1
|
Torres I, Ramos R, Domínguez ML, Rosales JJ, Roteta A, Prieto E, Sancho L, de Arcocha M, Quincoces G, en nombre del Grupo de Oncología de la SEMNIM. State of the art and future perspectives of new radinuclides in Nuclear Medicine: Part III. Rev Esp Med Nucl Imagen Mol 2025:500161. [PMID: 40311871 DOI: 10.1016/j.remnie.2025.500161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
In this third installment of the continuing education series, the clinical and therapeutic applications of zirconium, astatine and thorium are analyzed in depth. Although they are not described as theragnostic pairs, each of these radionuclides plays a fundamental role in precision medicine, which is rapidly advancing within Nuclear Medicine. We begin by analyzing zirconium-89, a positron emitter whose long half-life makes it particularly suitable for labeling large molecules with slow kinetics, such as antibodies, playing a crucial role in immunotherapy. The use of astatine-211, an alpha-emitting radionuclide with a simple decay scheme and chemical behavior similar to iodine, is also discussed. Its main challenge lies in its production, as it requires cyclotrons capable of generating highly energetic alpha particle beams. Furthermore, thorium-227, a 100% alpha emitter, is reviewed. This radionuclide exhibits excellent chelation properties, enabling its conjugation with tumor-targeting molecules to produce thorium-labeled conjugates. While this technique is yielding promising preclinical results, the use of thorium faces challenges, including the potential separation of radium-223 from the molecule and the dependence of activity measurements on the time of production. Since it takes 100 days to reach equilibrium, activity assessment is based on photons emitted by its daughter radionuclides. Despite these challenges, these radionuclides are driving the evolution of precision medicine, expanding therapeutic and diagnostic possibilities within Nuclear Medicine.
Collapse
Affiliation(s)
- I Torres
- Unidad de Radiofísica, Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - R Ramos
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Madrid, Spain
| | - M L Domínguez
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J J Rosales
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
| | - A Roteta
- Servicio de Medicina Nuclear, Hospital Oncológico de Donostia, Guipuzkoa, Spain
| | - E Prieto
- Servicio de Radiofísica y Protección Radiológica, Clínica Universidad de Navarra, Pamplona, Spain
| | - L Sancho
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Madrid, Spain
| | - M de Arcocha
- Unidad de Radiofarmacia, Hospital Universitario Marqués de Valdecilla, Grupo de Imagen Molecular IDIVAL, Santander, Spain.
| | - G Quincoces
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
2
|
Jean C, Roux S, Aziz A, Mocquery-Corre M, Bazzi R, Merrouche Y, Dedieu S, Etique N, Papathanassiou D, Devy J. Currents status of radiotracers for breast cancer imaging in PET. Transl Oncol 2025; 53:102304. [PMID: 39922049 PMCID: PMC11849122 DOI: 10.1016/j.tranon.2025.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Radiolabeled molecules have become valuable tools in the diagnosis, monitoring, and treatment of cancer, particularly breast cancer. Through the use of radiotracers, clinicians can target specific tumor cells, assess microenvironments, and identify metastases. These radiopharmaceuticals, based on radionuclides, enable both imaging and therapeutic applications, leading to personalized cancer treatment. Techniques such as PET, SPECT, and the use of nanoparticles for theranostics are at the forefront of innovation, offering improved precision in both diagnosis and therapy. This review explores the various ways in which radiotracers are leveraged in modern oncology, with a focus on breast cancer, and highlights recent advancements in targeted radionuclide therapy and nanoparticle-based applications.
