1
|
Fung AA, Li Z, Boote C, Markov P, Gaut JP, Jain S, Shi L. Label-free multimodal optical biopsy reveals biomolecular and morphological features of diabetic kidney tissue in 2D and 3D. Nat Commun 2025; 16:4509. [PMID: 40374604 DOI: 10.1038/s41467-025-59163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/17/2025] Open
Abstract
Kidney disease, the ninth leading cause of death in the United States, suffers from poor diagnostic efficiency (10%). Traditional biopsies use molecular reagents to enhance diagnostic power but are limited by overlapping spatial and chromatic signals, product quality variability, and additional processing. To address these challenges without disrupting routine diagnostics, we implement label-free imaging modalities-stimulated Raman scattering (SRS), second harmonic generation (SHG), and two-photon fluorescence (TPF)-within a single setup. We identify morphological, lipidomic, and metabolic biomarkers in control and diabetic kidney samples at subcellular resolution. Label-free Stimulated Raman Histology (SRH) reveals distinct collagen morphology, mesangial-glomerular volumes, lipid saturation, redox status, and lipid-protein concentrations previously unrecognized in kidney diseases. Using the same tissue section enhances diagnostic value without compromising limited tissue. These multimodal biomarkers broadly deepen the understanding of kidney disease progression by integrating lipidomic, fibrotic, and metabolic data.
Collapse
Affiliation(s)
- Anthony A Fung
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhi Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Craig Boote
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, UK
| | | | - Joseph P Gaut
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Li Z, Sarikhani E, Prayotamornkul S, Meganathan DP, Jahed Z, Shi L. Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:825-834. [PMID: 39735831 PMCID: PMC11672213 DOI: 10.1021/cbmi.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.
Collapse
Affiliation(s)
- Zhi Li
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Einollah Sarikhani
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sirasit Prayotamornkul
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Dhivya Pushpa Meganathan
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zeinab Jahed
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lingyan Shi
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Electrical
and Computer Engineering, University of
California San Diego, La Jolla, California 92093, United States
- Institute
of Engineering in Medicine, University of
California San Diego, La Jolla, California 92093, United States
- Synthetic
Biology Institute, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Fung AA, Li Z, Boote C, Markov P, Jain S, Shi L. Label-Free Optical Biopsy Reveals Biomolecular and Morphological Features of Diabetic Kidney Tissue in 2D and 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620507. [PMID: 39553929 PMCID: PMC11565847 DOI: 10.1101/2024.10.27.620507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kidney disease, the ninth leading cause of death in the United States, has one of the poorest diagnostic efficiencies of only 10% 1 . Conventional diagnostic methods often rely on light microscopy analysis of 2D fixed tissue sections with limited molecular insight compared to omics studies. Targeting multiple features in a biopsy using molecular or chemical reagents can enhance molecular phenotyping but are limited by overlap of their spatial and chromatic properties, variations in quality of the products, limited multimodal nature and need additional tissue processing. To overcome these limitations and increase the breadth of molecular information available from tissue without an impact on routine diagnostic workup, we implemented label-free imaging modalities including stimulated Raman scattering (SRS) microscopy, second harmonic generation (SHG), and two photon fluorescence (TPF) into a single microscopy setup. We visualized and identified morphological, structural, lipidomic, and metabolic biomarkers of control and diabetic human kidney biopsy samples in 2D and 3D at a subcellular resolution. The label-free biomarkers, including collagen fiber morphology, mesangial-glomerular fractional volume, lipid saturation, redox status, and relative lipid and protein concentrations in the form of Stimulated Raman Histology (SRH), illustrate distinct features in kidney disease tissues not previously appreciated. The same tissue section can be used for routine diagnostic work up thus enhancing the power of cliniopathological insights obtainable without compromising already limited tissue. The additional multimodal biomarkers and metrics are broadly applicable and deepen our understanding of the progression of kidney diseases by integrating lipidomic, fibrotic, and metabolic data. Abstract Figure
Collapse
|
4
|
Kamp M, Surmacki J, Segarra Mondejar M, Young T, Chrabaszcz K, Joud F, Zecchini V, Speed A, Frezza C, Bohndiek SE. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat Commun 2024; 15:5386. [PMID: 38918386 PMCID: PMC11199670 DOI: 10.1038/s41467-024-49403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.
