1
|
Montanari Borges B, Gama de Santana M, Willian Preite N, de Lima Kaminski V, Trentin G, Almeida F, Vieira Loures F. Extracellular vesicles from virulent P. brasiliensis induce TLR4 and dectin-1 expression in innate cells and promote enhanced Th1/Th17 response. Virulence 2024; 15:2329573. [PMID: 38511558 PMCID: PMC10962619 DOI: 10.1080/21505594.2024.2329573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Monique Gama de Santana
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
2
|
Kaminski VL, Borges BM, Santos BV, Preite NW, Calich VLG, Loures FV. MDSCs use a complex molecular network to suppress T-cell immunity in a pulmonary model of fungal infection. Front Cell Infect Microbiol 2024; 14:1392744. [PMID: 39035356 PMCID: PMC11257977 DOI: 10.3389/fcimb.2024.1392744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Background Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-10/metabolism
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Toll-Like Receptor 4/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Disease Models, Animal
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Mice, Inbred C57BL
- Paracoccidioidomycosis/immunology
- Paracoccidioides/immunology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- T-Lymphocytes, Regulatory/immunology
- Lung/immunology
- Lung/microbiology
- Signal Transduction
- Male
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Mice, Knockout
Collapse
Affiliation(s)
- Valéria Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Bianca Vieira Santos
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo – USP, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| |
Collapse
|
3
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
5
|
Kaminski VDL, Preite NW, Borges BM, Dos Santos BV, Calich VLG, Loures FV. The immunosuppressive activity of myeloid-derived suppressor cells in murine Paracoccidioidomycosis relies on Indoleamine 2,3-dioxygenase activity and Dectin-1 and TLRs signaling. Sci Rep 2023; 13:12391. [PMID: 37524886 PMCID: PMC10390561 DOI: 10.1038/s41598-023-39262-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bianca Vieira Dos Santos
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
6
|
Preite NW, Kaminski VDL, Borges BM, Calich VLG, Loures FV. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol 2023; 14:1039244. [PMID: 36776848 PMCID: PMC9909482 DOI: 10.3389/fimmu.2023.1039244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil,*Correspondence: Flávio Vieira Loures,
| |
Collapse
|
7
|
Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS, Akamatsu MA, Ho PL. Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Front Microbiol 2022; 13:1051698. [PMID: 36519163 PMCID: PMC9742253 DOI: 10.3389/fmicb.2022.1051698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.
Collapse
Affiliation(s)
- Fabiana Lauretti-Ferreira
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
9
|
Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103079. [PMID: 35630555 PMCID: PMC9147969 DOI: 10.3390/molecules27103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Amphotericin B (AMB) is an antifungal drug used for serious fungal infections. However, AMB has adverse reactions such as nephrotoxicity, which limit the clinical application of AMB alone or in combination with other antifungal drugs. Nano or micro drug delivery systems (DDS) have been proven to be effective in reducing the toxic and side effects of drugs. Further, the combination of AMB with other compounds with antifungal activity, such as curcumin (CM), may enhance the synergistic effects. Herein, AMB and CM were co-loaded into porous poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) to prepare AMB/CM-PLGA MPs. The AMB/CM-PLGA MPs showed a remarkably reduced hemolysis (62.2 ± 0.6%) compared to AMB (80.9 ± 1.1%). The nephrotoxicity of AMB/CM-PLGA MPs is significantly lower than that of AMB. In vitro, AMB/CM-PLGA MPs had better inhibitory effects on the adhesion and biofilm formation of Candida albicans compared with AMB. Experiments on mice infected with C. albicans showed that AMB/CM-PLGA MPs have a better therapeutic effect than AMB in vivo. In summary, AMB/CM-PLGA MPs may be a novel and promising therapeutic candidate for fungal infection.
Collapse
|
10
|
Scorzoni L, Alves de Paula e Silva AC, de Oliveira HC, Tavares dos Santos C, de Lacorte Singulani J, Akemi Assato P, Maria Marcos C, Teodoro Oliveira L, Ferreira Fregonezi N, Rossi DCP, Buffoni Roque da Silva L, Pelleschi Taborda C, Fusco-Almeida AM, Soares Mendes-Giannini MJ. In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein. J Fungi (Basel) 2021; 7:jof7010052. [PMID: 33451062 PMCID: PMC7828505 DOI: 10.3390/jof7010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.
