1
|
Baker MG, Ford LS, Campbell DE, Sampson HA. Just scratching the surface: A review of pediatric skin allergies. Pediatr Allergy Immunol 2025; 36:e70038. [PMID: 39953855 DOI: 10.1111/pai.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
The skin is a large and sophisticated organ populated by innate and adaptive immune effector cells. These immune cells provide a critical first line of defense against pathogens, but genetic and environmental factors can lead to inappropriate signaling that may manifest as hypersensitivity. The most common cutaneous allergic disorders in children include atopic dermatitis, urticaria/angioedema, and contact dermatitis. In this review, we will briefly review these conditions, with a focus on recent developments in our understanding of the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Mary Grace Baker
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| | - Lara S Ford
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dianne E Campbell
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- DBV Technologies, Montrouge, France
| | - Hugh A Sampson
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| |
Collapse
|
2
|
Bekis Bozkurt H, Bayram Catak F, Sahin A, Yalcin Gungoren E, Gemici Karaarslan B, Yakici N, Yorgun Altunbas M, Catak MC, Can S, Amirov R, Bozkurt S, Ozturk N, Bilgic Eltan S, Kasap N, Bal Cetinkaya F, Orhan F, Arga M, Cavkaytar O, Kiykim A, Karakoc-Aydiner E, Ozen A, Baris S. Diverse Clinical and Immunological Profiles in Patients with IPEX Syndrome: a Multicenter Analysis from Turkey. J Clin Immunol 2024; 45:9. [PMID: 39283523 DOI: 10.1007/s10875-024-01791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-linked syndrome (IPEX), caused by pathogenic FOXP3 variants, is a rare autoimmune disorder with diverse clinical features, including early-onset diabetes, eczema, and enteropathy. Atypical cases show milder symptoms and unique signs, requiring different treatments. Therefore, there are ambiguities in the accurate diagnosis and management of IPEX. We sought to present clinical, genetic, and immunological assessments of 12 IPEX patients with long-term follow-up to facilitate the diagnosis and management of the disease. METHODS Clinical findings and treatment options of the patients were collected over time. Lymphocyte subpopulations, protein expressions, regulatory T (Treg) and circulating T follicular helper (cTFH) cells, and T-cell proliferation were analyzed. RESULTS Predominant presentations included autoimmunity (91.6%), failure to thrive (66.7%), and eczema (58.3%). There were four classical and eight atypical IPEX individuals. Allergic manifestations were more common in atypical patients. Notably, chronic diarrhea demonstrated heightened severity compared to other manifestations. Four patients (33.3%) demonstrated eosinophilia, and nine (75%) showed high serum IgE levels. Most patients exhibited normal percentages of Treg cells with reduced CD25, FOXP3, and CTLA-4 expressions, corrected after hematopoietic stem cell transplantation (HSCT). Compared to healthy controls, the TH2-like skewing accompanied by reduced TH17-like responses was observed in cTFH and Treg cells of patients. Overall, nine patients (75%) received immunosuppressants (ISs), and six (50%) underwent HSCT, which was the only treatment revealing sustained control. Sirolimus was used in six patients and showed better control than other ISs. CONCLUSIONS The first cohort from Turkey with long-term follow-up results, comparing typical and atypical cases, provides insights into the outcomes of different therapeutic modalities and T- cell subtype changes in IPEX syndrome.
Collapse
MESH Headings
- Humans
- Turkey
- Male
- Child, Preschool
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/therapy
- T-Lymphocytes, Regulatory/immunology
- Infant
- Female
- Child
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/therapy
- Immune System Diseases/congenital
- Autoimmunity
- Adolescent
- Diarrhea
Collapse
Affiliation(s)
- Hayrunnisa Bekis Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Feyza Bayram Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ali Sahin
- Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ezgi Yalcin Gungoren
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Betul Gemici Karaarslan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nalan Yakici
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Melek Yorgun Altunbas
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Cihangir Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Salim Can
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Razin Amirov
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Selcen Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Necmiye Ozturk
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fatma Bal Cetinkaya
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fazil Orhan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Arga
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Cavkaytar
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Baumgartner F, Bamopoulos SA, Faletti L, Hsiao HJ, Holz M, Gonzalez-Menendez I, Solé-Boldo L, Horne A, Gosavi S, Özerdem C, Singh N, Liebig S, Ramamoorthy S, Lehmann M, Demel U, Kühl AA, Wartewig T, Ruland J, Wunderlich FT, Schick M, Walther W, Rose-John S, Haas S, Quintanilla-Martinez L, Feske S, Ehl S, Glauben R, Keller U. Activation of gp130 signaling in T cells drives T H17-mediated multi-organ autoimmunity. Sci Signal 2024; 17:eadc9662. [PMID: 38377177 DOI: 10.1126/scisignal.adc9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.