Collapse
Affiliation(s)
- Chloé Jean
- Université de Reims Champagne Ardenne, UMR CNRS 7369 MEDyC, Reims, France; Université de Reims Champagne Ardenne, CRESTIC, Reims, France
| | - Stéphane Roux
- Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25000 Besançon, France
| | - Abdelilah Aziz
- Université de Reims Champagne Ardenne, UMR CNRS 7369 MEDyC, Reims, France
| | | | - Rana Bazzi
- Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25000 Besançon, France
| | | | - Stéphane Dedieu
- Université de Reims Champagne Ardenne, UMR CNRS 7369 MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne Ardenne, UMR CNRS 7369 MEDyC, Reims, France
| | - Dimitri Papathanassiou
- Institut Godinot, Reims, France; Université de Reims Champagne Ardenne, CRESTIC, Reims, France; Université de Reims Champagne Ardenne, UFR de Médecine, France
| | - Jérôme Devy
- Université de Reims Champagne Ardenne, UMR CNRS 7369 MEDyC, Reims, France.
| |
Collapse
|
3
|
Duvenhage J, Kahts M, Summers B, Zeevaart JR, Ebenhan T. Highlighting New Research Trends on Zirconium-89 Radiopharmaceuticals Beyond Antibodies. Semin Nucl Med 2024; 54:801-811. [PMID: 39462691 DOI: 10.1053/j.semnuclmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Zirconium-89 (89Zr) is a cyclotron-produced positron-emitting radioisotope with a half-life of 3.27 days, which makes delayed or longitudinal imaging possible. It is a superior isotope for tracking particles over several days at a high sensitivity, resolution, and specificity. 89Zr-monoclonal antibodies (89Zr-mAb) have gained significant attention in the field of molecular imaging. However, the past decade has shown an avid increase in research concerning 89Zr-radiopharmaceuticals apart from 89Zr-mAb. In this article we highlight and discuss the status and challenges attributed to current preclinical and clinical investigations of 89Zr-radiopharmaceuticals developed beyond 89Zr-mAb, e.g., mAb-derived variants and macro-biomolecules, proteins, peptides, nanoparticles, and living cells.
Collapse
Affiliation(s)
- Janie Duvenhage
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Maryke Kahts
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Beverley Summers
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Jan Rijn Zeevaart
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Okamoto T, Wada H. How Does Cancer Occur? How Should It Be Treated? Treatment from the Perspective of Alkalization Therapy Based on Science-Based Medicine. Biomedicines 2024; 12:2197. [PMID: 39457509 PMCID: PMC11504456 DOI: 10.3390/biomedicines12102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
This review article investigates the relationship between mitochondrial dysfunction and cancer progression, emphasizing the metabolic shifts that promote tumor growth. Mitochondria are crucial for cellular energy production, but they also play a significant role in cancer progression by promoting glycolysis even under oxygen-rich conditions, a phenomenon known as the Warburg effect. This metabolic reprogramming enables cancer cells to maintain an alkaline internal pH and an acidic external environment, which are critical for their proliferation and survival in hypoxic conditions. The article also explores the acidic tumor microenvironment (TME), a consequence of intensive glycolytic activity and proton production by cancer cells. This acidic milieu enhances the invasiveness and metastatic potential of cancer cells and contributes to increased resistance to chemotherapy. Alkalization therapy, which involves neutralizing this acidity through dietary modifications and the administration of alkalizing agents such as sodium bicarbonate, is highlighted as an effective strategy to counteract these adverse conditions and impede cancer progression. Integrating insights from science-based medicine, the review evaluates the effectiveness of alkalization therapy across various cancer types through clinical assessments. Science-based medicine, which utilizes inductive reasoning from observed clinical outcomes, lends support to the hypothesis of metabolic reprogramming in cancer treatment. By addressing both metabolic and environmental disruptions, this review suggests that considering cancer as primarily a metabolic disorder could lead to more targeted and effective treatment strategies, potentially improving outcomes for patients with advanced-stage cancers.
