1
|
Costa de Almeida T, Sabino YNV, Brasiel PGDA, Rocha BMDO, de Cássia Ávila Alpino G, Rocha VN, Dias VC, Diniz CG, Paiva AD, Silva VLD, Dutra Medeiros J, Potente Dutra Luquetti SC, Barbosa Ferreira Machado A. Maternal kefir intake during lactation impacts the breast milk and gut microbiota of the Wistar rat's offspring. Int J Food Sci Nutr 2025; 76:179-193. [PMID: 39895284 DOI: 10.1080/09637486.2025.2461142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Environmental factors can play fundamental role in health in childhood and adulthood during critical developmental periods like lactation. The maternal intake of probiotics like kefir during lactation could benefit newborns' intestinal health. This study aimed to evaluate the effects of maternal kefir intake during lactation on bacterial breast milk composition and the gut microbiota of offspring Wistar male rats at weaning. Lactating Wistar rats and their pups were divided into four groups based on litter size and maternal kefir intake. Sequencing of the 16S rRNA gene in breast milk revealed the predominance of the Proteobacteria, Firmicutes, and Actinobacteriota phyla. Offspring gut microbiota exhibited clustering tendencies in kefir groups with varying genus abundance. Additionally, maternal kefir intake led to increased levels of butyrate acid in offspring faeces (> +30%, p > 0.05). These findings show that the lactation period could be a window of opportunity to program intestinal health through microbiota modulation.
Collapse
Affiliation(s)
- Thaís Costa de Almeida
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Yasmin Neves Vieira Sabino
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Beatriz Macedo de Oliveira Rocha
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Vanessa Cordeiro Dias
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
2
|
Kokotou MG. Determination of Free Fatty Acids in Breast Milk Reveals the Presence of Hydroxypalmitic and Stearic Acids. Biomolecules 2024; 14:1602. [PMID: 39766309 PMCID: PMC11674463 DOI: 10.3390/biom14121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Breast milk is a rich source of fatty acids (FAs) while being irreplaceable for the health and development of an infant. Herein, we present a fast and simple method for the direct detection and quantification of 37 free FAs (FFAs) in breast milk samples, avoiding any derivatization step, and a study on the % variation of FA contents in samples collected from the same mother within five consecutive days. The average breakdown of FAs was 60.5% saturated and 39.5% unsaturated, in which polyunsaturated FAs were 13.3% and monounsaturated FAs 26.2%. The most abundant FFA in the breast milk samples was C12:0 (18.3%), followed by C10:0 (15.0%), suggesting that further attention must be paid to the presence and role of medium-chain FAs. Among unsaturated FAs, oleic acid (C18:1 n-9) (13.3%) and linoleic acid (C18:2 n-6) (10.1%) were the most abundant. Remarkable variations of FFA contents within the five consecutive days were observed for C8:0, C10:0, C12:0, C18:1 n-9, and C18:2 n-6. The two isomers α-linolenic acid (C18:3 n-3) and γ-linolenic acid (C18:3 n-6) were quantified in all breast milk samples. The ratio of γ-linolenic acid, which most recently is important for cardiac metabolic maturation, to α-linolenic acid was found to be 1:2. Most importantly, in the present study, we explored the presence of bioactive saturated monohydroxy fatty acids (SHFAs), demonstrating for the first time the existence of distinct hydroxypalmitic and hydroxystearic acids (HPAs and HSAs, respectively) in breast milk.
Collapse
Affiliation(s)
- Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Li C, Lu Y, Wang J, Liu B, Szeto IMY, Zhang W, Bi R, Duan S, Quan R, Wang X, Li Y, Xiong W, Sun J, Sun Y. Immunoregulation of bovine lactoferrin together with osteopontin promotes immune system development and maturation. Food Funct 2024; 15:866-880. [PMID: 38165790 DOI: 10.1039/d3fo03515h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system of infants is partly weak and immature, and supplementation of infant formula can be of vital importance to boost the development of the immune system. Lactoferrin (LF) and osteopontin (OPN) are essential proteins in human milk with immunoregulation function. An increasing number of studies indicate that proteins have interactions with each other in milk, and our previous study found that a ratio of LF : OPN at 1 : 5 (w/w, denoted as LOP) had a synergistic effect on intestinal barrier protection. It remains unknown whether LOP can also exert a stronger effect on immunoregulation. Hence, we used an in vitro model of LPS-induced macrophage inflammation and in vivo models of LPS-induced intestinal inflammation and early life development. We showed that LOP increased the secretion of the granulocyte-macrophage colony-stimulating factor (132%), stem cell factor (167%) and interleukin-3 (176%) in bone marrow cells, as well as thymosin (155%) and interleukin-10 (161%) in the thymus, more than LF or OPN alone during development, and inhibited changes in immune cells and cytokines during the LPS challenge. In addition, analysis of the components of digested proteins in vitro revealed that differentially expressed peptides may provide immunoregulation. Lastly, LOP increased the abundance of Rikenellaceae, Muribaculum, Faecalibaculum, and Elisenbergiella in the cecum content. These results imply that LOP is a potential immunomodifier for infants and offers a new theoretical basis for infant formula innovation.