Collapse
Affiliation(s)
- Francis Baumgartner
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefanos A Bamopoulos
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hsiang-Jung Hsiao
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Maximilian Holz
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Llorenç Solé-Boldo
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Arik Horne
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sanket Gosavi
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ceren Özerdem
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Nikita Singh
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Sven Liebig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Senthilkumar Ramamoorthy
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Lehmann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Tim Wartewig
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Technische Universität München, 81675 Munich, Germany
| | - Frank T Wunderlich
- Obesity and Cancer, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13125 Berlin, Germany
- EPO GmbH Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Simon Haas
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ - ZMBH Alliance, 69120 Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rainer Glauben
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
Filleron A, Cezar R, Fila M, Protsenko N, Van Den Hende K, Jeziorski E, Occean B, Chevallier T, Corbeau P, Tran TA. Regulatory T and B cells in pediatric Henoch-Schönlein purpura: friends or foes? Arthritis Res Ther 2024; 26:52. [PMID: 38365843 PMCID: PMC10870453 DOI: 10.1186/s13075-024-03278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Henoch-Schönlein purpura (HSP) is the most common immunoglobulin A-mediated systemic vasculitis in childhood. We studied immune dysregulation in HSP by analyzing regulatory T (Treg), T helper 3 (Th3), and regulatory B cell (Breg) subpopulations that might intervene in immune activation, IgA production, and HSP clinical manifestations. METHODS This prospective study included 3 groups of children: 30 HSP on acute phase, 30 HSP on remission, and 40 healthy controls (HCs) matched on age. Treg, Breg, and Th3 were analyzed by flow cytometry. Serum immunoglobulin and cytokine levels were quantified by ELISA and Luminex. RESULTS Treg frequencies were higher in acute HSP than in remitting HSP and HCs (6.53% [4.24; 9.21] vs. 4.33% [3.6; 5.66], p = 0.002, and vs. 4.45% [3.01; 6.6], p = 0.003, respectively). Activated Th3 cells (FoxP3 + Th3 cells) tend to be more abundant in HSP than in HCs (78.43% [50.62; 80.84] vs. 43.30% [40.20; 49.32], p = 0.135). Serum IgA, IL-17, and latency-associated peptide (a marker of the anti-inflammatory cytokine TGF-beta production) were significantly and inflammatory cytokines TNF-alpha, IL-1-beta, and IL-6 were non-significantly higher in HSP than HCs. Bregs were identical between the groups, but, in patients with renal impairment, Breg percentage was lower compared to those without. Treg removal in PBMC culture resulted in an increase in IgA production in HSP proving a negative regulatory role of Tregs on IgA production. CONCLUSIONS In pediatric HSP, immune activation persists in spite of an increase in Th3 and Tregs. Th3 could be involved in IgA hyperproduction, inefficiently downregulated by Tregs. Lack of Bregs appears linked to renal impairment.
Collapse
Affiliation(s)
- Anne Filleron
- IRMB, Montpellier University, INSERM U1183, Montpellier, France
- Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France
| | - Renaud Cezar
- IRMB, Montpellier University, INSERM U1183, Montpellier, France
- Department of Immunology, Nîmes University Hospital, Montpellier University, Nîmes, France
| | - Marc Fila
- Department of Pediatric Nephrology, Montpellier University Hospital, Montpellier University, Montpellier, France
| | - Nastassja Protsenko
- Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France
| | - Kathleen Van Den Hende
- Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France
| | - Eric Jeziorski
- Department of Pediatric Infectious Diseases, Montpellier University Hospital, Univ Montpellier, INSERM, EFS, Univ Antilles, Montpellier, France
| | - Bob Occean
- Department of Epidemiology, Medical Statistics and Public Health, Nîmes University Hospital, Montpellier University, Nîmes, France
| | - Thierry Chevallier
- Department of Epidemiology, Medical Statistics and Public Health, Nîmes University Hospital, Montpellier University, Nîmes, France
- UMR 1302 Desbrest Institute of Epidemiology and Public Health, INSERM, University of Montpellier, Montpellier, France
| | - Pierre Corbeau
- Department of Immunology, Nîmes University Hospital, Montpellier University, Nîmes, France
- Institute of Human Genetics, CNRS UMR9002, Montpellier University, Montpellier, France
| | - Tu Anh Tran
- IRMB, Montpellier University, INSERM U1183, Montpellier, France.