Collapse
Affiliation(s)
- Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| |
Collapse
|
5
|
Wuensche TE, Lyashchenko S, van Dongen GAMS, Vugts D. Good practices for 89Zr radiopharmaceutical production and quality control. EJNMMI Radiopharm Chem 2024; 9:40. [PMID: 38733556 PMCID: PMC11088613 DOI: 10.1186/s41181-024-00258-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND During the previous two decades, PET imaging of biopharmaceuticals radiolabeled with zirconium-89 has become a consistent tool in preclinical and clinical drug development and patient selection, primarily due to its advantageous physical properties that allow straightforward radiolabeling of antibodies (89Zr-immuno-PET). The extended half-life of 78.4 h permits flexibility with respect to the logistics of tracer production, transportation, and imaging and allows imaging at later points in time. Additionally, its relatively low positron energy contributes to high-sensitivity, high-resolution PET imaging. Considering the growing interest in radiolabeling antibodies, antibody derivatives, and other compound classes with 89Zr in both clinical and pre-clinical settings, there is an urgent need to acquire valuable recommendations and guidelines towards standardization of labeling procedures. MAIN BODY This review provides an overview of the key aspects of 89Zr-radiochemistry and radiopharmaceuticals. Production of 89Zr, conjugation with the mostly used chelators and radiolabeling strategies, and quality control of the radiolabeled products are described in detail, together with discussions about alternative options and critical steps, as well as recommendations for troubleshooting. Moreover, some historical background on 89Zr-immuno-PET, coordination chemistry of 89Zr, and future perspectives are provided. This review aims to serve as a quick-start guide for scientists new to the field of 89Zr-immuno-PET and to suggest approaches for harmonization and standardization of current procedures. CONCLUSION The favorable PET imaging characteristics of 89Zr, its excellent availability due to relatively simple production and purification processes, and the development of suitable bifunctional chelators have led to the widespread use of 89Zr. The combination of antibodies and 89Zr, known as 89Zr-immuno-PET, has become a cornerstone in drug development and patient selection in recent years. Despite the advanced state of 89Zr-immuno-PET, new developments in chelator conjugation and radiolabeling procedures, application in novel compound classes, and improved PET scanner technology and quantification methods continue to reshape its landscape towards improving clinical outcomes.
Collapse
Affiliation(s)
- Thomas Erik Wuensche
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Serge Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Guus A M S van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Danielle Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
7
|
Matsui T, Toda Y, Sato H, Itagaki R, Konishi K, Moshnikova A, Andreev OA, Hosogi S, Reshetnyak YK, Ashihara E. Targeting acidic pre-metastatic niche in lungs by pH low insertion peptide and its utility for anti-metastatic therapy. Front Oncol 2023; 13:1258442. [PMID: 38033489 PMCID: PMC10684925 DOI: 10.3389/fonc.2023.1258442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Dysregulated extracellular pH, the universal feature of tumor, works as an evolutional force to drive dissemination of tumor cells. It is well-established that tumor acidity is associated with tumor growth and metastasis. However, the pH of pre-metastatic niche remains unclear. We hypothesized that primary tumor cells remotely prime acidity in secondary organ to achieve metastatic colonization. Herein, we demonstrated that the pH responsive probe pH Low Insertion Peptide (pHLIP) was notably accumulated in pre-metastatic lungs of 4T1.2 breast tumor-bearing mice. The pHLIP-targeted lungs showed high amounts of lactate and overexpressed glycolysis-related proteins. Pharmacological inhibition of glycolysis suppressed the lung acidification induced by 4T1.2 cancer cell culture supernatant and delayed subsequent metastatic burden of disseminated tumor cells. In the acidic lungs, pHLIP was primarily localized in alveolar type 2 cells which strongly expressed glycolysis-related proteins. 4T1.2-derived extracellular vesicles expressed some of the glycolysis-related proteins, and their administration increased pHLIP accumulation and glycolytic enhancement in lungs. pHLIP-conjugated dexamethasone effectively attenuated lung metastatic burden by disrupting pro-inflammatory response in the acidic lungs. From these results, targeting the metastasis-supporting microenvironment by pHLIP technology creates possibility to identify pre-metastatic organ and prevent metastatic recurrence.