Collapse
Affiliation(s)
- Chuangang Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yao Lu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Jian Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Biao Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Wen Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Ran Bi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Rui Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Xuemin Wang
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| |
Collapse
|
4
|
Spreckels JE, Fernández-Pato A, Kruk M, Kurilshikov A, Garmaeva S, Sinha T, Ghosh H, Harmsen H, Fu J, Gacesa R, Zhernakova A. Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques. ISME COMMUNICATIONS 2023; 3:116. [PMID: 37945978 PMCID: PMC10636111 DOI: 10.1038/s43705-023-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.
Collapse
Grants
- This study was supported by funds from the Dutch Research Council (NWO-VIDI grant 016.178.056 to A.Z., NWO-VICI grant VI.C.202.022 to J.F., NWO gravitation grant Exposome-NL 024.004.017 to A.K. and A.Z., NWO gravitation grant Netherlands Organ-on-Chip Initiative 024.003.001 to J.F.), the Dutch Heart Foundation (IN-CONTROL CVON2018-27 to J.F.), the European Research Council (ERC starting grant 715772 to A.Z., ERC consolidator grant 101001678 to J.F.), an EASI-Genomics grant (PID7780 to T.S. and A.Z.), the De-Cock Hadders foundation (2021-57 to J.E.S., 2021-08 to S.G.), the International Society for Research in Human Milk and Lactation (ISRHML, personal grant to J.E.S), the Winston Bakker Fonds (WB-08, granted to T.S.), and the European Union’s Horizon 2020 research innovation program (824110). S.G. and T.S. hold scholarships from the Graduate School of Medical Sciences and the Junior Scientific Masterclass of the University of Groningen, the Netherlands, respectively. The Lifelines NEXT cohort study received funds from the University Medical Center Groningen Hereditary Metabolic Diseases Fund, Health~Holland (Top Sector Life Sciences and Health), the Ubbo Emmius Foundation, the European Union, the Northern Netherlands Alliance (SNN), the provinces of Friesland and Groningen, the municipality of Groningen, Philips, and the Société des Produits Nestlé.
- De-Cock Hadders foundation (2021-57) International Society of Research in Human Milk and Lactation (ISRHML personal grant)
- Dutch Research Council (NWO gravitation grant Exposome-NL 024.004.017)
- De-Cock Hadders foundation (2021-08) University of Groningen Graduate School of Medical Sciences (scholarship)
- EASI-Genomics (grant PID7780) Winston Bakker Fonds (WB-08) University of Groningen Junior Scientific Masterclass (scholarship)
- Dutch Research Council (NWO-VICI grant VI.C.202.022) Dutch Research Council (NWO gravitation grant Netherlands Organ-on-Chip Initiative 024.003.001) European Research Council (ERC consolidator grant 101001678)
Collapse
Affiliation(s)
- Johanne E Spreckels
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Asier Fernández-Pato
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Marloes Kruk
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Hiren Ghosh
- Medical Center - University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Hermie Harmsen
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Bastos-Moreira Y, Ouédraogo L, De Boevre M, Argaw A, de Kok B, Hanley-Cook GT, Deng L, Ouédraogo M, Compaoré A, Tesfamariam K, Ganaba R, Huybregts L, Toe LC, Lachat C, Kolsteren P, De Saeger S, Dailey-Chwalibóg T. A Multi-Omics and Human Biomonitoring Approach to Assessing the Effectiveness of Fortified Balanced Energy-Protein Supplementation on Maternal and Newborn Health in Burkina Faso: A Study Protocol. Nutrients 2023; 15:4056. [PMID: 37764838 PMCID: PMC10535470 DOI: 10.3390/nu15184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fortified balanced energy-protein (BEP) supplementation is a promising intervention for improving maternal health, birth outcomes and infant growth in low- and middle-income countries. This nested biospecimen sub-study aimed to evaluate the physiological effect of multi-micronutrient-fortified BEP supplementation on pregnant and lactating women and their infants. Pregnant women (15-40 years) received either fortified BEP and iron-folic acid (IFA) (intervention) or IFA only (control) throughout pregnancy. The same women were concurrently randomized to receive either a fortified BEP supplement during the first 6 months postpartum in combination with IFA for the first 6 weeks (i.e., intervention) or the postnatal standard of care, which comprised IFA alone for 6 weeks postpartum (i.e., control). Biological specimens were collected at different timepoints. Multi-omics profiles will be characterized to assess the mediating effect of BEP supplementation on the different trial arms and its effect on maternal health, as well as birth and infant growth outcomes. The mediating effect of the exposome in the relationship between BEP supplementation and maternal health, birth outcomes and infant growth were characterized via biomonitoring markers of air pollution, mycotoxins and environmental contaminants. The results will provide holistic insight into the granular physiological effects of prenatal and postnatal BEP supplementation.
