Fe2+ consumption.
Collapse
Affiliation(s)
- KeJing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China.
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China.
- Department of General Surgery, Xiangya Hospital, Central South University & Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| |
Collapse
|
5
|
Bezu L, Rahmani LS, Buggy DJ. The effect of the type of anaesthesia on long-term outcomes after cancer resection surgery: a narrative review. Anaesthesia 2025; 80:179-187. [PMID: 39777733 DOI: 10.1111/anae.16464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The peri-operative period may create a biological environment conducive to cancer cell survival and dissemination. Microscopic residual tumours (micrometastases) can be dislodged even with excellent surgical technique. At the same time, the stress response from surgery can temporarily impair immune function and activate inflammatory processes, increasing the risk of tumour proliferation. METHODS This narrative review investigates how peri-operative anaesthetic and analgesic interventions may influence cancer recurrence and metastasis by exploring evidence from both experimental and clinical studies. A comprehensive review of the literature was conducted to identify relevant preclinical and clinical studies published. RESULTS While surgery remains the best curative option for many cancers, metastasis remains the leading cause of death. Numerous studies have suggested that different anaesthetic drugs and techniques could impact cancer outcomes including volatile anaesthetic agents; total intravenous anaesthesia with propofol; local anaesthetics; regional anaesthesia; and opioids. This review focuses on these five commonly used anaesthetic approaches and evaluates their potential impact on cancer progression. DISCUSSION There is a complex interplay between anaesthetic and analgesic techniques and cancer outcomes. Despite promising data from laboratory experimental models, the balance of available clinical trials indicates an equivalent influence of all evaluated anaesthetic techniques on long-term oncologic outcomes, except, possibly, for peritumoral or intraperitoneal local anaesthetic infiltration.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group ESA_IC_RG_EP, Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, France
| | - Lua S Rahmani
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group ESA_IC_RG_EP, Brussels, Belgium
- Department of Anaesthesiology, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| | - Donal J Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group ESA_IC_RG_EP, Brussels, Belgium
- Department of Anaesthesiology, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
6
|
Fang WQ, Zhang XB, Yu Y, Ge J, Meng R. Propofol reduces breast cancer cell stemness via FOXO3/SOX2 axis. J Cancer 2025; 16:1555-1562. [PMID: 39991565 PMCID: PMC11843230 DOI: 10.7150/jca.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/21/2024] [Indexed: 02/25/2025] Open
Abstract
Objective: Propofol is a common intravenous anesthetic in cancer resection surgery, which is considered to exhibit anti-tumor effect in various cancer types. This study was aimed at investigating the role and mechanism of propofol in breast cancer stemness and proliferation. Methods: The breast cancer cells with propofol treatment were sequenced. The expression of FOXO3 in propofol treated cells was detected by RT-qPCR and Western blot. The CSC properties were analyzed by screen cells with ESA+CD44+CD24-/low through flow cytometry and the proliferation capacity were also detected. The expression correlation of FOXO3 and target genes were detected by western blot. The potential binding site of FOXO3 on SOX2 was predicted by JASPAR and verified by dual-luciferase reporter assay and ChIP assay. Results: FOXO3 was found to be upregulated in propofol 24h-treated cells. Propofol could inhibit the capacity of breast cancer cell stemness and proliferation by upregulation FOXO3, which inhibited SOX2 expression transcriptionally. Conclusion: In this study, we uncovered the role of propofol-FOXO3-SOX2 in breast cancer cell stemness and proliferation, which might serve as potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Wen-Qian Fang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Gynecology and Obstetrics, Tianjin 300100, China
| | - Xiao-Bei Zhang
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Yu
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Ge
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ran Meng
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
7
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Peng C, Chen Y, Jiang M. Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer. Front Oncol 2024; 14:1499125. [PMID: 39759144 PMCID: PMC11695291 DOI: 10.3389/fonc.2024.1499125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer is one of the most prevalent malignancies affecting women worldwide, with its incidence increasingly observed in younger populations. In recent years, drug resistance has emerged as a significant challenge in the treatment of breast cancer, making it a central focus of contemporary research aimed at identifying strategies to overcome this issue. Growing evidence indicates that inducing ferroptosis through various mechanisms, particularly by inhibiting System Xc-, depleting glutathione (GSH), and inactivating glutathione peroxidase 4 (GPX4), holds great potential in overcoming drug resistance in breast cancer. It is anticipated that therapies targeting ferroptosis will emerge as a promising strategy to reverse tumor resistance, offering new hope for breast cancer patients. This review will explore the latest advancements in understanding ferroptosis in the context of breast cancer drug resistance, with a particular emphasis on the roles of ferroptosis inducers and inhibitors, and the impact of ferroptotic pathways on overcoming drug resistance in breast cancer.