- Department of Pediatrics, Nîmes University Hospital, Montpellier University, Service de Pédiatrie, Place du Pr R. Debré, 30029, Nîmes Cedex 9, France.
| |
Collapse
|
5
|
Kustrimovic N, Gallo D, Piantanida E, Bartalena L, Lai A, Zerbinati N, Tanda ML, Mortara L. Regulatory T Cells in the Pathogenesis of Graves' Disease. Int J Mol Sci 2023; 24:16432. [PMID: 38003622 PMCID: PMC10671795 DOI: 10.3390/ijms242216432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Maintaining a delicate balance between the prompt immune response to pathogens and tolerance towards self-antigens and commensals is crucial for health. T regulatory (Treg) cells are pivotal in preserving self-tolerance, serving as negative regulators of inflammation through the secretion of anti-inflammatory cytokines, interleukin-2 neutralization, and direct suppression of effector T cells. Graves' disease (GD) is a thyroid-specific autoimmune disorder primarily attributed to the breakdown of tolerance to the thyroid-stimulating hormone receptor. Given the limitations of currently available GD treatments, identifying potential pathogenetic factors for pharmacological targeting is of paramount importance. Both functional impairment and frequency reduction of Tregs seem likely in GD pathogenesis. Genome-wide association studies in GD have identified polymorphisms of genes involved in Tregs' functions, such as CD25 (interleukin 2 receptor), and Forkhead box protein P3 (FOXP3). Clinical studies have reported both functional impairment and a reduction in Treg frequency or suppressive actions in GD, although their precise involvement remains a subject of debate. This review begins with an overview of Treg phenotype and functions, subsequently delves into the pathophysiology of GD and into the existing literature concerning the role of Tregs and the balance between Tregs and T helper 17 cells in GD, and finally explores the ongoing studies on target therapies for GD.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Luigi Bartalena
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Adriana Lai
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Nicola Zerbinati
- Dermatology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
6
|
Röth S, Kocaturk NM, Sathyamurthi PS, Carton B, Watt M, Macartney TJ, Chan KH, Isidro-Llobet A, Konopacka A, Queisser MA, Sapkota GP. Identification of KLHDC2 as an efficient proximity-induced degrader of K-RAS, STK33, β-catenin, and FoxP3. Cell Chem Biol 2023; 30:1261-1276.e7. [PMID: 37591251 DOI: 10.1016/j.chembiol.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, β-catenin, and FoxP3, which were endogenously GFP-tagged. Several new E3 ligases, including CUL2 diGly receptor KLHDC2, emerged as effective degraders, suggesting that these E3 ligases can be taken forward for the development of small-molecule degraders, such as proteolysis targeting chimeras (PROTACs). As a proof of concept, we demonstrate that a KLHDC2-recruiting peptide-based PROTAC connected to chloroalkane is capable of degrading HALO-GFP protein in cells.
Collapse
Affiliation(s)
- Sascha Röth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nur Mehpare Kocaturk
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Preethi S Sathyamurthi
- Protein Degradation Group, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, UK
| | - Bill Carton
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Matthew Watt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Kwok-Ho Chan
- Protein Degradation Group, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, UK
| | - Albert Isidro-Llobet
- Chemical Biology, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, UK
| | - Agnieszka Konopacka
- Protein Degradation Group, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, UK
| | - Markus A Queisser
- Protein Degradation Group, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
7
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
8
|
Lee WQ, Leong KF. Infantile vitiligo and alopecia in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome. Pediatr Dermatol 2023; 40:886-889. [PMID: 36727435 DOI: 10.1111/pde.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is characterized by failure to thrive, severe chronic diarrhea, neonatal type 1 diabetes or thyroiditis, and eczematous dermatitis. We report a patient with infantile onset IPEX syndrome who developed vitiligo, alopecia, and chronic diarrhea. Awaiting stem cell transplant, he had multiple episodes of sepsis and succumbed at the age of 10 months. The constellation of symptoms is important to prompt clinicians to suspect this rare syndrome as early hematopoietic stem cell transplantation is the only cure for IPEX patients.