Collapse
Affiliation(s)
- Yuri Bastos-Moreira
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lionel Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Centre Muraz, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Brenda de Kok
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Giles T. Hanley-Cook
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Anderson Compaoré
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Rasmané Ganaba
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Lieven Huybregts
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Nutrition, Diets, and Health Unit, Department of Food and Nutrition Policy, International Food Policy Research Institute (IFPRI), Washington, DC 20005, USA
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| |
Collapse
|
6
|
Richard RM, Maziashvili G, Tran M, Ramos I, Laxman AS, Didbaridze N. Breast Milk Conferred Immunity to Infants Against COVID-19. Cureus 2023; 15:e42075. [PMID: 37602015 PMCID: PMC10434728 DOI: 10.7759/cureus.42075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has notably impacted healthcare systems and everyday life worldwide. Regulatory authorities have approved the emergency use of SARS-CoV-2 vaccines due to the rapid spread of the virus. However, during vaccination testing, pregnant and breastfeeding women were initially excluded, leading to a lack of evidence-based recommendations. When taking the COVID-19 pandemic into account, breastfeeding has emerged as a potential defense mechanism against this infection due to its numerous benefits for newborns. Human breast milk contains immunoglobulins (IgA, IgG, and IgM), lactoferrin, and various cells that play an inevitable role in the newborn's protection against respiratory infections and immune system development. Various studies have highlighted that the onset and severity of respiratory infections in infants can be reduced through breastfeeding, and the effects are noticeable during the first six months of life and that breast milk also has the potential to enhance mucosal immunity and promote a diverse microbiome, reducing the risk of asthma, allergies, and enteric diseases through the provision of specific antibodies and immunological factors. Researchers have indicated that breastfeeding mothers who contracted and recovered from COVID-19 or received vaccination passed protective antibodies to their infants through breast milk. Although rare cases of detection of SARS-CoV-2 RNA in breast milk have been reported, the virus has not been cultured from these samples, suggesting a low risk of transmission to the breastfed baby. However, further research is essential to understand the extent of protection provided by breast milk against COVID-19 and the potential effect of distinct phases of lactation. Nonetheless, the current evidence supports the benefits and safety of breastfeeding during the pandemic. With appropriate safety measures, promoting breastfeeding can contribute to the overall health and well-being of infants during the phase of COVID-19.
Collapse
Affiliation(s)
- Riya Mary Richard
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, GEO
| | | | - Mai Tran
- Faculty of Medicine, Washington University of Health and Science, San Pedro, BLZ
| | - Isabel Ramos
- Facultad de Medicina y Cirugía, Universidad Católica de Honduras, Tegucigalpa, HND
| | | | - Nino Didbaridze
- Department of Immunology, Tbilisi State Medical University, Tbilisi, GEO
| |
Collapse
|
7
|
Karampatsas K, Faal A, Jaiteh M, Garcia-Perez I, Aller S, Shaw AG, Kopytek A, Witney AA, Le Doare K. Gastrointestinal, vaginal, nasopharyngeal, and breast milk microbiota profiles and breast milk metabolomic changes in Gambian infants over the first two months of lactation: A prospective cohort study. Medicine (Baltimore) 2022; 101:e31419. [PMID: 36401392 PMCID: PMC9678627 DOI: 10.1097/md.0000000000031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.
Collapse
Affiliation(s)
- Konstantinos Karampatsas
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- * Correspondence: Konstantinos Karampatsas, Institute for Infection and Immunity, St George’s, University of London, Jenner Wing, Level 2, SW17 0RE London, UK (e-mail: )
| | - Amadou Faal
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mustapha Jaiteh
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sean Aller
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Alexander G. Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Aleksandra Kopytek
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Adam A. Witney
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Uganda, Virus Research Institute, Uganda
| |
Collapse
|
8
|
Peregoy JA, Pinheiro GM, Geraghty SR, Dickin KL, Rasmussen KM. Human milk-sharing practices and infant-feeding behaviours: A comparison of donors and recipients. MATERNAL & CHILD NUTRITION 2022; 18:e13389. [PMID: 35757994 PMCID: PMC9480963 DOI: 10.1111/mcn.13389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Human milk sharing (HMS) is growing in popularity as an infant-feeding strategy in the United States. HMS families are a hidden population because HMS is a nonnormative and stigmatized behaviour. Thus, gaining access to HMS participants is challenging, and research on this topic remains limited. In particular, little is known about the broader infant-feeding behaviours of HMS parents. This study aimed to describe and compare the infant-feeding behaviours and HMS practices among a network of HMS donors and recipients. A detailed online survey was distributed to HMS parents in the Washington, DC region. Bivariate analyses were used to summarize the data by donor/recipient status when possible. Group differences were tested using analysis of variance for continuous variables and χ2 tests for categorical variables. Donors and recipients did not differ in their sociodemographic characteristics. Recipients were significantly more likely than donors to have experienced complications of labour and delivery, traumatic birth, postpartum depression or a negative breastfeeding experience. Donors and recipients did not differ significantly in their duration of lactation or HM-feeding. Interestingly, 30% of recipients ever produced excess milk and 21% of donors ever had difficulty producing enough milk for their child. Compared with donors, recipients faced numerous maternal health challenges, but were still able to achieve a long duration of HM-feeding. HMS recipients represent a vulnerable group who may benefit from additional psychosocial and lactation support to improve their health and breastfeeding outcomes. Additional research is needed to investigate the associations between HMS participation, infant-feeding behaviours and lactation outcomes.