Collapse
|
9
|
Tu Y, Wang S, Wang H, Zhang P, Wang M, Liu C, Yang C, Jiang R. The role of perioperative factors in the prognosis of cancer patients: A coin has two sides. J Biomed Res 2024; 39:1-12. [PMID: 39314042 PMCID: PMC11982678 DOI: 10.7555/jbr.38.20240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer, the second leading cause of mortality globally, poses a significant health challenge. The conventional treatment for solid tumors involves surgical intervention, followed by chemo- and radio-therapies as well as target therapies, but the recurrence and metastasis of cancers remain a major issue. Anesthesia is essential for ensuring patient comfort and safety during surgical procedures. Despite its crucial role during the surgery, the precise effect of anesthesia on cancer patient outcomes is not clearly understood. This comprehensive review aims to elucidate the various anesthesia strategies used in the perioperative care of cancer patients and their potential effects on patients' prognosis, but understanding the complex relationship between anesthesia and cancer outcomes is crucial, given the complexity in cancer treaments. Examining potential implications of anesthesia strategies on cancer patient prognosis may help better understand treatment efficacy and risk factors of cancer recurrence and metastasis. Through a detailed analysis of anesthesia practices in cancer surgery, this review aims to provide insights that may lead to improving the existing anesthesia protocols and ultimately reduce risk factors for patient outcomes in the field of oncology.
Collapse
Affiliation(s)
- Yingzhou Tu
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peiyao Zhang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Riyue Jiang
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
10
|
Wang MH, Gao YH, Zhao ZD, Zhang HW. A novel model combining genes associated with disulfidptosis and glycolysis to predict breast cancer prognosis, molecular subtypes, and treatment response. ENVIRONMENTAL TOXICOLOGY 2024; 39:4347-4359. [PMID: 38747344 DOI: 10.1002/tox.24329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 08/09/2024]
Abstract
Breast cancer (BC) is a heterogeneous malignancy with a dismal prognosis. Disulfidptosis is a novel type of regulated cell death that happens in the presence of glucose deficiency and is linked to the metabolic process of glycolysis. However, the mechanism of action of disulfidptosis and glycolysis-related genes (DGRG) in BC, as well as their prognostic value in BC patients, remain unknown. After identifying the differentially expressed DGRG in normal and BC tissues, a number of machine learning algorithms were utilized to select essential prognostic genes to develop a model, including SLC7A11, CACNA1H, SDC1, CHST1, and TFF3. The expression characteristics of these genes were then examined using single-cell RNA sequencing, and BC was classified into three clusters using "ConsensusClusterPlus" based on these genes. The DGRG model's median risk score can categorize BC patients into high-risk and low-risk groups. Furthermore, we investigated variations in clinical landscape, immunoinvasion analysis, tumor immune dysfunction and rejection (TIDE), and medication sensitivity in patients in the DGRG model's high- and low-risk groups. Patients in the low-risk group performed better on immunological and chemotherapeutic therapies and had lower TIDE scores. In conclusion, the DGRG model we developed has significant clinical application potential because it can accurately predict the prognosis of BC, TME, and pharmacological treatment responses.
