1
|
Peng X, Lee E, Liang J, Colon T, Tran F, Choi BH, Dai W. KRas plays a negative role in regulating IDO1 expression. Transl Oncol 2025; 51:102167. [PMID: 39550890 PMCID: PMC11615605 DOI: 10.1016/j.tranon.2024.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Ras proteins are integral to the mediation of signaling cascades to downstream effectors, regulating a multitude of cellular processes. Mutations within Ras and its associated signaling pathways are implicated in various human pathologies, including inflammatory disorders and malignancies. The immune checkpoint proteins, programmed cell death protein 1 (PD-1) and its ligands PD-L1, along with Indoleamine 2,3-dioxygenase-1 (IDO1), are pivotal in facilitating tumor immune escape. While the influence of oncogenic Ras on PD-L1 expression is extensively documented, the regulatory role of KRas in IDO1 expression remains inadequately understood. In the current study, we demonstrate that IDO1 and PD-L1 expressions are differentially regulated in KRas-mutant cancers. Treatment with the KRasG12C-specific inhibitor, ARS-1620, significantly increased IDO1 expression, which inversely correlated with PD-L1 expression in the KRasG12C-mutant H358 cell line. Notably, IDO1 expression was slightly diminished in KRas-mutant patients with lung and pancreatic ductal adenocarcinomas. Experimental data revealed that IFN-γ induces IDO1 expression; however, this induction is attenuated in the presence of constitutively active KRas. These findings suggest that KRas signaling negatively regulates IDO1 expression while enhancing PD-L1 expression. Moreover, the induction of IDO1 expression following KRas inhibition appears to operate independently of the MAPK pathway. Our results propose that concurrent targeting of KRas and IDO1 could potentiate therapeutic efficacy in KRas-mutant cancers, overcoming resistance to immune checkpoint blockade.
Collapse
Affiliation(s)
- Xiandong Peng
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Eunji Lee
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Jialu Liang
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Tania Colon
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Franklin Tran
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Byeong H Choi
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
2
|
Jiazhen N, Meihui S, De-E L, Na L, Youtao X, Qixian C, Yunjian Y, Feihe M, Mahmoud E, Hui G. Remodeling the Inflammatory and Immunosuppressive Tumor Microenvironment for Enhancing Antiangiogenic Gene Therapy of Colorectal Cancer. Adv Healthc Mater 2024:e2402887. [PMID: 39703083 DOI: 10.1002/adhm.202402887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Fusobacterium nucleatum (Fn), as an intestinal pathogenic bacterium, is closely related to the occurrence, progression, and limited therapeutic efficacy of colorectal cancer (CRC). The presence of Fn within CRC communities induces an inflammatory and immunosuppressive microenvironment while promoting new vessel formation. Therefore, developing novel methods to efficiently eliminate Fn and enhance the therapeutic outcomes against Fn-associated CRC is of great significance. Herein, a nanosystem named AFGTs-PEG, which integrates antimicrobial agent lauric acid (LA), an antiangiogenic gene (sFlt-1), a targeted polymer (OEI-LA/PBA, OLP), and DSPE-mPEG, to boost the gene therapy of Fn-infected CRC, is developed. The sFlt-1 gene is delivered to CRC cells through lysosome escape, remarkably inhibiting new vessel formation at the CRC site and ultimately leading to CRC cell death. In principle, LA is used to eliminate Fn and its biofilms, and remodel the inflammatory and immunosuppressive microenvironment by restraining the generation of inflammatory factors and preventing polarization of M1 into M2 macrophages, thereby mitigating the adverse effects of Fn on antiangiogenic gene therapy. This study holds great promise for the treatment of bacteria-colonized tumors.