Collapse
Affiliation(s)
| | | | | | - Katherine L. Dickin
- Division of Nutritional SciencesCornell UniversityIthacaNew YorkUSA,Department of Public and Ecosystem HealthCornell UniversityIthacaNYUSA
| | | |
Collapse
|
9
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Rev Proteomics 2021; 18:571-606. [PMID: 34107825 DOI: 10.1080/14789450.2021.1940143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-pregnancy overweight and obesity, depending on maternal nutrition and metabolic state, can influence fetal, neonatal and long-term offspring health, regarding cardio-metabolic, respiratory, immunological and cognitive outcomes. Thus, maternal weight can act, through mechanisms that are not full understood, on the physiology and metabolism of some fetal organs and tissues, to adapt themselves to the intrauterine environment and nutritional reserves. These effects could occur by modulating gene expression, neonatal microbiome, and through breastfeeding. AREAS COVERED In this paper, we investigated the potential effects of metabolites found altered in breast milk (BM) of overweight/obese mothers, through an extensive review of metabolomics studies, and the potential short- and long-term clinical effects in the offspring, especially regarding overweight, glucose homeostasis, insulin resistance, oxidative stress, infections, immune processes, and neurodevelopment. EXPERT OPINION Metabolomics seems the ideal tool to investigate BM variation depending on maternal or fetal/neonatal factors. In particular, BM metabolome alterations according to maternal conditions were recently pointed out in cases of gestational diabetes, preeclampsia, intrauterine growth restriction and maternal overweight/obesity. In our opinion, even if BM is the food of choice in neonatal nutrition, the deepest comprehension of its composition in overweight/obese mothers could allow targeted supplementation, to improve offspring health and metabolic homeostasis.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, section of Pediatrics, University of Pisa, Italy. Via Roma, 55, 56126 Pisa PI, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Breast milk (BM) is a peculiar fluid owing unique properties and resulting the ideal food during early neonatal period. As widely known, it can improve the outcome of both neonate and lactating mother, influencing their whole life. BM is characterized by several beneficial components; among these, a great role is played by BM own and specific microbiome, deeply investigated in many studies. Moreover, the use of metabolomics in BM analysis allowed a better characterization of its metabolic pathways that vary according to lactation stage and neonatal gestational age. The aim of this review is to describe growth factors, cytokines, immunity mediators, and stem cells (SCs) contained in BM and investigate their functions and effects on neonatal outcome, especially focusing on immuno- and neurodevelopment. RECENT FINDINGS We evaluated recent and updated literature on this field. The article that we analyzed to write this review have been found in MEDLINE using breast milk-derived stem cells, biofactors, growth factors, breastfeeding-related outcomes, neurodevelopment, and neonatal immunological system as keywords. Discovering and characterizing BM components could result very useful to clarify the pathophysiology of their influence on neonatal growth and even to improve artificial formulations' composition. Moreover, since SCs abilities and their involvement in the development of several diseases, they could help to discover specific targets for new therapies. It could be useful to characterize BM-derived SC markers, properties, and variations during lactation stages, to understand their potential role in therapeutic applications, since they could be noninvasively isolated from BM. More studies will help to describe more in detail the characteristics of mother-to-child communication through breastfeeding and its potential role in the next future.
Collapse
|
11
|
Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr (Torino) 2021; 73:111-114. [PMID: 33880902 DOI: 10.23736/s2724-5276.21.06223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From an evolutionary and nutritional standpoint, exclusive human milk feeding for the first 6 months of life, with continued breastfeeding for 1 to 2 years of life, is recognized as the gold standard nourishment for the infant: it is a species-specific food, with a composition designed by nature to better respond to the biological and psychological needs of the newborn/infant. Human milk contains many hundreds of bioactive molecules that protect newborn against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Compared with formula feeding, breastfeeding has been associated with decreased morbidity and mortality in infants and to lower incidence of gastrointestinal infections and inflammatory, respiratory and allergic disease. Here, we briefly review the nutritional and functional composition of human milk and provide an overview of its varied bioactive factors.