Collapse
Affiliation(s)
- Mei-Huan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue-Hua Gao
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen-Dan Zhao
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hua-Wei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W, Duan H. Propofol Mitigates Sepsis-Induced Brain Injury by Inhibiting Ferroptosis Via Activation of the Nrf2/HO-1axis. Neurochem Res 2024; 49:2131-2147. [PMID: 38822984 DOI: 10.1007/s11064-024-04163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) develops in 30-70% of hospitalized patients with sepsis. In intensive care units (ICUs), propofol is often administered to ensure an appropriate level of sedation in mechanically ventilated patients. Ferroptosis is a newly identified mode of cellular death characterized by the peroxidation of membrane lipids and excessive iron. This study was conducted to explore the interplay between propofol, sepsis, and ferroptosis. METHODS An acute systemic inflammatory model was constructed via the intraperitoneal administration of lipopolysaccharide (LPS). Nissl and Fluoro-Jade C (FJC) staining were employed to display neuronal damage and degeneration. Western blotting and immunofluorescence (IF) staining of Bax and Bcl-2 were used to confirm the neural apoptosis. QPCR of cytokines and DHE staining were used to indicate neuroinflammation. To validate ferroptosis, we assessed the content of malondialdehyde (MDA), GSH, and tissue iron, accompanied by transcription level of CHAC1, PTGS2 and GPX4. Additionally, we examined the content of acyl-CoA synthetase long-chain family member 4 (ACSL4), xCT (SLC7A11, solute carrier family 7 member 11), and glutathione peroxidase 4 (GPX4). The IF staining of Iba1-labeled microglia and GFAP-marked astrocytes were used to measure the gliosis. Erastin was pre-pretreated to confirm the anti-ferroptotic capability of propofol. ML385 was preconditioned to explore the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in propofol-repressed ferroptosis. RESULTS Propofol dose-dependently inhibited the decrease of Nissl-positive neurons and the increase of FJC-stained neurons in septic hippocampus and cortex. Neural cytokines, oxidative stress, apoptosis and gliosis were reduced by propofol. Propofol repressed the level of MDA, iron, CHAC1, PTGS2, ACLS4 and restored the content of GSH, GPX4, xCT, Nrf2 and HO-1, thus inhibiting sepsis-induced ferroptosis. All protections from propofol could be reversed by eratsin and ML385 pretreatment. CONCLUSION Propofol protected against sepsis-induced brain damage, neuroinflammation, neuronal apoptosis and gliosis through the activation of the Nrf2/HO-1 axis to combat ferroptosis.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Liang Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Weiqing Tang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| |
Collapse
|
12
|
Li D, Wan M, Liu X, Ojha SC, Sheng Y, Li Y, Sun C, Deng C. PART1 facilitates tumorigenesis and inhibits ferroptosis by regulating the miR-490-3p/SLC7A11 axis in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:11339-11358. [PMID: 39029955 PMCID: PMC11315397 DOI: 10.18632/aging.206009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Ferroptosis is associated with cancer progression and has a promising application for treating hepatocellular carcinoma (HCC). Long non-coding RNA (lncRNA) participates widely in the regulation of ferroptosis, but the key lncRNA regulators implicated in ferroptosis and their molecular mechanisms remain to be identified. METHODS Bioinformatic analysis was performed in R based on The Cancer Genome Atlas Program (TCGA) public database. The relative expression of genes was detected by real-time quantitative PCR. Cell viability was assessed by the CCK8 assay. The cell cycle and apoptosis were detected by flow cytometry. Migration and invasion of HCC cells were detected by Transwell assay and wound healing assay. Expression of relevant proteins was detected by Western blotting. A dual-luciferase reporter assay was used to detect interactions between PART1 (or SLC7A11) and miR-490-3p. RESULTS The PART1/miR-490-3p/SLC7A11 axis was identified as a potential regulatory pathway of ferroptosis in HCC. PART1 silencing reduced HCC cell proliferation, migration, and metastasis and promoted apoptosis and erastin-reduced ferroptosis. Further investigation revealed that PART1 acted as a competitive endogenous RNA (ceRNA) for miR-490-3p to enhance SLC7A11 expression. Overexpression of miR-490-3p downregulated the expression of SLC7A11, inhibiting the proliferation, invasion, and metastasis of HCC cells while promoting apoptosis and erastin-induced ferroptosis. Knockdown of PART1 in HCC cells significantly improved the sensitivity of HCC cells to sorafenib. CONCLUSION Our results revealed that the PART1/miR-490-3p/SLC7A11 axis enhances HCC cell malignancy and suppresses ferroptosis, which provides a new perspective for understanding of the function of long chain non-coding RNAs in HCC. The PART1/miR-490-3p/SLC7A11 axis may be target for improving sorafenib sensitivity in HCC.