Collapse
Affiliation(s)
- Niu Jiazhen
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Su Meihui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Liu De-E
- School of Materials Science and Engineering, Tianjin ChengJian University, Tianjin, 300384, P. R. China
| | - Li Na
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xin Youtao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chen Qixian
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, P. R. China
| | - Yu Yunjian
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ma Feihe
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Elsabahy Mahmoud
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
3
|
Qasem HM, Odat RM, Alshwayyat S, Yasin JA, Younis OM, Hussein AM, Jain H, Abdelraheem M, Quwaider B, Nguyen D. Clinicopathological and prognostic significance of indoleamine 2,3-dioxygenase (IDO) expression in head and neck squamous cell carcinoma: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102130. [PMID: 39481481 DOI: 10.1016/j.jormas.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising antitumor target and predictive biomarker in a variety of cancers. Hence, we performed this meta-analysis to evaluate the clinicopathological and prognostic significance of IDO1 in head and neck squamous cell carcinoma (HNSCC). METHODS We searched PubMed, Embase, Web of Science and Scopus databases from inception to May 2024, to identify studies measuring the clinicopathological and prognostic significance of IDO1 in HNSCC. The role of IDO1 in HNSCC was evaluated by pooled hazard ratios (HR), odd ratios (OR) and 95% confidence intervals (CI). The meta-analysis was performed using the meta package in R. Omics analyses on IDO1 were also performed. RESULTS Ten studies (1,119 participants) were included in the review. The analysis showed an insignificant relationship between IDO1 expression and poor overall survival, and progression free survival as indicated by the pooled HR (HR: 1.65, 95% CI: 0.68-4.02), (HR: 1.73, 95% CI: 0.63-4.77), respectively. Additionally, elevated expression of IDO1 was significantly associated with tumor T stage (OR: 1.44, 95% CI: 1.06-1.94). However, it was insignificantly correlated with positive lymph node metastasis (N status) (OR: 1.11; 95% CI: 0.82-1.50) and tumor-node-metastasis (TNM) stage (OR: 1.14; 95% CI: 0.79-1.64). CONCLUSION While higher IDO1 expression is associated with the risk of advanced tumor stage in HNSCC, its impact on overall and progression-free survival remains inconclusive. Further research is needed to elucidate its prognostic significance and therapeutic potential.
Collapse
Affiliation(s)
- Hanan M Qasem
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ramez M Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sakhr Alshwayyat
- Research Associate, King Hussein Cancer Center, Amman, Jordan; Internship, Princess Basma Teaching Hospital, Irbid, Jordan
| | - Jehad A Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Osama M Younis
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Bishr Quwaider
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Dang Nguyen
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
4
|
Khoshkhabar R, Yazdani M, Hoda Alavizadeh S, Saberi Z, Arabi L, Reza Jaafari M. Chemo-immunotherapy by nanoliposomal epacadostat and docetaxel combination to IDO1 inhibition and tumor microenvironment suppression. Int Immunopharmacol 2024; 137:112437. [PMID: 38870880 DOI: 10.1016/j.intimp.2024.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The over-activation of tryptophan (Trp) metabolism to kynurenine (Kyn) catalyzed by Indoleamine 2,3-dioxygenase-1 (IDO1) enzyme, is one of the main metabolic pathways involved in tumor microenvironment (TME) immune escape and cancer treatment failure. The most efficient of IDO1 inhibitors is Epacadostat (EPA). Since monotherapy with single-agent IDO1 inhibitor regimen has led to an insufficient anti-tumor activity, we examined the efficacy of simultaneous treatment by Liposomal epacadostat (Lip-EPA) as a potent IDO inhibitor, in combination with docetaxel (DTX) as a complement immunogenic cell death (ICD) agent against B16F10 model. First, the in vitro combination index (CI) of epacadostat (EPA) and DTX was investigated by using the unified theory. Then, the in vivo efficacy of the combination therapy was assessed. Results indicated the synergestic cytotoxic effect of the combination on B16F10 compared to normal fibroblast cells (NIH). The immune profiling demonstrated a significant increase in the percentage of infiltrated T lymphocytes and IFN-γ release, a significant decrease in the percentage of regulatory T cells (Treg) population and the subsequent low levels of IL-10 generation in mice treated with Lip-EPA + DTX. Further, a significant tumor growth delay (TGD = 69.15 %) and an increased life span (ILS > 47.83 %) was observed with the combination strategy. Histopathology analysis revealed a remarkable increase in the Trp concentration following combination treatment, while Kyn levels significantly decreased. Results showed that the nano-liposomal form of IDO1 inhibitor in combination with chemotherapy could significantly improve the imunity response and dominate the tumor immuno-suppressive micro-environment, which merits further investigations.
