1
|
Watts SW, Flood ED, Thompson JM. Is the 5-hydroxytryptamine 7 Receptor Constitutively Active in the Vasculature? A Study in Veins/Vein. J Cardiovasc Pharmacol 2022; 80:314-322. [PMID: 35939654 PMCID: PMC9373064 DOI: 10.1097/fjc.0000000000001296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The 5-hydroxytryptamine 7 (5-HT 7 ) receptor is reported to have considerable constitutive activity when transfected into cells. Constitutive activity-receptor activity in the absence of known agonist-is important for understanding the contributions of a receptor to (patho)physiology. We test the hypothesis that the 5-HT 7 receptor possesses constitutive activity in a physiological situation. Isolated veins from male and female Sprague Dawley rats were used as models for measuring isometric force; the abdominal vena cava possesses a functional 5-HT 7 receptor that mediates relaxation, whereas the small mesenteric vein does not. Compounds reported to act as inverse agonists were investigated for their ability to cause contraction (moving a constitutively active relaxant receptor to an inactive state, removing relaxation). Compared with a vehicle control, clozapine, risperidone, ketanserin, and SB269970 caused no contraction in the isolated male abdominal vena cava. By contrast, methiothepin caused a concentration-dependent contraction of the male but not female abdominal vena cava, although with low potency (-log EC 50 [M] = 5.50 ± 0.45) and efficacy (∼12% of contraction to endothelin-1). Methiothepin-induced contraction was not reduced by the 5-HT 7 receptor antagonist (SB269970, 1 μM, not active in the vena cava). These same compounds showed little to no effect in the isolated mesenteric vein. We conclude that the 5-HT 7 receptor in the isolated veins of the Sprague Dawley rat does not possess constitutive activity. We raise the question of the physiological relevance of constitutive activity of this receptor important to such diverse physiological functions as sleep, circadian rhythm, temperature, and blood pressure regulation.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | | | | |
Collapse
|
2
|
Huang Q, Massey JC, Mińczuk K, Li J, Kundu BK. Non-invasive determination of blood input function to compute rate of myocardial glucose uptake from dynamic FDG PET images of rat heart in vivo: comparative study between the inferior vena cava and the left ventricular blood pool with spill over and partial volume corrections. Phys Med Biol 2019; 64:165010. [PMID: 31307015 DOI: 10.1088/1361-6560/ab3238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this work was to compute blood input function from the inferior vena cava (IVC) with partial volume (PV) corrections and compare to that obtained from the left ventricular blood pool (LVBP) with spill-over (SP) and PV corrections. These were then used to compute and validate rates of myocardial 2-deoxy-2-[18F]fluoro-D-glucose (FDG) uptake (Ki) from dynamic positron emission tomography (PET) images of rat hearts in vivo in comparison to that obtained from invasive arterial blood sampling. Whole body 60 min dynamic FDG PET/CT imaging of n = 8 control Wistar Kyoto (WKY) rats were performed using Albira trimodal PET/CT/SPECT scanner. Image derived blood input function (IDIF) obtained from IVC corrected for PV averaging (IVC-PV) and IDIF from the left ventricular blood pool (LVBP) with SP and PV corrections (LVBP-SP-PV) were computed. Next, computed Ki (indirect comparison) in a 5-parameter (using IVC-PV) and a 15-parameter (using LVBP-SP-PV) 3-compartment models in WKY rat hearts in vivo were compared to that obtained using arterial blood sampling reported in literature in control Spraque Dawley (SD) rats. Using IVC-PV in a three-compartment five-parameter model resulted in a ~46% deviation in the mean computed Ki compared to that obtained with LVBP-SP-PV in a three-compartment 15-parameter model with a ~57% deviation in the mean computed Ki. The mean computed Ki in WKY rat hearts using the above methods, however, did not differ significantly to that obtained from invasive arterial blood sampling in SD rat hearts (p = 0.91 for IVC-PV and p = 0.58 for LVBP-SP-PV). Hence, Ki obtained in WKY rat hearts with input curve from IVC (IVC-PV) in a dynamic FDG PET scan is comparatively more repetitive to that obtained from the LVBP (LVBP-SP-PV). Ki computed using both the methods, however, agree well with each other and that obtained using arterial blood sampling.