Collapse
Affiliation(s)
- Wai Quen Lee
- Paediatric Dermatology Unit, Department of Paediatrics, Hospital Tunku Azizah, Kuala Lumpur, Malaysia
| | - Kin Fon Leong
- Paediatric Dermatology Unit, Department of Paediatrics, Hospital Tunku Azizah, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Peddi NC, Vuppalapati S, Sreenivasulu H, Muppalla SK, Reddy Pulliahgaru A. Guardians of Immunity: Advances in Primary Immunodeficiency Disorders and Management. Cureus 2023; 15:e44865. [PMID: 37809154 PMCID: PMC10560124 DOI: 10.7759/cureus.44865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Primary immunodeficiency disorders (PIDs) are a heterogeneous group of genetic conditions profoundly impacting immune function. The investigation spans various PID categories, offering insights into their distinct pathogenic mechanisms and clinical manifestations. Within the adaptive immune system, B-cell, T-cell, and combined immunodeficiencies are dissected, emphasizing their critical roles in orchestrating effective immune responses. In the realm of the innate immune system, focus is directed toward phagocytes and complement deficiencies, underscoring the pivotal roles of these components in initial defense against infections. Furthermore, the review delves into disorders of immune dysregulation, encompassing hemophagocytic lymphohistiocytosis (HLH), autoimmune lymphoproliferative syndrome (ALPS), immune dysregulation, polyendocrinopathy, enteropathy, and X-linked(IPEX), and autoimmunity polyendocrinopathy candidiasis-ectodermal dystrophy(APECED), elucidating the intricate interplay between immune tolerance and autoimmunity prevention. Diagnostic strategies for PIDs are explored, highlighting advancements in genetic and molecular techniques that enable precise identification of underlying genetic mutations and alterations in immune function. We have also outlined treatment modalities for PIDs, which often entail a multidisciplinary approach involving immunoglobulin replacement, antimicrobial prophylaxis, and, in select cases, hematopoietic stem cell transplantation. Emerging therapies, including gene therapy, hold promise for targeted interventions. In essence, this review encapsulates the complexity of PIDs, emphasizing the critical importance of early diagnosis and tailored therapeutic interventions. As research advances, a clearer understanding of these disorders emerges, fostering optimism for enhanced patient care and management in the future.
Collapse
Affiliation(s)
| | - Sravya Vuppalapati
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Himabindu Sreenivasulu
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Sudheer Kumar Muppalla
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, kuppam, IND
| | - Apeksha Reddy Pulliahgaru
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| |
Collapse
|
10
|
Abstract
Autoimmune diseases are a diverse group of conditions characterized by aberrant B cell and T cell reactivity to normal constituents of the host. These diseases occur widely and affect individuals of all ages, especially women. Among these diseases, the most prominent immunological manifestation is the production of autoantibodies, which provide valuable biomarkers for diagnosis, classification and disease activity. Although T cells have a key role in pathogenesis, they are technically more difficult to assay. In general, autoimmune disease results from an interplay between a genetic predisposition and environmental factors. Genetic predisposition to autoimmunity is complex and can involve multiple genes that regulate the function of immune cell populations. Less frequently, autoimmunity can result from single-gene mutations that affect key regulatory pathways. Infection seems to be a common trigger for autoimmune disease, although the microbiota can also influence pathogenesis. As shown in seminal studies, patients may express autoantibodies many years before the appearance of clinical or laboratory signs of disease - a period called pre-clinical autoimmunity. Monitoring autoantibody expression in at-risk populations may therefore enable early detection and the initiation of therapy to prevent or attenuate tissue damage. Autoimmunity may not be static, however, and remission can be achieved by some patients treated with current agents.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Abraham AR, Maghsoudlou P, Copland DA, Nicholson LB, Dick AD. CAR-Treg cell therapies and their future potential in treating ocular autoimmune conditions. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1184937. [PMID: 38983082 PMCID: PMC11182176 DOI: 10.3389/fopht.2023.1184937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 07/11/2024]
Abstract
Ophthalmic autoimmune and autoinflammatory conditions cause significant visual morbidity and require complex medical treatment complicated by significant side effects and lack of specificity. Regulatory T cells (Tregs) have key roles in immune homeostasis and in the resolution of immune responses. Polyclonal Treg therapy has shown efficacy in treating autoimmune disease. Genetic engineering approaches to produce antigen-specific Treg therapy has the potential for enhanced treatment responses and fewer systemic side effects. Cell therapy using chimeric antigen receptor modified T cell (CAR-T) therapy, has had significant success in treating haematological malignancies. By modifying Tregs specifically, a CAR-Treg approach has been efficacious in preclinical models of autoimmune conditions leading to current phase 1-2 clinical trials. This review summarises CAR structure and design, Treg cellular biology, developments in CAR-Treg therapies, and discusses future strategies to apply CAR-Treg therapy in the treatment of ophthalmic conditions.