Collapse
Affiliation(s)
- Decheng Li
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Wan
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoling Liu
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
13
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W, Duan H. Propofol and Dexmedetomidine Ameliorate Endotoxemia-Associated Encephalopathy via Inhibiting Ferroptosis. Drug Des Devel Ther 2024; 18:1349-1368. [PMID: 38681208 PMCID: PMC11055548 DOI: 10.2147/dddt.s458013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Liang Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Weiqing Tang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Cheng L, Zhao L, Wang G. Propofol Promoted the Cell Growth and Epithelial Mesenchymal Transformation of the HTR-8/SVneo Cells through Targeting the METTL3 Mediated ZEB2. Reprod Sci 2024; 31:687-696. [PMID: 37814200 DOI: 10.1007/s43032-023-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Preeclampsia (PE) belongs to hypertensive disorder complicating pregnancy, which is a serious obstetric complication. Propofol is a new type of fast and short-acting general anesthetic, which has also been demonstrated to promote the cell growth recently. Therefore, this study was carried out to explore the effects of propofol on the cell growth, migration and invasion in the HTR-8/SVneo cells. The cell biological behaviors were analyzed using CCK-8, EdU, transwell assays. The relationship between METTL3 and ZEB2 was confirmed by RIP assay. Western blot and RT-qPCR assays were carried out to detect the protein and mRNA levels. The results showed that propofol enhanced the cell viability, proliferation, migration and invasion of the HTR-8/SVneo cells. Besides, METTL3 overexpression neutralized the propofol role. Furthermore, METTL3 overexpression elevated the m6A levels of ZEB2 and decreased the mRNA levels and stability of ZEB2. ZEB2 overexpression neutralized the role of METTL3 in the propofol treated HTR-8/SVneo cells. In conclusion, this study demonstrated the effects of propofol on promoting the cell growth, migration and invasion of HTR-8/SVneo cells. Mechanistically, propofol indirectly regulated ZEB2 expression by targeting METTL3 mediated m6A methylation modification.
Collapse
Affiliation(s)
- Long Cheng
- Department of Anesthesiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100000, China.
| |
Collapse
|
15
|
Potocnik I, Kerin-Povsic M, Markovic-Bozic J. The influence of anaesthesia on cancer growth. Radiol Oncol 2024; 58:9-14. [PMID: 38378027 PMCID: PMC10878770 DOI: 10.2478/raon-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Oncological patients make up a large proportion of all surgical patients. Through its influence on the patient's inflammatory and immune system, the choice of anaesthetic technique has an indirect impact on the health of the individual patient and on public health. Both the specific and the non-specific immune system have a major influence on the recurrence of carcinomas. The pathophysiological basis for growth and metastasis after surgery is the physiological response to stress. Inflammation is the organism's universal response to stress. Anaesthetics and adjuvants influence perioperative inflammation in different ways and have an indirect effect on tumour growth and metastasis. In vitro studies have shown how individual anaesthetics influence the growth and spread of cancer, but clinical studies have not confirmed these results. Nevertheless, it is advisable to use an anaesthetic that has shown lesser effect on the growth of cancer cells in vitro. CONCLUSIONS In this review, we focus on the area of the effects of anaesthesia on tumour growth. The field is still relatively unexplored, there are only few clinical prospective studies and their results are controversial. Based on the review of new research findings we report on recommendations about anaesthetics and anaesthetic techniques that might be preferable for oncological surgical procedures.