Collapse
Affiliation(s)
- Qiao Huang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States of America. Equal contribution
| | | | | | | | | |
Collapse
|
3
|
Seitz BM, Demireva EY, Xie H, Fink GD, Krieger-Burke T, Burke WM, Watts SW. 5-HT does not lower blood pressure in the 5-HT 7 knockout rat. Physiol Genomics 2019; 51:302-310. [PMID: 31125292 DOI: 10.1152/physiolgenomics.00031.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fall in mean arterial pressure (MAP) after 24 h of 5-HT infusion is associated with a dilation of the portal vein (PV) and abdominal inferior vena cava (Ab IVC); all events were blocked by the selective 5-HT7 receptor antagonist SB269970. Few studies have investigated the contribution of the 5-HT7 receptor in long-term cardiovascular control, and this requires an understanding of the chronic activation of the receptor. Using the newly created 5-HT7 receptor knockout (KO) rat, we presently test the hypothesis that continuous activation of the 5-HT7 receptor by 5-HT is necessary for the chronic (1 wk) depressor response and splanchnic venodilation. We also address if the 5-HT7 receptor contributes to endogenous cardiovascular regulation. Conscious MAP (radiotelemeter), splanchnic vessel diameter (ultrasound), and cardiac function (echocardiogram) were measured in ambulatory rats during multiday 5-HT infusion (25 μg·kg-1·min-1 via minipump) and after pump removal. 5-HT infusion reduced MAP and caused splanchnic venodilation of wild-type (WT) but not KO rats at any time point. The efficacy of 5-HT-induced contraction was elevated in the isolated abdominal inferior vena cava from the KO compared with WT rats, supporting loss of a relaxant receptor. Similarly, the efficacy of 5-HT causing an acute pressor response to higher doses of 5-HT in vivo was also increased in the KO vs. WT rat. Our work supports a novel mechanism for the cardiovascular effects of 5-HT, activation of 5-HT7 receptors mediating venodilation in the splanchnic circulation, which could prove useful in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Elena Y Demireva
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Huirong Xie
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William M Burke
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
4
|
Hundshammer C, Braeuer M, Müller CA, Hansen AE, Schillmaier M, Düwel S, Feuerecker B, Glaser SJ, Haase A, Weichert W, Steiger K, Cabello J, Schilling F, Hövener JB, Kjær A, Nekolla SG, Schwaiger M. Simultaneous characterization of tumor cellularity and the Warburg effect with PET, MRI and hyperpolarized 13C-MRSI. Am J Cancer Res 2018; 8:4765-4780. [PMID: 30279736 PMCID: PMC6160766 DOI: 10.7150/thno.25162] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023] Open
Abstract
Modern oncology aims at patient-specific therapy approaches, which triggered the development of biomedical imaging techniques to synergistically address tumor biology at the cellular and molecular level. PET/MR is a new hybrid modality that allows acquisition of high-resolution anatomic images and quantification of functional and metabolic information at the same time. Key steps of the Warburg effect-one of the hallmarks of tumors-can be measured non-invasively with this emerging technique. The aim of this study was to quantify and compare simultaneously imaged augmented glucose uptake and LDH activity in a subcutaneous breast cancer model in rats (MAT-B-III) and to study the effect of varying tumor cellularity on image-derived metabolic information. Methods: For this purpose, we established and validated a multimodal imaging workflow for a clinical PET/MR system including proton magnetic resonance (MR) imaging to acquire accurate morphologic information and diffusion-weighted imaging (DWI) to address tumor cellularity. Metabolic data were measured with dynamic [18F]FDG-PET and hyperpolarized (HP) 13C-pyruvate MR spectroscopic imaging (MRSI). We applied our workflow in a longitudinal study and analyzed the effect of growth dependent variations of cellular density on glycolytic parameters. Results: Tumors of similar cellularity with similar apparent diffusion coefficients (ADC) showed a significant positive correlation of FDG uptake and pyruvate-to-lactate exchange. Longitudinal DWI data indicated a decreasing tumor cellularity with tumor growth, while ADCs exhibited a significant inverse correlation with PET standard uptake values (SUV). Similar but not significant trends were observed with HP-13C-MRSI, but we found that partial volume effects and point spread function artifacts are major confounders for the quantification of 13C-data when the spatial resolution is limited and major blood vessels are close to the tumor. Nevertheless, analysis of longitudinal data with varying tumor cellularity further detected a positive correlation between quantitative PET and 13C-data. Conclusions: Our workflow allows the quantification of simultaneously acquired PET, MRSI and DWI data in rodents on a clinical PET/MR scanner. The correlations and findings suggest that a major portion of consumed glucose is metabolized by aerobic glycolysis in the investigated tumor model. Furthermore, we conclude that variations in cell density affect PET and 13C-data in a similar manner and correlations of longitudinal metabolic data appear to reflect both biochemical processes and tumor cellularity.