Collapse
Affiliation(s)
- Alan R. Abraham
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Panayiotis Maghsoudlou
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University of Bath, Bath, United Kingdom
| | - David A. Copland
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lindsay B. Nicholson
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- UCL-Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
13
|
Klaus T, Wilson A, Fichter M, Bros M, Bopp T, Grabbe S. The Role of LFA-1 for the Differentiation and Function of Regulatory T Cells-Lessons Learned from Different Transgenic Mouse Models. Int J Mol Sci 2023; 24:6331. [PMID: 37047302 PMCID: PMC10094578 DOI: 10.3390/ijms24076331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Treg dysfunction results in diverse inflammatory and autoimmune diseases with life-threatening consequences. β2-integrins (CD11a-d/CD18) play important roles in the migration of leukocytes into inflamed tissues and cell signaling. Of all β2-integrins, T cells, including Treg, only express CD11a/CD18, termed lymphocyte function-associated antigen 1 (LFA-1), on their surface. In humans, loss-of-function mutations in the common subunit CD18 result in leukocyte adhesion deficiency type-1 (LAD-1). Clinical symptoms vary depending on the extent of residual β2-integrin function, and patients may experience leukocytosis and recurrent infections. Some patients can develop autoimmune diseases, but the immune processes underlying the paradoxical situation of immune deficiency and autoimmunity have been scarcely investigated. To understand this complex phenotype, different transgenic mouse strains with a constitutive knockout of β2-integrins have been established. However, since a constitutive knockout affects all leukocytes and may limit the validity of studies focusing on their cell type-specific role, we established a Treg-specific CD18-floxed mouse strain. This mini-review aims to delineate the role of LFA-1 for the induction, maintenance, and regulatory function of Treg in vitro and in vivo as deduced from observations using the various β2-integrin-deficient mouse models.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alicia Wilson
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
14
|
Paparella R, Menghi M, Micangeli G, Leonardi L, Profeta G, Tarani F, Petrella C, Ferraguti G, Fiore M, Tarani L. Autoimmune Polyendocrine Syndromes in the Pediatric Age. CHILDREN 2023; 10:children10030588. [PMID: 36980146 PMCID: PMC10047132 DOI: 10.3390/children10030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Autoimmune polyendocrine syndromes (APSs) encompass a heterogeneous group of rare diseases characterized by autoimmune activity against two or more endocrine or non-endocrine organs. Three types of APSs are reported, including both monogenic and multifactorial, heterogeneous disorders. The aim of this manuscript is to present the main clinical and epidemiological characteristics of APS-1, APS-2, and IPEX syndrome in the pediatric age, describing the mechanisms of autoimmunity and the currently available treatments for these rare conditions.
Collapse
Affiliation(s)
- Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giovanni Profeta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Tarani
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00185 Rome, Italy
- Correspondence: (M.F.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (M.F.); (L.T.)
| |
Collapse
|
15
|
Kylat RI, Stanley K, Simon S, Erickson RP. Immune dysregulation, polyendocrinopathy and enteropathy, X-linked (IPEX) syndrome due to a mutation in FOXP3, modified by a pathogenic variant in SON (SON DNA-binding protein). J Appl Genet 2023; 64:141-144. [PMID: 36175752 DOI: 10.1007/s13353-022-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/17/2023]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked, known as IPEX syndrome, is a rare heterogeneous condition. Zhu-Tokita-Takenouchi-Kim Syndrome (ZTTK) is an autosomal dominant condition arising from a mutation in the SON gene, which is involved in mRNA splicing. A case showing interactions of mutations in these two genes is described in which both conditions become non-typical.