Collapse
Affiliation(s)
- Iztok Potocnik
- Department of Anaesthesiology and Intensive Care, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Milena Kerin-Povsic
- Department of Anaesthesiology and Intensive Care, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jasmina Markovic-Bozic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Anaesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Khan M, Sunkara V, Yadav M, Bokhari SFH, Rehman A, Maheen A, Shehryar A, Chilla SP, Nasir M, Niaz H, Choudhari J, Anika NN, Amir M. Ferroptosis and Triple-Negative Breast Cancer: A Systematic Overview of Prognostic Insights and Therapeutic Potential. Cureus 2024; 16:e51719. [PMID: 38318597 PMCID: PMC10838809 DOI: 10.7759/cureus.51719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
In the realm of oncology, the prognosis and treatment of triple-negative breast cancer (TNBC) have long been challenges for researchers and clinicians. Characterized by its aggressive nature and limited therapeutic options, TNBC demands innovative approaches to understanding its underlying mechanisms and improving patient outcomes. One such avenue of exploration that has emerged in recent years is the study of ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation. Ferroptosis has garnered increasing attention due to its potential relevance in the context of TNBC. This systematic review aims to shed light on the intricate interplay between ferroptosis and the prognosis of TNBC. The article delves into a comprehensive examination of the existing literature to provide a holistic understanding of the subject. By investigating ferroptosis as both an intervention and a prognostic factor in TNBC, this article seeks to unravel its potential as a therapeutic target and prognostic marker. The emerging evidence and heterogeneity of ferroptosis in TNBC underscore the need for a systematic approach to assess its impact on patient outcomes. This review will serve as a valuable resource for researchers, clinicians, and healthcare professionals striving to enhance our knowledge of TNBC and explore novel avenues for prognosis and treatment.
Collapse
Affiliation(s)
- Mohsin Khan
- Interventional Radiology, Musgrove Park Hospital, Taunton, GBR
| | | | - Mansi Yadav
- Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | | | | - Azka Maheen
- Medicine, Gomal Medical College, Dera Ismail Khan, PAK
| | | | - Srikar P Chilla
- Medicine, Care Hospitals, Hyderabad, IND
- School of Health Sciences, University of East London, London, GBR
| | - Maheen Nasir
- Anesthesiology, National University of Medical Sciences, Lahore, PAK
| | - Humaira Niaz
- Internal Medicine, Peshawar Medical College, Peshawar, PAK
| | - Jinal Choudhari
- Research & Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Nabila N Anika
- Medicine, Holy Family Red Crescent Medical College and Hospital, Dhaka, BGD
| | - Maaz Amir
- Internal Medicine, King Edward Medical University, Lahore, PAK
| |
Collapse
|
17
|
Li J, He D, Li S, Xiao J, Zhu Z. Ferroptosis: the emerging player in remodeling triple-negative breast cancer. Front Immunol 2023; 14:1284057. [PMID: 37928550 PMCID: PMC10623117 DOI: 10.3389/fimmu.2023.1284057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast tumor type that is highly malignant, invasive, and highly recurrent. Ferroptosis is a unique mode of programmed cell death (PCD) at the morphological, physiological, and molecular levels, mainly characterized by cell death induced by iron-dependent accumulation of lipid peroxides, which plays a substantial role in a variety of diseases, including tumors and inflammatory diseases. TNBC cells have been reported to display a peculiar equilibrium metabolic profile of iron and glutathione, which may increase the sensitivity of TNBC to ferroptosis. TNBC possesses a higher sensitivity to ferroptosis than other breast cancer types. Ferroptosis also occurred between immune cells and tumor cells, suggesting that regulating ferroptosis may remodel TNBC by modulating the immune response. Many ferroptosis-related genes or molecules have characteristic expression patterns and are expected to be diagnostic targets for TNBC. Besides, therapeutic strategies based on ferroptosis, including the isolation and extraction of natural drugs and the use of ferroptosis inducers, are urgent for TNBC personalized treatment. Thus, this review will explore the contribution of ferroptosis in TNBC progression, diagnosis, and treatment, to provide novel perspectives and therapeutic strategies for TNBC management.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Xiao