Collapse
Affiliation(s)
- Rahimeh Khoshkhabar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Shi Y, Zhang YX, Jiao MF, Ren XJ, Hu BJ, Liu AH, Li XR. Construction and validation of a neovascular glaucoma nomogram in patients with diabetic retinopathy after pars plana vitrectomy. World J Diabetes 2024; 15:654-663. [PMID: 38680696 PMCID: PMC11045409 DOI: 10.4239/wjd.v15.i4.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Neovascular glaucoma (NVG) is likely to occur after pars plana vitrectomy (PPV) for diabetic retinopathy (DR) in some patients, thus reducing the expected benefit. Understanding the risk factors for NVG occurrence and building effective risk prediction models are currently required for clinical research. AIM To develop a visual risk profile model to explore factors influencing DR after surgery. METHODS We retrospectively selected 151 patients with DR undergoing PPV. The patients were divided into the NVG (NVG occurrence) and No-NVG (No NVG occurrence) groups according to the occurrence of NVG within 6 months after surgery. Independent risk factors for postoperative NVG were screened by logistic regression. A nomogram prediction model was established using R software, and the model's prediction accuracy was verified internally and externally, involving the receiver operator characteristic curve and correction curve. RESULTS After importing the data into a logistic regression model, we concluded that a posterior capsular defect, preoperative vascular endothelial growth factor ≥ 302.90 pg/mL, glycosylated hemoglobin ≥ 9.05%, aqueous fluid interleukin 6 (IL-6) ≥ 53.27 pg/mL, and aqueous fluid IL-10 ≥ 9.11 pg/mL were independent risk factors for postoperative NVG in patients with DR (P < 0.05). A nomogram model was established based on the aforementioned independent risk factors, and a computer simulation repeated sampling method was used to internally and externally verify the nomogram model. The area under the curve (AUC), sensitivity, and specificity of the model were 0.962 [95% confidence interval (95%CI): 0.932-0.991], 91.5%, and 82.3%, respectively. The AUC, sensitivity, and specificity of the external validation were 0.878 (95%CI: 0.746-0.982), 66.7%, and 95.7%, respectively. CONCLUSION A nomogram constructed based on the risk factors for postoperative NVG in patients with DR has a high prediction accuracy. This study can help formulate relevant preventive and treatment measures.
Collapse
Affiliation(s)
- Yi Shi
- Surgical Retina, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yan-Xin Zhang
- Glaucoma, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ming-Fei Jiao
- Surgical Retina, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xin-Jun Ren
- Ocular Trauma, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bo-Jie Hu
- Surgical Retina, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ai-Hua Liu
- Glaucoma, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Rong Li
- Surgical Retina, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
6
|
Gravina AG, Pellegrino R, Esposito A, Cipullo M, Romeo M, Palladino G, Iodice P, Federico A, Troiani T. The JAK-STAT Pathway as a Therapeutic Strategy in Cancer Patients with Immune Checkpoint Inhibitor-Induced Colitis: A Narrative Review. Cancers (Basel) 2024; 16:611. [PMID: 38339367 PMCID: PMC10854551 DOI: 10.3390/cancers16030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Immunotherapy has emerged as a pivotal component in the treatment of various malignancies, encompassing lung, skin, gastrointestinal, and head and neck cancers. The foundation of this therapeutic approach lies in immune checkpoint inhibitors (ICI). While ICIs have demonstrated remarkable efficacy in impeding the neoplastic progression of these tumours, their use may give rise to substantial toxicity, notably in the gastrointestinal domain, where ICI colitis constitutes a significant aspect. The optimal positioning of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors in the therapeutic management of ICI colitis remains unclear. Numerous reports have highlighted notable improvements in ICI colitis through the application of pan-JAK-STAT inhibitors, with tofacitinib, in particular, reporting evident clinical remission of colitis. The precise mechanism by which JAK-STAT inhibitors may impact the pathogenetic process of ICI colitis remains inadequately understood. However, there is speculation regarding their potential role in modulating memory resident CD8+ T lymphocytes. The elucidation of this mechanism requires further extensive and robust evidence, and ongoing JAK-STAT-based trials are anticipated to contribute valuable insights.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Alfonso Esposito
- Oncology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Marina Cipullo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Patrizia Iodice
- Oncology Division, AORN Ospedali Dei Colli, Monaldi Hospital, Via L. Bianchi, 80131 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| | - Teresa Troiani
- Oncology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio, 80138 Naples, Italy
| |
Collapse
|
7
|