Collapse
Affiliation(s)
- Ranjit I Kylat
- College of Medicine, University of Arizona, 1501 N Campbell, Tucson, AZ, 85724, USA.,Banner University Hospital, Tucson, AZ, USA
| | - Kelly Stanley
- College of Medicine, University of Arizona, 1501 N Campbell, Tucson, AZ, 85724, USA.,Banner University Hospital, Tucson, AZ, USA
| | - Sarah Simon
- College of Medicine, University of Arizona, 1501 N Campbell, Tucson, AZ, 85724, USA
| | - Robert P Erickson
- College of Medicine, University of Arizona, 1501 N Campbell, Tucson, AZ, 85724, USA.
| |
Collapse
|
16
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
17
|
Narula M, Lakshmanan U, Borna S, Schulze JJ, Holmes TH, Harre N, Kirkey M, Ramachandran A, Tagi VM, Barzaghi F, Grunebaum E, Upton JEM, Hong-Diep Kim V, Wysocki C, Dimitriades VR, Weinberg K, Weinacht KG, Gernez Y, Sathi BK, Schelotto M, Johnson M, Olek S, Sachsenmaier C, Roncarolo MG, Bacchetta R. Epigenetic and immunological indicators of IPEX disease in subjects with FOXP3 gene mutation. J Allergy Clin Immunol 2023; 151:233-246.e10. [PMID: 36152823 DOI: 10.1016/j.jaci.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Forkhead box protein 3 (FOXP3) is the master transcription factor in CD4+CD25hiCD127lo regulatory T (Treg) cells. Mutations in FOXP3 result in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Clinical presentation of IPEX syndrome is broader than initially described, challenging the understanding of the disease, its evolution, and treatment choice. OBJECTIVE We sought to study the type and extent of immunologic abnormalities that remain ill-defined in IPEX, across genetic and clinical heterogeneity. METHODS We performed Treg-cell-specific epigenetic quantification and immunologic characterization of severe "typical" (n = 6) and "atypical" or asymptomatic (n = 9) patients with IPEX. RESULTS Increased number of cells with Treg-cell-Specific Demethylated Region demethylation in FOXP3 is a consistent feature in patients with IPEX, with (1) highest values in those with typical IPEX, (2) increased values in subjects with pathogenic FOXP3 but still no symptoms, and (3) gradual increase over the course of disease progression. Large-scale profiling using Luminex identified plasma inflammatory signature of macrophage activation and TH2 polarization, with cytokines previously not associated with IPEX pathology, including CCL22, CCL17, CCL15, and IL-13, and the inflammatory markers TNF-α, IL-1A, IL-8, sFasL, and CXCL9. Similarly, both Treg-cell and Teff compartments, studied by Mass Cytometry by Time-Of-Flight, were skewed toward the TH2 compartment, especially in typical IPEX. CONCLUSIONS Elevated TSDR-demethylated cells, combined with elevation of plasmatic and cellular markers of a polarized type 2 inflammatory immune response, extends our understanding of IPEX diagnosis and heterogeneity.
Collapse
Affiliation(s)
- Mansi Narula
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Uma Lakshmanan
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | | | - Tyson H Holmes
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Nicholas Harre
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Matthew Kirkey
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Akshaya Ramachandran
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Veronica Maria Tagi
- San Raffaele Telethon Institute for Gene Therapy, Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Julia E M Upton
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Christian Wysocki
- Department of Internal Medicine, Pediatrics, Allergy and Immunology, UT Southwestern Medical Center, Dallas, Tex
| | - Victoria R Dimitriades
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, UC Davis Health Medical Center, Sacramento, Calif
| | - Kenneth Weinberg
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Katja G Weinacht
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Yael Gernez
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | | | | | - Matthew Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Sven Olek
- Ivana Turbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | | | - Maria-Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
18
|
Klaus T, Wilson AS, Vicari E, Hadaschik E, Klein M, Helbich SSC, Kamenjarin N, Hodapp K, Schunke J, Haist M, Butsch F, Probst HC, Enk AH, Mahnke K, Waisman A, Bednarczyk M, Bros M, Bopp T, Grabbe S. Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1. JCI Insight 2022; 7:162580. [PMID: 36346673 PMCID: PMC9869970 DOI: 10.1172/jci.insight.162580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell-DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Alicia S. Wilson
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Elisabeth Vicari
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany.,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Matthias Klein
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | | | - Nadine Kamenjarin
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Katrin Hodapp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Maximilian Haist
- Department of Dermatology,,Research Center for Immunotherapy, and
| | | | - Hans Christian Probst
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Alexander H. Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, and,Institute for Molecular Medicine, University of Mainz Medical Center, Mainz, Germany
| | | | - Matthias Bros
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Tobias Bopp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology,,Research Center for Immunotherapy, and
| |
Collapse
|
19
|
Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Curr Opin Hematol 2022; 29:218-224. [PMID: 35787550 DOI: 10.1097/moh.0000000000000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.