Collapse
Affiliation(s)
- Marlous Kamp
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Marc Segarra Mondejar
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Tim Young
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Karolina Chrabaszcz
- Institute of Nuclear Physics, Polish Academy of Sciences, Department of Experimental Physics of Complex Systems, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Vincent Zecchini
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alyson Speed
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
5
|
Huang X, Xue Z, Zhang D, Lee HJ. Pinpointing Fat Molecules: Advances in Coherent Raman Scattering Microscopy for Lipid Metabolism. Anal Chem 2024; 96:7945-7958. [PMID: 38700460 DOI: 10.1021/acs.analchem.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Xiangjie Huang
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Zexin Xue
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Zhang W, Li Y, Fung AA, Li Z, Jang H, Zha H, Chen X, Gao F, Wu JY, Sheng H, Yao J, Skowronska-Krawczyk D, Jain S, Shi L. Multi-molecular hyperspectral PRM-SRS microscopy. Nat Commun 2024; 15:1599. [PMID: 38383552 PMCID: PMC10881988 DOI: 10.1038/s41467-024-45576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.
Collapse
Affiliation(s)
- Wenxu Zhang
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhi Li
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongje Jang
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Honghao Zha
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiaoping Chen
- Dept. of Neurology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Fangyuan Gao
- Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jane Y Wu
- Dept. of Neurology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Huaxin Sheng
- Dept. of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Dept. of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Sanjay Jain
- Dept. of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Dept. of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Dept. of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Meyer HJ, Mamani S, Li Z, Shi L, Alfano RR. Femtosecond optical Kerr effect in normal and grades of cancerous breast tissues as a new optical biopsy method. JOURNAL OF BIOPHOTONICS 2024; 17:e202300344. [PMID: 38010367 DOI: 10.1002/jbio.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
This study reports on the first use of the optical Kerr effect (OKE) in breast cancer tissue. This proposed optical biopsy method utilizes a Femtosecond Optical Kerr Gate to detect changes in dielectric relaxation and conductivity created by a cancerous infection. Here, the temporal behavior of the OKE is tracked in normal and cancerous samples of human and mouse breast. These tissues display a double peaked temporal structure and its decay rate changes depending on the tissue's infection status. The decay of the secondary peak, attributed to ultrafast plasma response, indicates that the tissue's conductivity has doubled once infected. A slower molecular contribution to the Kerr effect can also be observed in healthy tissues. These findings suggest two possible biomarkers for the use of OKE in optical biopsy. Both markers arise from alterations in the infected tissue's cellular structure, which changes the rate at which electronic and molecular processes occur.
Collapse
Affiliation(s)
- Henry J Meyer
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| | - Sandra Mamani
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| | - Zhi Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, San Diego, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, San Diego, USA
| | - Robert R Alfano
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| |
Collapse
|
8
|
Li Z, Nguyen C, Jang H, Hoang D, Min S, Ackerstaff E, Koutcher JA, Shi L. Multimodal imaging of metabolic activities for distinguishing subtypes of breast cancer. BIOMEDICAL OPTICS EXPRESS 2023; 14:5764-5780. [PMID: 38021123 PMCID: PMC10659775 DOI: 10.1364/boe.500252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive form of cancer. Detecting TNBC early is crucial for improving disease prognosis and optimizing treatment. Unfortunately, conventional imaging techniques fall short in providing a comprehensive differentiation of TNBC subtypes due to their limited sensitivity and inability to capture subcellular details. In this study, we present a multimodal imaging platform that integrates heavy water (D2O)-probed stimulated Raman scattering (DO-SRS), two-photon fluorescence (TPF), and second harmonic generation (SHG) imaging. This platform allows us to directly visualize and quantify the metabolic activities of TNBC subtypes at a subcellular level. By utilizing DO-SRS imaging, we were able to identify distinct levels of de novo lipogenesis, protein synthesis, cytochrome c metabolic heterogeneity, and lipid unsaturation rates in various TNBC subtype tissues. Simultaneously, TPF imaging provided spatial distribution mapping of NAD[P]H and flavin signals in TNBC tissues, revealing a high redox ratio and significant lipid turnover rate in TNBC BL2 (HCC1806) samples. Furthermore, SHG imaging enabled us to observe diverse orientations of collagen fibers in TNBC tissues, with higher anisotropy at the tissue boundary compared to the center. Our multimodal imaging platform offers a highly sensitive and subcellular approach to characterizing not only TNBC, but also other tissue subtypes and cancers.