- Department of Breast Surgery, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Xu C, Chen Y, Yu Q, Song J, Jin Y, Gao X. Compounds targeting ferroptosis in breast cancer: progress and their therapeutic potential. Front Pharmacol 2023; 14:1243286. [PMID: 37920209 PMCID: PMC10619677 DOI: 10.3389/fphar.2023.1243286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In recent years, there has been a significant increase in the incidence of Breast cancer (BC), making it the most common cancer among women and a major threat to women's health. Consequently, there is an urgent need to discover new and effective strategies for treating BC. Ferroptosis, a novel form of cell death characterized by the accumulation of iron-dependent lipid reactive oxygen species, has emerged as a distinct regulatory pathway separate from necrosis, apoptosis, and autophagy. It is widely recognized as a crucial factor in the development and progression of cancer, offering a promising avenue for BC treatment. While significant progress has been made in understanding the mechanisms of ferroptosis in BC, drug development is still in its early stages. Numerous compounds, including phytochemicals derived from dietary sources and medicinal plants, as well as synthetic drugs (both clinically approved medications and laboratory reagents), have shown the ability to induce ferroptosis in BC cells, effectively inhibiting tumor growth. This comprehensive review aims to examine in detail the compounds that target ferroptosis in BC and elucidate their potential mechanisms of action. Additionally, the challenges associated with the clinical application of ferroptosis-inducing drugs are discussed, offering valuable insights for the development of novel treatment strategies for BC.
Collapse
Affiliation(s)
- Chuchu Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yian Chen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinghong Yu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiaqing Song
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiufei Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Jin Y, Xie S, Sheng B, Chen M, Zhu X. The effect of propofol on chemosensitivity of paclitaxel in cervical cancer cells. Cancer Med 2023; 12:14403-14412. [PMID: 37162289 PMCID: PMC10358199 DOI: 10.1002/cam4.6064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 04/06/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Propofol is a drug with potential anticancer effect. This study aimed to explore the effect of propofol on chemosensitivity of cervical cancer cells to paclitaxel. METHODS HeLa and CaSki cells were selected for drug experiments. Cell viability was evaluated via CCK-8 assay, and the combination index (CI) was calculated by CompuSyn software. A clinically relevant concentration and IC30 of propofol were selected in combination with 5 nM paclitaxel. BrdU incorporation, transwell, and flow cytometry assays were utilized to evaluate cell proliferation, migration, invasion, and apoptosis. The expression of β-tubulin, stathmin 1, and GAPDH proteins was evaluated by Western blot. The stathmin 1 cDNA plasmid was used to establish stathmin 1-overexpressing CaSki cells. RESULTS At clinically relevant concentrations (0-80 μM), propofol did not affect cancer cell viability, but high concentrations (100-800 μM) reduced cell viability. The CI values of propofol with IC30 (200 μM in HeLa; 400 μM in CaSki) combined with 5 nM paclitaxel were <1. The effect of propofol with IC30 combined with paclitaxel on cell proliferation, migration, invasion, and apoptosis were stronger than individual effect, while 30 μM propofol had no effect. The Western blot results showed 30 μM propofol did not affect β-tubulin and stathmin 1 expression in cells, although paclitaxel upregulated β-tubulin expression while downregulating stathmin 1 expression. Compared with paclitaxel alone, cotreatment with propofol at its IC30 and paclitaxel decreased stathmin 1 expression but had no effect on β-tubulin expression. High stathmin 1 expression weakened the effect of paclitaxel on cell viability and apoptosis, while propofol partially reversed these effect. CONCLUSION Propofol at clinically relevant concentrations had no effect on the malignant biological behaviors of cervical cancer cells, while propofol at high concentrations decreased.Propofol with IC30 and paclitaxel had synergetic effect on cancer cells through a reduction in stathmin 1 expression.