Collapse
|
20
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
21
|
Gentile M, Miano M, Terranova P, Giardino S, Faraci M, Pierri F, Drago E, Verzola D, Ghiggeri G, Verrina E, Angeletti A, Cafferata B, Grossi A, Ceccherini I, Caridi G, Lugani F, Nescis L, Fiaccadori E, Lanino L, Fenoglio D, La Porta E. Case Report: Atypical Manifestations Associated With FOXP3 Mutations. The “Fil Rouge” of Treg Between IPEX Features and Other Clinical Entities? Front Immunol 2022; 13:854749. [PMID: 35479070 PMCID: PMC9035826 DOI: 10.3389/fimmu.2022.854749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe Forkhead box protein P3 (FOXP3) is a transcription factor central to the function of regulatory T cells (Treg). Mutations in the FOXP3 gene lead to a systemic disease called immune dysregulation, polyendocrinopathy, and enteropathy, an X-linked syndrome (IPEX) characterized by the triad of early-onset intractable diarrhea, type 1 diabetes, and eczema. An atypical presentation of IPEX has been reported.MethodWe report rare cases with equivocal clinical associations that included inflammatory, kidney, and hematologic involvements screened with massively parallel sequencing techniques.ResultsTwo patients with hemizygous mutations of FOXP3 [c.779T>A (p.L260Q)] and [c.1087A>G (p.I363V)] presented clinical manifestations not included in typical cases of IPEX: one was a 16-year-old male patient with an initial clinical diagnosis of autoimmune lymphoproliferative syndrome (ALPS) and who developed proteinuria and decreased kidney function due to membranous nephropathy, an autoimmune renal condition characterized by glomerular sub-epithelial antibodies. The second patient was a 2-year-old child with bone marrow failure who developed the same glomerular lesions of membranous nephropathy and received a bone marrow transplantation. High levels of IgG4 in serum, bone marrow, and kidney led to the definition of IgG4-related kidney disease (IgG4 RKD) in this young boy. The circulating Treg levels were normal in the former case and very low in the second.ConclusionTwo atypical associations of functional mutations of FOXP3 that include ALPS and IgG4 RKD are described. Membranous nephropathy leading to renal failure completed in both cases the clinical phenotypes that should be included in the clinical panorama of FOXP3 failure.
Collapse
Affiliation(s)
- Micaela Gentile
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Giardino
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Drago
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties, University of Genova, Genoa, Italy
| | - Gianmarco Ghiggeri
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Dialysis Unit, Department of Pediatric, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory on Molecular Nephrology, Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Lugani
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lorenzo Nescis
- Unitá Operativa (UO) of Nephrology, Dialysis, and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Martino, Genoa, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Unitá Operativa (UO) Nefrologia, Azienda Ospedaliera-Universitaria, Parma, Italy
| | - Luca Lanino
- Department of Oncology and Hematology, Humanitas Clinical and Research Center, Milan, Italy
| | - Daniela Fenoglio
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Edoardo La Porta
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- *Correspondence: Edoardo La Porta,
| |
Collapse
|
22
|
Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-Mediated Chromatin Interactions and Autoimmunity. Front Immunol 2022; 13:840002. [PMID: 35222432 PMCID: PMC8866859 DOI: 10.3389/fimmu.2022.840002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Proper physiological functioning of any cell type requires ordered chromatin organization. In this context, cohesin complex performs important functions preventing premature separation of sister chromatids after DNA replication. In partnership with CCCTC-binding factor, it ensures insulator activity to organize enhancers and promoters within regulatory chromatin. Homozygous mutations and dysfunction of individual cohesin proteins are embryonically lethal in humans and mice, which limits in vivo research work to embryonic stem cells and progenitors. Conditional alleles of cohesin complex proteins have been generated to investigate their functional roles in greater detail at later developmental stages. Thus, genome regulation enabled by action of cohesin proteins is potentially crucial in lineage cell development, including immune homeostasis. In this review, we provide current knowledge on the role of cohesin complex in leukocyte maturation and adaptive immunity. Conditional knockout and shRNA-mediated inhibition of individual cohesin proteins in mice demonstrated their importance in haematopoiesis, adipogenesis and inflammation. Notably, these effects occur rather through changes in transcriptional gene regulation than through expected cell cycle defects. This positions cohesin at the crossroad of immune pathways including NF-kB, IL-6, and IFNγ signaling. Cohesin proteins emerged as vital regulators at early developmental stages of thymocytes and B cells and after antigen challenge. Human genome-wide association studies are remarkably concordant with these findings and present associations between cohesin and rheumatoid arthritis, multiple sclerosis and HLA-B27 related chronic inflammatory conditions. Furthermore, bioinformatic prediction based on protein-protein interactions reveal a tight connection between the cohesin complex and immune relevant processes supporting the notion that cohesin will unearth new clues in regulation of autoimmunity.