Collapse
Affiliation(s)
- Toma Matsui
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Toda
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Haruka Sato
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rina Itagaki
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuya Konishi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Shigekuni Hosogi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
8
|
Mc Larney BE, Kim M, Roberts S, Skubal M, Hsu HT, Ogirala A, Pratt EC, Pillarsetty NVK, Heller DA, Lewis JS, Grimm J. Ambient Light Resistant Shortwave Infrared Fluorescence Imaging for Preclinical Tumor Delineation via the pH Low-Insertion Peptide Conjugated to Indocyanine Green. J Nucl Med 2023; 64:1647-1653. [PMID: 37620049 PMCID: PMC10586478 DOI: 10.2967/jnumed.123.265686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
Shortwave infrared (900-1,700 nm) fluorescence imaging (SWIRFI) has shown significant advantages over visible (400-650 nm) and near-infrared (700-900 nm) fluorescence imaging (reduced autofluorescence, improved contrast, tissue resolution, and depth sensitivity). However, there is a major lag in the clinical translation of preclinical SWIRFI systems and targeted SWIRFI probes. Methods: We preclinically show that the pH low-insertion peptide conjugated to indocyanine green (pHLIP ICG), currently in clinical trials, is an excellent candidate for cancer-targeted SWIRFI. Results: pHLIP ICG SWIRFI achieved picomolar sensitivity (0.4 nM) with binary and unambiguous tumor screening and resection up to 96 h after injection in an orthotopic breast cancer mouse model. SWIRFI tumor screening and resection had ambient light resistance (possible without gating or filtering) with outstanding signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values at exposures from 10 to 0.1 ms. These SNR and CNR values were also found for the extended emission of pHLIP ICG in vivo (>1,100 nm, 300 ms). Conclusion: SWIRFI sensitivity and ambient light resistance enabled continued tracer clearance tracking with unparalleled SNR and CNR values at video rates for tumor delineation (achieving a tumor-to-muscle ratio above 20). In total, we provide a direct precedent for the democratic translation of an ambient light resistant SWIRFI and pHLIP ICG ecosystem, which can instantly improve tumor resection.
Collapse
Affiliation(s)
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hsiao-Ting Hsu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edwin C Pratt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Naga Vara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York; and
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Jason S Lewis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York; and
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York; and
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Chang L, Wu X, Ran K, Tian Y, Ouyang X, Liu H, Gou S, Zhang Y, Ni J. One New Acid-Activated Hybrid Anticancer Peptide by Coupling with a Desirable pH-Sensitive Anionic Partner Peptide. ACS OMEGA 2023; 8:7536-7545. [PMID: 36873017 PMCID: PMC9979329 DOI: 10.1021/acsomega.2c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor resources, and developing acid-activated ACPs as more effective and selective antitumor drugs would represent new progress in cancer therapy. In this study, we designed a new class of acid-activated hybrid peptides LK-LE by altering the charge shielding position of the anionic binding partner LE based on the cationic ACP LK and investigated their pH response, cytotoxic activity, and serum stability, in hoping to achieve a desirable acid-activatable ACP. As expected, the obtained hybrid peptides could be activated and exhibit a remarkable antitumor activity by rapid membrane disruption at acidic pH, whereas its killing activity could be alleviated at normal pH, showing a significant pH response compared with LK. Importantly, this study found that the peptide LK-LE3 with the charge shielding in the N-terminal of LK displayed notably low cytotoxicity and more stability, demonstrating that the position of charge masking is extremely important for the improvement of peptide toxicity and stability. In short, our work opens a new avenue to design promising acid-activated ACPs as potential targeting agents for cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kaixin Ran
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Tian
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Multiplexed Imaging Reveals the Spatial Relationship of the Extracellular Acidity-Targeting pHLIP with Necrosis, Hypoxia, and the Integrin-Targeting cRGD Peptide. Cells 2022; 11:cells11213499. [DOI: 10.3390/cells11213499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
pH (low) insertion peptides (pHLIPs) have been developed for cancer imaging and therapy targeting the acidic extracellular microenvironment. However, the characteristics of intratumoral distribution (ITD) of pHLIPs are not yet fully understood. This study aimed to reveal the details of the ITD of pHLIPs and their spatial relationship with other tumor features of concern. The fluorescent dye-labeled pHLIPs were intravenously administered to subcutaneous xenograft mouse models of U87MG and IGR-OV1 expressing αVβ3 integrins (using large necrotic tumors). The αVβ3 integrin-targeting Cy5.5-RAFT-c(-RGDfK-)4 was used as a reference. In vivo and ex vivo fluorescence imaging, whole-tumor section imaging, fluorescence microscopy, and multiplexed fluorescence colocalization analysis were performed. The ITD of fluorescent dye-labeled pHLIPs was heterogeneous, having a high degree of colocalization with necrosis. A direct one-to-one comparison of highly magnified images revealed the cellular localization of pHLIP in pyknotic, karyorrhexis, and karyolytic necrotic cells. pHLIP and hypoxia were spatially contiguous but not overlapping cellularly. The hypoxic region was found between the ITDs of pHLIP and the cRGD peptide and the Ki-67 proliferative activity remained detectable in the pHLIP-accumulated regions. The results provide a better understanding of the characteristics of ITD of pHLIPs, leading to new insights into the theranostic applications of pHLIPs.