Collapse
Affiliation(s)
- Yanshan Jin
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Shangdan Xie
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Bo Sheng
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Mei Chen
- Department of Obstetrics and GynecologyTaizhou Women and Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
- Department of Obstetrics and GynecologyTaizhou Women and Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| |
Collapse
|
20
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
21
|
Alexa AL, Jurj A, Tomuleasa C, Tigu AB, Hategan RM, Ionescu D. The Effect of Different Anesthetic Techniques on Proliferation, Apoptosis, and Gene Expression in Colon Cancer Cells: A Pilot In Vitro Study. Curr Issues Mol Biol 2023; 45:738-751. [PMID: 36661535 PMCID: PMC9857142 DOI: 10.3390/cimb45010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Colorectal cancer is highly common and causes high mortality rates. Treatment for colorectal cancer is multidisciplinary, but in most cases the main option remains surgery. Intriguingly, in recent years, a number of studies have shown that a patient's postoperative outcome may be influenced by certain anesthetic drugs. Our main objective was to compare the effect of propofol-total intravenous anesthesia (TIVA) with sevoflurane anesthesia and to investigate the potential role of intravenous lidocaine on colon cancer cell functions. We tested the effects of serum from colorectal cancer patients undergoing TIVA vs. sevoflurane anesthesia with or without lidocaine on HCT 116 cell lines; on proliferation, apoptosis, migration, and cell cycles; and on cancer-related gene expressions. METHODS 60 patients who were scheduled for colorectal cancer surgery were randomized into four different groups (two groups with TIVA and two groups with sevoflurane anesthesia with or without intravenous lidocaine). Blood samples were collected at the start and at the end of surgery. HCT 116 cells were exposed to the patients' serum. RESULTS 15 patients were included in each of the study groups. We did not find any significant difference on cell viability or apoptosis between the study groups. However, there was an increased apoptosis in propofol groups, but this result was not statistically significant. A significant increase in the expression profile of the TP53 gene in the propofol group was registered (p = 0.029), while in the other study groups, no significant differences were reported. BCL2 and CASP3 expressions increased in the sevoflurane-lidocaine group without statistical significance. CONCLUSIONS In our study, serum from patients receiving different anesthetic techniques did not significantly influence the apoptosis, migration, and cell cycle of HCT-116 colorectal carcinoma cells. Viability was also not significantly influenced by the anesthetic technique, except the sevoflurane-lidocaine group where it was increased. The gene expression of TP53 was significantly increased in the propofol group, which is consistent with the results of similar in vitro studies and may be one of the mechanisms by which anesthetic agents may influence the biology of cancer cells. Further studies that investigate the effects of propofol and lidocaine in different plasma concentrations on different colon cancer cell lines and assess the impacts of these findings on the clinical outcome are much needed.
Collapse
Affiliation(s)
- Alexandru Leonard Alexa
- 1st Department of Anesthesia and Intensive Care, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, The Regional Institute of Gastroenterology and Hepatology, “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
- Research Association in Anesthesia and Intensive Care (ACATI), 400394 Cluj-Napoca, Romania
- Correspondence:
| | - Ancuta Jurj
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania
- Research Center for Advanced Medicine—MedFUTURE, Department of Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Research Center for Advanced Medicine—MedFUTURE, Department of Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Raluca-Miorita Hategan
- Department of Anesthesia and Intensive Care, The Regional Institute of Gastroenterology and Hepatology, “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
| | - Daniela Ionescu
- 1st Department of Anesthesia and Intensive Care, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, The Regional Institute of Gastroenterology and Hepatology, “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
- Research Association in Anesthesia and Intensive Care (ACATI), 400394 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
23
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|