Gao W, Sun L, Gai J, Cao Y, Zhang S. Exploring the resistance mechanism of triple-negative breast cancer to paclitaxel through the scRNA-seq analysis. PLoS One 2024; 19:e0297260. [PMID: 38227591 PMCID: PMC10791000 DOI: 10.1371/journal.pone.0297260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The triple negative breast cancer (TNBC) is the most malignant subtype of breast cancer with high aggressiveness. Although paclitaxel-based chemotherapy scenario present the mainstay in TNBC treatment, paclitaxel resistance is still a striking obstacle for cancer cure. So it is imperative to probe new therapeutic targets through illustrating the mechanisms underlying paclitaxel chemoresistance. METHODS The Single cell RNA sequencing (scRNA-seq) data of TNBC cells treated with paclitaxel at different points were downloaded from the Gene Expression Omnibus (GEO) database. The Seurat R package was used to filter and integrate the scRNA-seq expression matrix. Cells were further clustered by the FindClusters function, and the gene marker of each subset was defined by FindAllMarkers function. Then, the hallmark score of each cell was calculated by AUCell R package, the biological function of the highly expressed interest genes was analyzed by the DAVID database. Subsequently, we performed pseudotime analysis to explore the change patterns of drug resistance genes and SCENIC analysis to identify the key transcription factors (TFs). Finally, the inhibitors of which were also analyzed by the CTD database. RESULTS We finally obtained 6 cell subsets from 2798 cells, which were marked as AKR1C3+, WNT7A+, FAM72B+, RERG+, IDO1+ and HEY1+HCC1143 cell subsets, among which the AKR1C3+, IDO1+ and HEY1+ cell subsets proportions increased with increasing treatment time, and then were regarded as paclitaxel resistance subsets. Hallmark score and pseudotime analysis showed that these paclitaxel resistance subsets were associated with the inflammatory response, virus and interferon response activation. In addition, the gene regulatory networks (GRNs) indicated that 3 key TFs (STAT1, CEBPB and IRF7) played vital role in promoting resistance development, and five common inhibitors targeted these TFs as potential combination therapies of paclitaxel were identified. CONCLUSION In this study, we identified 3 paclitaxel resistance relevant IFs and their inhibitors, which offers essential molecular basis for paclitaxel resistance and beneficial guidance for the combination of paclitaxel in clinical TNBC therapy.
Collapse
Affiliation(s)
- Wei Gao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Linlin Sun
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Jinwei Gai
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Yinan Cao
- Graduate School of Dalian Medical University, Dalian, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
9
|
Thomas S, Prendergast GC. Gut-brain connections in neurodegenerative disease: immunotherapeutic targeting of Bin1 in inflammatory bowel disease and Alzheimer's disease. Front Pharmacol 2023; 14:1183932. [PMID: 37521457 PMCID: PMC10372349 DOI: 10.3389/fphar.2023.1183932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Longer lifespan produces risks of age-associated neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by declines in memory and cognitive function. The pathogenic causes of AD are thought to reflect a progressive aggregation in the brain of amyloid plaques composed of beta-amyloid (Aß) peptides and neurofibrillary tangles composed of phosphorylated tau protein. Recently, long-standing investigations of the Aß disease hypothesis gained support via a passive immunotherapy targeting soluble Aß protein. Tau-targeting approaches using antibodies are also being pursued as a therapeutic approach to AD. In genome-wide association studies, the disease modifier gene Bin1 has been identified as a top risk factor for late-onset AD in human populations, with recent studies suggesting that Bin1 binds tau and influences its extracellular deposition. Interestingly, before AD emerges in the brain, tau levels rise in the colon, where Bin1-a modifier of tissue barrier function and inflammation-acts to promote inflammatory bowel disease (IBD). This connection is provocative given clinical evidence of gut-brain communication in age-associated neurodegenerative disorders, including AD. In this review, we discuss a Bin1-targeting passive immunotherapy developed in our laboratory to treat IBD that may offer a strategy to indirectly reduce tau deposition and limit AD onset or progression.
Collapse
|
10
|
Yang P, Zhang J. Indoleamine 2,3-Dioxygenase (IDO) Activity: A Perspective Biomarker for Laboratory Determination in Tumor Immunotherapy. Biomedicines 2023; 11:1988. [PMID: 37509627 PMCID: PMC10377333 DOI: 10.3390/biomedicines11071988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme involved in catalyzing the conversion of tryptophan (Trp) into kynurenine (Kyn) at the first rate-limiting step in the kynurenine pathway of L-tryptophan metabolism. It has been found to be involved in several biological functions such as aging, immune microorganism, neurodegenerative and infectious diseases, and cancer. IDO1 plays an important role in immune tolerance by depleting tryptophan in the tumor microenvironment and inhibiting the proliferation of effector T cells, which makes it an important emerging biomarker for cancer immunotherapy. Therefore, the research and development of IDO1 inhibitors are of great importance for tumor therapy. Of interest, IDO activity assays are of great value in the screening and evaluation of inhibitors. Herein, we mainly review the biological functions of IDO1, immune regulation, key signaling molecules in the response pathway, and the development of IDO1 inhibitors in clinical trials. Furthermore, this review provides a comprehensive overview and, in particular, a discussion of currently available IDO activity assays for use in the evaluation of IDO inhibitors in human blood. We believe that the IDO activity is a promising biomarker for the immune escape and laboratory evaluation of tumor immunotherapy.
Collapse
Affiliation(s)
- Pengbo Yang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|