Collapse
Affiliation(s)
- Giulia Nuzzi
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Irene Trambusti
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria E DI Cicco
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy -
| |
Collapse
|
12
|
Yeruva L, Munblit D, Collado MC. Editorial: Impact of Early Life Nutrition on Immune System Development and Related Health Outcomes in Later Life. Front Immunol 2021; 12:668569. [PMID: 33841449 PMCID: PMC8027300 DOI: 10.3389/fimmu.2021.668569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Daniel Munblit
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Solov'ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Maria Carmen Collado
- Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
13
|
Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel) 2021; 11:life11020148. [PMID: 33669262 PMCID: PMC7920069 DOI: 10.3390/life11020148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy;
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
- Correspondence:
| | - Elisa Caboni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy;
| |
Collapse
|
14
|
Saben JL, Sims CR, Abraham A, Bode L, Andres A. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth. Nutrients 2021; 13:nu13020446. [PMID: 33572881 PMCID: PMC7911788 DOI: 10.3390/nu13020446] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules playing a critical role in infant health. We aimed to quantify the composition of HMOs of women with normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), or obesity (30.0–60.0 kg/m2) and determine the effect of HMO intake on infant growth. Human milk (HM) samples collected at 2 months (2 M; n = 194) postpartum were analyzed for HMO concentrations via high-performance liquid chromatography. Infant HM intake, anthropometrics and body composition were assessed at 2 M and 6 M postpartum. Linear regressions and linear mixed-effects models were conducted examining the relationships between maternal BMI and HMO composition and HMO intake and infant growth over the first 6 M, respectively. Maternal obesity was associated with lower concentrations of several fucosylated and sialylated HMOs and infants born to women with obesity had lower intakes of these HMOs. Maternal BMI was positively associated with lacto-N-neotetraose, 3-fucosyllactose, 3-sialyllactose and 6-sialyllactose and negatively associated with disialyllacto-N-tetraose, disialyllacto-N-hexaose, fucodisialyllacto-N-hexaose and total acidic HMOs concentrations at 2 M. Infant intakes of 3-fucosyllactose, 3-sialyllactose, 6-sialyllactose, disialyllacto-N-tetraose, disialyllacto-N-hexaose, and total acidic HMOs were positively associated with infant growth over the first 6 M of life. Maternal obesity is associated with changes in HMO concentrations that are associated with infant adiposity.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ann Abraham
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
15
|
Torrez Lamberti MF, DeBose-Scarlett E, Garret T, Parker LA, Neu J, Lorca GL. Metabolomic Profile of Personalized Donor Human Milk. Molecules 2020; 25:E5783. [PMID: 33302441 PMCID: PMC7763631 DOI: 10.3390/molecules25245783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.
Collapse
Affiliation(s)
- Monica F. Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Timothy Garret
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Leslie Ann Parker
- College of Nursing, University of Florida, Gainesville, FL 32611, USA;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| |
Collapse
|
16
|
Rosa F, Mercer KE, Lin H, Sims CR, Pack LM, Goode G, Badger T, Andres A, Yeruva L. Early Infant Formula Feeding Impacts Urinary Metabolite Profile at 3 Months of Age. Nutrients 2020; 12:E3552. [PMID: 33233521 PMCID: PMC7699459 DOI: 10.3390/nu12113552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
There is a growing consensus that nutritional programming may persist and influence risk for several chronic diseases in adulthood. In the present study, we used urinary metabolic analysis in assessing diet effects on early-life metabolism. Urine samples from healthy three-month-old infants fed human milk (HM; n = 93), cow's milk-based infant formula [MF; n = 80], or soy protein-based infant formula (SF; n = 76) were analyzed with an untargeted metabolomics approach using GC-TOF MS. PLS-DA and ANOVA analyses were performed using MetaboAnalyst (v4.0). A total of 150 metabolites differed significantly among the feeding groups, including dietary-specific patterns of urinary metabolites of sugars, sugar alcohols, amino acids, and polyphenols. Urinary metabolites may mirror the infant's overall metabolism and serve as a noninvasive tool to examine the neonatal effects of diet on early-infant metabolism.
Collapse
Affiliation(s)
- Fernanda Rosa
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Haixia Lin
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Lindsay M. Pack
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
| | - Grace Goode
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
| | - Thomas Badger
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Laxmi Yeruva
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (K.E.M.); (H.L.); (C.R.S.); (L.M.P.); (G.G.); (T.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| |
Collapse
|
17
|
Saben JL, Abraham A, Bode L, Sims CR, Andres A. Third-Trimester Glucose Homeostasis in Healthy Women Is Differentially Associated with Human Milk Oligosaccharide Composition at 2 Months Postpartum by Secretor Phenotype. Nutrients 2020; 12:nu12082209. [PMID: 32722157 PMCID: PMC7468763 DOI: 10.3390/nu12082209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules in human milk that play a critical role in infant health. Obesity and associated metabolic aberrations can negatively impact lactation and alter milk composition. Here, the relationship between maternal glucose homeostasis and HMO composition from 136 healthy women was examined. Maternal glucose homeostasis (fasting plasma glucose and insulin, homeostatic model assessment for insulin resistance, and insulin sensitivity index) was evaluated at 30 weeks of gestation in healthy women (body mass index = 18.5–35 kg/m2). Human milk samples were collected at two months postpartum. HMO concentrations were measured via high performance liquid chromatography. Women were categorized into “secretor” and “non-secretor” groups based on 2′-Fucosyllactose concentrations (<100 nmol/mL, non-secretor). Pearson’s correlation analysis and linear models were used to assess the relationships between maternal glucose homeostasis and HMO concentrations. In non-secretors, third trimester fasting plasma glucose and insulin were negatively associated with total HMO-bound sialic acid and concentrations of the sialylated HMOs 3′-sialyllactose and disialylacto-N-tetraose. In secretors, difucosyllactose and lacto-N-fucopentaose-II concentrations increased and sialyllacto-N-tetraose c and sialyllacto-N-tetraose b decreased as insulin sensitivity increased. This study is the first to demonstrate a relationship between obesity-associated maternal factors and HMO composition in both secretor and non-secretor populations.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Ann Abraham