Collapse
|
12
|
Moshnikova A, DuPont M, Visca H, Engelman DM, Andreev OA, Reshetnyak YK. Eradication of tumors and development of anti-cancer immunity using STINGa targeted by pHLIP. Front Oncol 2022; 12:1023959. [PMID: 36330464 PMCID: PMC9622777 DOI: 10.3389/fonc.2022.1023959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Despite significant progress in the development of novel STING agonists (STINGa), applications appear to be challenged by the low efficiency and poor selectivity of these agents. A pH Low Insertion Peptide (pHLIP) extends the lifetime of a STINGa in the blood and targets it to acidic cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid derived suppressor cells (mMDSCs) and dendritic cells (DCs). CAFs constitute 25% of all live cells within CT26 tumors, and M2-type TAMs and mMDSCs are the most abundant among the immune cells. The resulting activation of cytokines within the tumor microenvironment (TME) triggers the eradication of small (100 mm3) and large (400-700 mm3) CT26 tumors in mice after a single dose of pHLIP-STINGa. The tumor stroma was destroyed (the number of CAFs was reduced by 98%), intratumoral hemorrhage developed, and the level of acidity within the TME was reduced. Further, no tumors developed in 20 out of 25 tumor-free mice re-challenged by an additional injection of cancer cells. The therapeutic effect on CT26 tumors was insignificant in nude mice, lacking T-cells. Thus, targeted delivery of STINGa to tumor stroma and TAMs induces activation of signaling, potentially resulting in the recruitment and infiltration of T-cells, which gain access to the tumor core. The cytotoxic activity of T-cells is not impaired by an acidic environment and immune memory is developed.
Collapse
Affiliation(s)
- Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Hannah Visca
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Department of Molecular Biophysics and Biochemistry, Yale, New Haven, CT, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
- *Correspondence: Yana K. Reshetnyak,
| |
Collapse
|
13
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Wada H. Clinical review of alkalization therapy in cancer treatment. Front Oncol 2022; 12:1003588. [PMID: 36185175 PMCID: PMC9516301 DOI: 10.3389/fonc.2022.1003588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most unique characteristics of cancer metabolism is activated aerobic glycolysis, which is called the “Warburg effect”, and is a hallmark of cancer. An acidic tumor microenvironment (TME) resulting from activated anaerobic glycolysis is associated with cancer progression, multi-drug resistance, and immune escape. Several in vitro and in vivo studies reported that neutralization of the acidic TME by alkalizing agents, such as bicarbonate, resulted in the suppression of cancer progression and a potential benefit for anti-cancer drug responses. In clinical settings, alkalizing effects were achieved not only by alkalizing agents, but also by a following a particular diet. An epidemiological study demonstrated that more fruits and vegetables and less meat and dairy products are associated with an increase in urine pH, which may reflect the alkalizing effect on the body. However, it remains unclear whether alkaline dietary intervention improves the effects of cancer treatment. Moreover, there are few clinical reports to date regarding cancer treatments being performed on patients together with alkalization therapy. In this review, we investigated whether alkalization therapy, which includes an alkaline diet and/or alkalizing agents, improves cancer treatment.
Collapse
|