Collapse
Affiliation(s)
- Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nina Oparina
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
23
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Blom M, Bredius RGM, van der Burg M. Future Perspectives of Newborn Screening for Inborn Errors of Immunity. Int J Neonatal Screen 2021; 7:ijns7040074. [PMID: 34842618 PMCID: PMC8628921 DOI: 10.3390/ijns7040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) programs continue to expand due to innovations in both test methods and treatment options. Since the introduction of the T-cell receptor excision circle (TREC) assay 15 years ago, many countries have adopted screening for severe combined immunodeficiency (SCID) in their NBS program. SCID became the first inborn error of immunity (IEI) in population-based screening and at the same time the TREC assay became the first high-throughput DNA-based test in NBS laboratories. In addition to SCID, there are many other IEI that could benefit from early diagnosis and intervention by preventing severe infections, immune dysregulation, and autoimmunity, if a suitable NBS test was available. Advances in technologies such as KREC analysis, epigenetic immune cell counting, protein profiling, and genomic techniques such as next-generation sequencing (NGS) and whole-genome sequencing (WGS) could allow early detection of various IEI shortly after birth. In the next years, the role of these technical advances as well as ethical, social, and legal implications, logistics and cost will have to be carefully examined before different IEI can be considered as suitable candidates for inclusion in NBS programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
25
|
Wolff ASB, Braun S, Husebye ES, Oftedal BE. B Cells and Autoantibodies in AIRE Deficiency. Biomedicines 2021; 9:1274. [PMID: 34572460 PMCID: PMC8466229 DOI: 10.3390/biomedicines9091274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare but severe monogenetic autoimmune endocrine disease caused by failure of the Autoimmune Regulator (AIRE). AIRE regulates the negative selection of T cells in the thymus, and the main pathogenic mechanisms are believed to be T cell-mediated, but little is known about the role of B cells. Here, we give an overview of the role of B cells in thymic and peripheral tolerance in APS-1 patients and different AIRE-deficient mouse models. We also look closely into which autoantibodies have been described for this disorder, and their implications. Based on what is known about B cell therapy in other autoimmune disorders, we outline the potential of B cell therapies in APS-1 and highlight the unresolved research questions to be answered.
Collapse
Affiliation(s)
- Anette S. B. Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| | - Sarah Braun
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Eystein S. Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
26
|
Yoo HW. Diverse etiologies, diagnostic approach, and management of primary adrenal insufficiency in pediatric age. Ann Pediatr Endocrinol Metab 2021; 26:149-157. [PMID: 34610702 PMCID: PMC8505038 DOI: 10.6065/apem.2142150.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
Primary adrenal insufficiency (PAI) in pediatric age is a rare, but potentially fatal condition caused by diverse etiologies including biochemical defects of steroid biosynthesis, developmental abnormalities of the adrenal gland, or reduced responsiveness to adrenocorticotropic hormone. Compared to adult PAI, pediatric PAI is more often the result of genetic (monogenic, syndromic disorders) than acquired conditions. During the past decade, rare monogenic disorders associated with PAI have helped unravel the underlying novel molecular genetic mechanism. The diagnosis of adrenal insufficiency in children and young infancy is often challenging, usually based on clinical suspicion and endocrine laboratory findings. Pediatric endocrinologists sometimes encounter therapeutic difficulty in finding the balance between undertreatment and overtreatment, determining how to optimize the dose over the patient's lifetime, and maximizing mimicry of normal cortisol secretion with glucocorticoid replacement therapy.
Collapse
Affiliation(s)
- Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea,Address for correspondence: Han-Wook Yoo Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympicro 43-gil, Songpa-gu, Seoul 05505, Korea
| |
Collapse
|