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
18
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol 2020; 11:1533. [PMID: 32793208 PMCID: PMC7385070 DOI: 10.3389/fimmu.2020.01533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal overweight and obesity can impair the pregnancy outcome and represent risk factors for several neonatal, childhood, and adult conditions, including excessive weight gain, cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently, breast milk (BM) composition in such category of mothers was not completely defined. In this field, metabolomics represents the ideal technology, able to detect the whole profile of low molecular weight molecules in BM. Limited information is available on human BM metabolites differences in overweight or obese compared to lean mothers. Analyzing all the metabolomics studies published on Medline in English language, this review evaluated the effects that 8 specific types of metabolites found altered by maternal overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols, acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert on the risk of offspring obesity development and other potentially associated health outcomes and complications. However, metabolites variations in samples collected from overweight and obese mothers and the potentially correlated effects highlighted below still need further investigations and should be confirmed in future metabolomics studies on larger samples. Finally, the positive or negative influence of maternal overweight and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed in close correlation with maternal age, genetic and environmental factors, including diet, and taking into account the interactions occurring between BM metabolites and lactobiome. The evaluation of all the factors affecting BM metabolites in overweight and obese mothers can lead to the comprehensive description of such biofluid and the related effects on breastfed subjects, potentially highlighting personalized needs of BM supplementation or short- and long-term prevention strategies to optimize offspring health.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| |
Collapse
|
19
|
Salminen S, Stahl B, Vinderola G, Szajewska H. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients 2020; 12:E1952. [PMID: 32629970 PMCID: PMC7400136 DOI: 10.3390/nu12071952] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Breastfeeding is natural and the optimal basis of infant nutrition and development, with many benefits for maternal health. Human milk is a dynamic fluid fulfilling an infant's specific nutritional requirements and guiding the growth, developmental, and physiological processes of the infant. Human milk is considered unique in composition, and it is influenced by several factors, such as maternal diet and health, body composition, and geographic region. Human milk stands as a model for infant formula providing nutritional solutions for infants not able to receive enough mother's milk. Infant formulas aim to mimic the composition and functionality of human milk by providing ingredients reflecting those of the latest human milk insights, such as oligosaccharides, bacteria, and bacterial metabolites. The objective of this narrative review is to discuss the most recent developments in infant formula with a special focus on human milk oligosaccharides and postbiotics.
Collapse
Affiliation(s)
- Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands;
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Hania Szajewska
- Department of Paediatrics at the Medical University of Warsaw, 02091 Warsaw, Poland
| |
Collapse
|
20
|
Bardanzellu F, Puddu M, Fanos V. The Human Breast Milk Metabolome in Preeclampsia, Gestational Diabetes, and Intrauterine Growth Restriction: Implications for Child Growth and Development. J Pediatr 2020; 221S:S20-S28. [PMID: 32482230 DOI: 10.1016/j.jpeds.2020.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy.
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| |
Collapse
|
21
|
Fabiano V, Albani E, Cammi GM, Zuccotti GV. Nutrition in developmental age: few rules to stay healthy. Minerva Pediatr 2020; 72:182-195. [PMID: 32274912 DOI: 10.23736/s0026-4946.20.05803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first 1000 days of life represent a critical window for infants' and children's development. Overweight and insulin resistance, at the basis of non-communicable diseases (NCDs), are linked to various risk factors that begin in childhood, including children's diet. Italian data on infants' and children's dietary habits show higher intake of proteins, simple sugars, unhealthy fats and salt than recommended, while the iron intake is below requirement. We reviewed current literature analyzing observational studies, meta-analysis, systematic review and randomized clinical trials of the last 10 years (from 2009) on nutrition in developmental age, providing some few rules to abide by. Exclusive breastfeeding is recommended by World Health Organization for the first 6 months of life and it should be continued alongside the complementary feeding period until 12 months, or even afterward. Complementary feeding should not be started before the 17th week of age with energetically adequate foods, paying attention to limit protein intake and favoring iron-rich foods. Intake of simple sugars should be limited or avoided at all; it has been demonstrated that substituting sugar-sweetened beverages with water decreases body fatness development in adolescence. Quality of the ingested fats is more important than their quantity: polyunsaturated fatty acids should be preferred. Sodium intake should be limited in the first 24 months of life, as first prevention measure of arterial hypertension later in adulthood. Healthy eating habits are the first important step toward the prevention of NCDs.