Collapse
|
5
|
Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. Eur J Nutr 2018; 58:1647-1658. [DOI: 10.1007/s00394-018-1709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
6
|
Seitz BM, Orer HS, Krieger-Burke T, Darios ES, Thompson JM, Fink GD, Watts SW. 5-HT causes splanchnic venodilation. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626072 DOI: 10.1152/ajpheart.00165.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 μg·kg-1·min-1) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure.NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT7 receptor, an in vitro observation (venorelaxation) with in vivo events (venodilation and fall in blood pressure). This supports the idea that splanchnic venodilation plays a role in blood pressure regulation.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Hakan S Orer
- Department of Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
7
|
Ayala-Lopez N, Thompson JM, Watts SW. Perivascular Adipose Tissue's Impact on Norepinephrine-Induced Contraction of Mesenteric Resistance Arteries. Front Physiol 2017; 8:37. [PMID: 28228728 PMCID: PMC5296360 DOI: 10.3389/fphys.2017.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT) can decrease vascular contraction to NE. We tested the hypothesis that metabolism and/or uptake of vasoactive amines by mesenteric PVAT (MPVAT) could affect NE-induced contraction of the mesenteric resistance arteries. Methods: Mesenteric resistance vessels (MRV) and MPVAT from male Sprague-Dawley rats were used. RT-PCR and Western blots were performed to detect amine metabolizing enzymes. The Amplex® Red Assay was used to quantify oxidase activity by detecting the oxidase reaction product H2O2 and the contribution of PVAT on the mesenteric arteries' contraction to NE was measured by myography. Results: Semicarbazide sensitive amine oxidase (SSAO) and monoamine oxidase A (MAO-A) were detected in MRV and MPVAT by Western blot. Addition of the amine oxidase substrates tyramine or benzylamine (1 mM) resulted in higher amine oxidase activity in the MRV, MPVAT, MPVAT's adipocyte fraction (AF), and the stromal vascular fraction (SVF). Inhibiting SSAO with semicarbazide (1 mM) decreased amine oxidase activity in the MPVAT and AF. Benzylamine-driven, but not tyramine-driven, oxidase activity in the MRV was reduced by semicarbazide. By contrast, no reduction in oxidase activity in all sample types was observed with use of the monoamine oxidase inhibitors clorgyline (1 μM) or pargyline (1 μM). Inhibition of MAO-A/B or SSAO individually did not alter contraction to NE. However, inhibition of both MAO and SSAO increased the potency of NE at mesenteric arteries with PVAT. Addition of MAO and SSAO inhibitors along with the H2O2 scavenger catalase reduced PVAT's anti-contractile effect to NE. Inhibition of the norepinephrine transporter (NET) with nisoxetine also reduced PVAT's anti-contractile effect to NE. Conclusions: PVAT's uptake and metabolism of NE may contribute to the anti-contractile effect of PVAT. MPVAT and adipocytes within MPVAT are a source of SSAO.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State UniversityEast Lansing, MI, USA
| | | | | |
Collapse
|
8
|
Watts SW. Oh, the places you'll go! My many colored serotonin (apologies to Dr. Seuss). Am J Physiol Heart Circ Physiol 2016; 311:H1225-H1233. [PMID: 27663771 PMCID: PMC5130493 DOI: 10.1152/ajpheart.00538.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/11/2016] [Indexed: 11/22/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] has a truly fascinating history in the cardiovascular world. Discovered in the blood, 5-HT has long been appropriately regarded as a vasoconstrictor. A multitude of in vitro studies of isolated vessels support that addition of 5-HT causes vascular contraction. In only a few cases was 5-HT a vasodilator. Moreover, the potency and threshold of 5-HT causing contraction is increased in arteries from hypertensive vs. normotensive subjects, both animal and human. As such, we and others have hypothesized that 5-HT would contribute to hypertension by elevating arterial tone. In stark contrast to these decades of findings, we observed that a chronic infusion of 5-HT into conscious rats caused a reduction in blood pressure and nearly normalized blood pressure of experimentally hypertensive rats. Going back to the early work of Irvine Page, one of the scientists who discovered 5-HT, reveals an early recognized but never understood ability of 5-HT to reduce systemic blood pressure. Our laboratory, in collaboration with colleagues around the world, has dedicated itself to understanding the mechanisms of 5-HT-induced reduction in blood pressure. This manuscript takes you through a brief history of the discovery of 5-HT, in vitro serotonergic pharmacology of blood vessels, in vivo work with 5-HT and our studies that suggests the venous vasculature, potentially in combination with small arterioles, may be important to the actions of 5-HT in reducing blood pressure. 5-HT has certainly ended up in a place I never expected it to go.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|