1
|
Xu L, Cao X, Deng Y, Zhang B, Li X, Liu W, Ren W, Tang X, Kong X, Zhang D. Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives. Front Pharmacol 2025; 16:1559236. [PMID: 40406488 PMCID: PMC12095339 DOI: 10.3389/fphar.2025.1559236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
In the field of tumor treatment, drug resistance remains a significant challenge requiring urgent intervention. Recent developments in cell death research have highlighted cuproptosis, a mechanism of cell death induced by copper, as a promising avenue for understanding tumor biology and addressing drug resistance. Cuproptosis is initiated by the dysregulation of copper homeostasis, which in turn triggers mitochondrial metabolic disruptions and induces proteotoxic stress. This process specifically entails the accumulation of lipoylated proteins and the depletion of iron-sulfur cluster proteins within the context of the tricarboxylic acid cycle. Simultaneously, it is accompanied by the activation of distinct signaling pathways that collectively lead to cell death. Emerging evidence highlights the critical role of cuproptosis in addressing tumor drug resistance. However, the core molecular mechanisms of cuproptosis, regulation of the tumor microenvironment, and clinical translation pathways still require further exploration. This review examines the intersection of cuproptosis and tumor drug resistance, detailing the essential roles of cuproptosis-related genes and exploring the therapeutic potential of copper ionophores, chelators, and nanodelivery systems. These mechanisms offer promise for overcoming resistance and advancing tumor precision medicine. By elucidating the molecular mechanisms underlying cuproptosis, this study aims to identify novel therapeutic strategies and targets, thereby paving the way for the development of innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaolan Cao
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wenjie Ren
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xuan Tang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
2
|
Luo X, Xie L, Ma X, Chen N, Xu J, Jiang X, Liu X, Yang Y, Liu T, Yi P, Xu J. IGF2BP3 recruits NUDT21 to regulate SPTBN1 alternative polyadenylation and drive ovarian cancer progression. Commun Biol 2025; 8:680. [PMID: 40301554 PMCID: PMC12041481 DOI: 10.1038/s42003-025-08097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies. As the prevalent post-transcriptional regulation, alternative polyadenylation (APA) plays a crucial role in various tumors. Here we identify that the APA regulator NUDT21 is upregulated in OC and promotes malignant progression. We further demonstrate that IGF2BP3 interacts with NUDT21, which suggests m6A modification could regulate APA processing. Mechanistically, IGF2BP3, recognizing the m6A-modified site in intron 32 of SPTBN1, recruits NUDT21 to promote the usage of the SPTBN1 proximal polyadenylation site (PAS), thus increasing the generation of short transcripts in OC cells. Intriguingly, the SPTBN1 long variant demonstrates tumor-suppressive properties, whereas the short variant enhances oncogenic activity in OC. Subsequently, we illustrate that the long isoform inhibits tumor growth and metastasis by binding to CDK1 and blocking the G2/M phase of the cell cycle. In conclusion, this study uncovers a previously unrecognized regulatory mechanism in OC, which could provide potential therapeutic strategies for OC.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Ma
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
4
|
Peng L, Sun W, Cheng D, Jia X, Lian W, Li Z, Xiong H, Wang T, Liu Y, Ni C. NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117572. [PMID: 39700768 DOI: 10.1016/j.ecoenv.2024.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis. LOXL2 is a copper-dependent lysine oxidase whose main function is to catalyze the cross-linking of extracellular matrix components, particularly collagen and elastin. However, few researchers have investigated the role of LOXL2 in the pathogenesis of silicosis. In this study, we demonstrated that LOXL2 is upregulated in silica-inhaled mouse lung tissue and in a TGF-β-induced fibroblast model. In vitro, we confirmed that LOXL2 functions to promote ECM deposition by binding directly to collagen and elastin. We then used scavenger receptor cysteine-rich (SRCR) domains to show that LOXL2 can induce fibrosis independently of its enzymatic activity. Furthermore, we discovered that NUDT21, the LOXL2 upstream regulatory mechanism of LOXL2, alters LOXL2's 3'UTR usage by substituting alternative polyadenylation (APA), thereby modulating LOXL2 expression. By injecting LOXL2 siRNA-loaded liposomes into the tail vein of mice in the silica dust-treated mouse pulmonary fibrosis model, the severity of lung fibrosis was significantly reduced. In this context, LOXL2 is regulated by NUDT21 and may affect pulmonary fibrosis by influencing the cross-linking of ECM proteins. Our research provides a scientific basis for the development of new anti-fibrosis treatment strategies.
Collapse
Affiliation(s)
- Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing medical university, Wuxi, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210003, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China.
| |
Collapse
|
5
|
Chen Y, Chen B, Li J, Li H, Wang G, Cai X, Zhang Q, Liu X, Kan C, Wang L, Wang Z, Li HB. Alternative mRNA polyadenylation regulates macrophage hyperactivation via the autophagy pathway. Cell Mol Immunol 2024; 21:1522-1534. [PMID: 39537902 PMCID: PMC11607066 DOI: 10.1038/s41423-024-01237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage hyperactivation is a hallmark of inflammatory diseases, yet the role of alternative polyadenylation (APA) of mRNAs in regulating innate immunity remains unclear. In this study, we focused on 3'UTR-APA and demonstrated that Nudt21, a crucial RNA-binding component of the 3'UTR-APA machinery, is significantly upregulated in various inflammatory conditions. By utilizing myeloid-specific Nudt21-deficient mice, we revealed a protective effect of Nudt21 depletion against colitis and severe hyperinflammation, primarily through diminished production of proinflammatory cytokines. Notably, Nudt21 regulates the mRNA stability of key autophagy-related genes, Map1lc3b and Ulk2, by mediating selective 3'UTR polyadenylation in activated macrophages. As a result, Nudt21-deficient macrophages display increased autophagic activity, which leads to reduced cytokine secretion. Our findings highlight an unexplored role of Nudt21-mediated 3'UTR-APA in modulating macrophage autophagy and offer new insights into the modulation of inflammation and disease progression.
Collapse
Affiliation(s)
- Yunzhu Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixin Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaoyang Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemin Cai
- Institute of Immunological Innovation & Translation, Chongqing Medical University, Chongqing, China
| | - Qianqian Zhang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Liu
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Kan
- School of Biological Science, The University of Manchester, Manchester, UK
| | - Lei Wang
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Immunological Innovation & Translation, Chongqing Medical University, Chongqing, China.
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
6
|
Wei S, Huang X, Zhu Q, Chen T, Zhang Y, Tian J, Pan T, Zhang L, Xie T, Zhang Q, Kuang X, Lei E, Li Y. TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation. Cell Death Differ 2024; 31:1422-1438. [PMID: 38951701 PMCID: PMC11519343 DOI: 10.1038/s41418-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-β1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan Zhang
- Department of Biological Sciences, College of Sciences and Arts, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tingyu Pan
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lv Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xian Kuang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Enjun Lei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Liu W, Pang Y, Yu X, Lu D, Yang Y, Meng F, Xu C, Yuan L, Nan Y. Pan-cancer analysis of NUDT21 and its effect on the proliferation of human head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3363-3385. [PMID: 38349866 PMCID: PMC10929839 DOI: 10.18632/aging.205539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yingna Pang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xiaolu Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|