Collapse
Affiliation(s)
- Valentina Fabiano
- Department of Pediatrics, V. Buzzi Children's Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy -
| | - Elena Albani
- Department of Pediatrics, V. Buzzi Children's Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | - Giulia M Cammi
- Department of Pediatrics, V. Buzzi Children's Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | - Gian V Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Abstract
In the last years, 'omics' technologies, and especially metabolomics, emerged as expanding scientific disciplines and promising technologies in the characterization of several pathophysiological processes.In detail, metabolomics, able to detect in a dynamic way the whole set of molecules of low molecular weight in cells, tissues, organs, and biological fluids, can provide a detailed phenotypic portray, representing a metabolic "snapshot."Thanks to its numerous strength points, metabolomics could become a fundamental tool in human health, allowing the exact evaluation of individual metabolic responses to pathophysiological stimuli including drugs, environmental changes, lifestyle, a great number of diseases and other epigenetics factors.Moreover, if current metabolomics data will be confirmed on larger samples, such technology could become useful in the early diagnosis of diseases, maybe even before the clinical onset, allowing a clinical monitoring of disease progression and helping in performing the best therapeutic approach, potentially predicting the therapy response and avoiding overtreatments. Moreover, the application of metabolomics in nutrition could provide significant information on the best nutrition regimen, optimal infantile growth and even in the characterization and improvement of commercial products' composition.These are only some of the fields in which metabolomics was applied, in the perspective of a precision-based, personalized care of human health.In this review, we discuss the available literature on such topic and provide some evidence regarding clinical application of metabolomics in heart diseases, auditory disturbance, nephrouropathies, adult and pediatric cancer, obstetrics, perinatal conditions like asphyxia, neonatal nutrition, neonatal sepsis and even some neuropsychiatric disorders, including autism.Our research group has been interested in metabolomics since several years, performing a wide spectrum of experimental and clinical studies, including the first metabolomics analysis of human breast milk. In the future, it is reasonable to predict that the current knowledge could be applied in daily clinical practice, and that sensible metabolomics biomarkers could be easily detected through cheap and accurate sticks, evaluating biofluids at the patient's bed, improving diagnosis, management and prognosis of sick patients and allowing a personalized medicine. A dream? May be I am a dreamer, but I am not the only one.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy
| |
Collapse
|
23
|
Bardanzellu F, Peila C, Fanos V, Coscia A. Clinical insights gained through metabolomic analysis of human breast milk. Expert Rev Proteomics 2019; 16:909-932. [PMID: 31825672 DOI: 10.1080/14789450.2019.1703679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Among the OMICS technologies, that have emerged in recent years, metabolomics has allowed relevant step forwards in clinical research. Several improvements in disease diagnosis and clinical management have been permitted, even in neonatology. Among potentially evaluable biofluids, breast milk (BM) results are highly interesting, representing a fluid of conjunction between mothers newborns, describing their interaction.Areas covered: in this review, updating a previous review article, we discuss research articles and reviews on BM metabolomics and found in MEDLINE using metabolomics, breast milk, neonatal nutrition, breastfeeding, human milk composition, and preterm neonates as keywords.Expert opinion: Our research group has a profound interest in metabolomics research. In 2012, we published the first metabolomic analysis on BM samples, reporting interesting data on its composition and relevant differences with formula milk (FM), useful to improve FM composition. As confirmed by successive studies, such technology can detect the specific BM composition and its dependence on several variables, including lactation stage, gestational age, maternal or environmental conditions. Moreover, since BM contaminants or drug levels can be detected, metabolomics also results useful to determine BM safety. These are only a few practical applications of BM analysis, which will be reviewed in this paper.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Chiara Peila
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
24
|
Odintsova VV, Hagenbeek FA, Suderman M, Caramaschi D, van Beijsterveldt CEM, Kallsen NA, Ehli EA, Davies GE, Sukhikh GT, Fanos V, Relton C, Bartels M, Boomsma DI, van Dongen J. DNA Methylation Signatures of Breastfeeding in Buccal Cells Collected in Mid-Childhood. Nutrients 2019; 11:E2804. [PMID: 31744183 PMCID: PMC6893543 DOI: 10.3390/nu11112804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Breastfeeding has long-term benefits for children that may be mediated via the epigenome. This pathway has been hypothesized, but the number of empirical studies in humans is small and mostly done by using peripheral blood as the DNA source. We performed an epigenome-wide association study (EWAS) in buccal cells collected around age nine (mean = 9.5) from 1006 twins recruited by the Netherlands Twin Register (NTR). An age-stratified analysis examined if effects attenuate with age (median split at 10 years; n<10 = 517, mean age = 7.9; n>10 = 489, mean age = 11.2). We performed replication analyses in two independent cohorts from the NTR (buccal cells) and the Avon Longitudinal Study of Parents and Children (ALSPAC) (peripheral blood), and we tested loci previously associated with breastfeeding in epigenetic studies. Genome-wide DNA methylation was assessed with the Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA) in the NTR and with the HumanMethylation450 Bead Chip in the ALSPAC. The duration of breastfeeding was dichotomized ('never' vs. 'ever'). In the total sample, no robustly associated epigenome-wide significant CpGs were identified (α = 6.34 × 10-8). In the sub-group of children younger than 10 years, four significant CpGs were associated with breastfeeding after adjusting for child and maternal characteristics. In children older than 10 years, methylation differences at these CpGs were smaller and non-significant. The findings did not replicate in the NTR sample (n = 98; mean age = 7.5 years), and no nearby sites were associated with breastfeeding in the ALSPAC study (n = 938; mean age = 7.4). Of the CpG sites previously reported in the literature, three were associated with breastfeeding in children younger than 10 years, thus showing that these CpGs are associated with breastfeeding in buccal and blood cells. Our study is the first to show that breastfeeding is associated with epigenetic variation in buccal cells in children. Further studies are needed to investigate if methylation differences at these loci are caused by breastfeeding or by other unmeasured confounders, as well as what mechanism drives changes in associations with age.