Collapse
Affiliation(s)
- Zhi Li
- Department of Bioengineering, University of California San Diego, California, USA
| | - Chloe Nguyen
- Department of Bioengineering, University of California San Diego, California, USA
| | - Hongje Jang
- Department of Bioengineering, University of California San Diego, California, USA
| | - David Hoang
- Department of Bioengineering, University of California San Diego, California, USA
| | - SoeSu Min
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, California, USA
| |
Collapse
|
9
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
10
|
Bagheri P, Hoang K, Kuo CY, Trivedi H, Jang H, Shi L. Bioorthogonal Chemical Imaging of Cell Metabolism Regulated by Aromatic Amino Acids. J Vis Exp 2023:10.3791/65121. [PMID: 37246865 PMCID: PMC10725321 DOI: 10.3791/65121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Essential aromatic amino acids (AAAs) are building blocks for synthesizing new biomasses in cells and sustaining normal biological functions. For example, an abundant supply of AAAs is important for cancer cells to maintain their rapid growth and division. With this, there is a rising demand for a highly specific, noninvasive imaging approach with minimal sample preparation to directly visualize how cells harness AAAs for their metabolism in situ. Here, we develop an optical imaging platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) and integrates DO-SRS with two-photon excitation fluorescence (2PEF) into a single microscope to directly visualize the metabolic activities of HeLa cells under AAA regulation. Collectively, the DO-SRS platform provides high spatial resolution and specificity of newly synthesized proteins and lipids in single HeLa cell units. In addition, the 2PEF modality can detect autofluorescence signals of nicotinamide adenine dinucleotide (NADH) and Flavin in a label-free manner. The imaging system described here is compatible with both in vitro and in vivo models, which is flexible for various experiments. The general workflow of this protocol includes cell culture, culture media preparation, cell synchronization, cell fixation, and sample imaging with DO-SRS and 2PEF modalities.
Collapse
Affiliation(s)
- Pegah Bagheri
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Khang Hoang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Chan-Yu Kuo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Hetvi Trivedi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Hongje Jang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego;
| |
Collapse
|
11
|
Meyer H, Mamani S, Li Z, Shi L, Alfano R. Femtosecond Optical Kerr Gates in Cancerous Breast Tissue for a New Optical Biopsy Method. RESEARCH SQUARE 2023:rs.3.rs-2829849. [PMID: 37214848 PMCID: PMC10197745 DOI: 10.21203/rs.3.rs-2829849/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Optical Kerr Effect was demonstrated for the first time as a new optical biopsy method to detect normal and grades of cancer of human breast tissues. The technique works by temporally tracking the various electronic and molecular processes that give rise to the nonlinear index of refraction (n2). The rate at which these processes populate and dissipate varies depending on the internal properties of the sample. It is shown here that in tissues, the variances in the ultrafast plasma Kerr responses that relates to the dielectric relaxation can be used as a biomarker for cancer. The relaxation of this response changes significantly between healthy and different grades of triple negative breast cancer tissues. This change can be attributed to a doubling or tripling of the tissue's conductivity depending on the cancer grade.
Collapse
Affiliation(s)
- Henry Meyer
- The City College of the City University of New York
| | | | - Zhi Li
- University of California San Diego
| | | | | |
Collapse
|
12
|
Spratt SJ, Mizuguchi T, Akaboshi H, Kosakamoto H, Okada R, Obata F, Ozeki Y. Imaging the uptake of deuterated methionine in Drosophila with stimulated Raman scattering. Front Chem 2023; 11:1141920. [PMID: 37065821 PMCID: PMC10090404 DOI: 10.3389/fchem.2023.1141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Visualizing small individual biomolecules at subcellular resolution in live cells and tissues can provide valuable insights into metabolic activity in heterogeneous cells, but is challenging.Methods: Here, we used stimulated Raman scattering (SRS) microscopy to image deuterated methionine (d-Met) incorporated into Drosophila tissues in vivo.Results: Our results demonstrate that SRS can detect a range of previously uncharacterized cell-to-cell differences in d-Met distribution within a tissue at the subcellular level.Discussion: These results demonstrate the potential of SRS microscopy for metabolic imaging of less abundant but important amino acids such as methionine in tissue.
Collapse
Affiliation(s)
- Spencer J. Spratt
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Takaha Mizuguchi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Hikaru Akaboshi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rina Okada
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yasuyuki Ozeki,
| |
Collapse
|
13
|
Jang H, Li Y, Fung AA, Bagheri P, Hoang K, Skowronska-Krawczyk D, Chen X, Wu JY, Bintu B, Shi L. Super-resolution SRS microscopy with A-PoD. Nat Methods 2023; 20:448-458. [PMID: 36797410 PMCID: PMC10246886 DOI: 10.1038/s41592-023-01779-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.
Collapse
Affiliation(s)
- Hongje Jang
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pegah Bagheri
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Khang Hoang
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Xiaoping Chen
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Jane Y Wu
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Bogdan Bintu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lingyan Shi
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|