Collapse
Affiliation(s)
- Veronika V. Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 101000, Russia
| | - Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | | | - Noah A. Kallsen
- Avera Institute for Human Genetics, Sioux Falls, SD 57101, USA
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD 57101, USA
| | | | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 101000, Russia
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, 09121 Cagliari, Italy
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
25
|
Ünver Korğalı E, Doğan HO. Chitotriosidase Levels in the Colostrum from Mothers of Term and Preterm Infants. Breastfeed Med 2019; 14:487-492. [PMID: 31150283 DOI: 10.1089/bfm.2019.0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Breast milk Chitotriosidase (Chit 1) shows antifungal effect and has an active role in the natural immune response against certain pathogens. The aim of this study was to compare colostrum Chit 1 levels from mothers of term and preterm infants. Materials and Methods: The study included 72 mothers of 32 preterm and 40 term infants (gestational age; 33.7 ± 1.8 vs. 39.1 ± 1.1 weeks, birth weight; 1931.7 ± 539.8 vs. 3350.9 ± 419.7 g). Breast milk samples were taken at postnatal 24-48 hours. Chit 1 level was evaluated with the quantitative calorimetric method. Results: No significant difference was determined between the term and preterm groups in terms of maternal age, education level, weight gain in pregnancy, and body mass index (BMI). The median colostrum Chit 1 level was higher in the preterm group, but the difference was not statistically significant between two groups (p = 0.43). There is no association between colostrum Chit 1 level, maternal age, gravida, BMI, infant gender, income level, and pre-eclampsia. The colostrum Chit 1 level of mothers who had weight gain exceeding the recommended limits was significantly lower than mothers with weight gain within the recommended limits in the term group (4346.2 vs. 4914.2, p = 0.021). A negative correlation was determined between the birthweight of term infants and the colostrum Chit 1 levels (p = 0.045, r = -0.319). Conclusion: Although the data need to be validated by further investigation, the observations made in this study seem to indicate that colostrum Chit-1 may have role in the protection of preterm infants.
Collapse
Affiliation(s)
- Elif Ünver Korğalı
- Department of Pediatrics, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Halef Okan Doğan
- Department of Biochemistry, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
26
|
Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients 2019; 11:nu11091972. [PMID: 31438647 PMCID: PMC6770840 DOI: 10.3390/nu11091972] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/31/2022] Open
Abstract
Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors’ lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.
Collapse
|
27
|
Dessì A, Briana D, Corbu S, Gavrili S, Cesare Marincola F, Georgantzi S, Pintus R, Fanos V, Malamitsi-Puchner A. Metabolomics of Breast Milk: The Importance of Phenotypes. Metabolites 2018; 8:metabo8040079. [PMID: 30463323 PMCID: PMC6315662 DOI: 10.3390/metabo8040079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/31/2022] Open
Abstract
Breast milk is the gold standard of nutrition for newborns. Its composition is tailored to the nutritional needs of the infant and varies between mothers. In recent years, several bioactive molecules have been discovered in addition to the main nutrients, such as multipotent stem cells, hormones, immunoglobulins, and bacteria. Furthermore, the human milk oligosaccharides (HMOs) seem to exert several important protective biological functions. According to the HMOs’ composition, breast milk can be classified as a secretory or non-secretory phenotype. In our study, we investigated the metabolome of milk collected from 58 mothers that delivered neonates at term, that were appropriate, small or large for gestational age, by performing nuclear magnetic resonance spectroscopy (1H-NMR). From the data analysis, two groups were distinguished based on their different types of oligosaccharides, and classified according the mother phenotype: secretory and non-secretory. This information is of major importance given the different biological function of the different HMOs, such as immune-modulation and protection against disease. This would allow us to predict whether the neonate would be, for instance, more prone to developing certain diseases, and to tailor her or his nutrition to fit their needs perfectly and pave the way to a personalized nutrition.
Collapse
Affiliation(s)
- Angelica Dessì
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda University Polyclinic, University of Cagliari, 09124 Cagliari, Italy.
| | - Despina Briana
- National and Kapodistrian University of Athens, 10679 Athens, Greece.
| | - Sara Corbu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda University Polyclinic, University of Cagliari, 09124 Cagliari, Italy.
| | - Stavroula Gavrili
- Neonatal Intensive Care Unit, General District, Hospital Alexandra, 11528 Athens, Greece.
| | | | - Sofia Georgantzi
- Neonatal Intensive Care Unit, General District, Hospital Alexandra, 11528 Athens, Greece.
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda University Polyclinic, University of Cagliari, 09124 Cagliari, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda University Polyclinic, University of Cagliari, 09124 Cagliari, Italy.
| | | |
Collapse
|