Collapse
Affiliation(s)
- Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Ana Carolina Alves de Paula e Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Claudia Tavares dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Lariane Teodoro Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Nathália Ferreira Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Diego Conrado Pereira Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Leandro Buffoni Roque da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
11
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
12
|
Xue B, Huang J, Zhang H, Li B, Xu M, Zhang Y, Xie M, Li X. Micronized curcumin fabricated by supercritical CO2 to improve antibacterial activity against Pseudomonas aeruginosa. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1135-1143. [PMID: 32896157 DOI: 10.1080/21691401.2020.1815755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Baiji Xue
- The Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
- School of Basic Medical Sciences, Baicheng Medical College, Baicheng, PR China
| | - Jinxiang Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Haoxiang Zhang
- The Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bingliang Li
- Nan Shan School, Guangzhou Medical University, Guangzhou, PR China
| | - Man Xu
- The Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuelan Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Maobin Xie
- The Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, PR China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| |
Collapse
|
13
|
Firacative C, Khan A, Duan S, Ferreira-Paim K, Leemon D, Meyer W. Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence. J Fungi (Basel) 2020; 6:jof6030130. [PMID: 32784766 PMCID: PMC7558789 DOI: 10.3390/jof6030130] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Galleria mellonella larvae have been widely used as alternative non-mammalian models for the study of fungal virulence and pathogenesis. The larvae can be acquired in small volumes from worm farms, pet stores, or other independent suppliers commonly found in the United States and parts of Europe. However, in countries with no or limited commercial availability, the process of shipping these larvae can cause them stress, resulting in decreased or altered immunity. Furthermore, the conditions used to rear these larvae including diet, humidity, temperature, and maintenance procedures vary among the suppliers. Variation in these factors can affect the response of G. mellonella larvae to infection, thereby decreasing the reproducibility of fungal virulence experiments. There is a critical need for standardized procedures and incubation conditions for rearing G. mellonella to produce quality, unstressed larvae with the least genetic variability. In order to standardize these procedures, cost-effective protocols for the propagation and maintenance of G. mellonella larvae using an artificial diet, which has been successfully used in our own laboratory, requiring minimal equipment and expertise, are herein described. Examples for the application of this model in fungal pathogenicity and gene knockout studies as feasible alternatives for traditionally used animal models are also provided.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Studies in Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
| | - Aziza Khan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba 38025-440, Brazil
| | - Diana Leemon
- Agri Science Queensland, Department of Agriculture and Fisheries and Forestry, Brisbane 4102, QLD, Australia;
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Correspondence: ; Tel.: +61-2-86273430
| |
Collapse
|
14
|
Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie van Leeuwenhoek 2020; 113:593-604. [PMID: 31902009 DOI: 10.1007/s10482-019-01382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidiodomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The disease requires long and complicated treatment. The aim of this review is to address the fungal virulence factors that could be the target of the development of new drugs for PCM treatment. Virulence factors favoring the process of fungal infection and pathogenicity are considered as a microbial attribute associated with host susceptibility. P. brasiliensis has some known virulence factors which are 43 kDa glycoprotein (gp 43) which is an important fungal antigen, 70 kDa glycoprotein (gp 70), the carbohydrates constituting the fungal cell wall α-1,3, glucan and β-1,3-glucan, cell adhesion molecules and the presence of melanin pigments. The discovery and development of drugs that interact with these factors, such as inhibitors of β-1,3-glucan, reduced synthesis of gp 43, inhibitors of melanin production, is of great importance for the treatment of PCM. The study of virulence factors favors the understanding of pathogen-host relationships, aiming to evaluate the possibility of developing new therapeutic targets and mechanisms that these molecules play in the infectious process, favoring the design of a more specific treatment for this disease.
Collapse
|
15
|
Ferreira D, Silva AP, Nobrega FL, Martins IM, Barbosa-Matos C, Granja S, Martins SF, Baltazar F, Rodrigues LR. Rational Identification of a Colorectal Cancer Targeting Peptide through Phage Display. Sci Rep 2019; 9:3958. [PMID: 30850705 PMCID: PMC6408488 DOI: 10.1038/s41598-019-40562-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is frequently diagnosed at an advanced stage due to the absence of early clinical indicators. Hence, the identification of new targeting molecules is crucial for an early detection and development of targeted therapies. This study aimed to identify and characterize novel peptides specific for the colorectal cancer cell line RKO using a phage-displayed peptide library. After four rounds of selection plus a negative step with normal colorectal cells, CCD-841-CoN, there was an obvious phage enrichment that specifically bound to RKO cells. Cell-based enzyme-linked immunosorbent assay (ELISA) was performed to assess the most specific peptides leading to the selection of the peptide sequence CPKSNNGVC. Through fluorescence microscopy and cytometry, the synthetic peptide RKOpep was shown to specifically bind to RKO cells, as well as to other human colorectal cancer cells including Caco-2, HCT 116 and HCT-15, but not to the normal non-cancer cells. Moreover, it was shown that RKOpep specifically targeted human colorectal cancer cell tissues. A bioinformatics analysis suggested that the RKOpep targets the monocarboxylate transporter 1, which has been implicated in colorectal cancer progression and prognosis, proven through gene knockdown approaches and shown by immunocytochemistry co-localization studies. The peptide herein identified can be a potential candidate for targeted therapies for colorectal cancer.
Collapse
Affiliation(s)
- Débora Ferreira
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal.,MIT-Portugal Program, Lisbon, Portugal
| | - Ana P Silva
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Franklin L Nobrega
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Ivone M Martins
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra F Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Surgery Department, Coloproctology Unit, Braga Hospital, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ligia R Rodrigues
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057, Braga, Portugal. .,MIT-Portugal Program, Lisbon, Portugal.
| |
Collapse
|
16
|
Haney EF, Straus SK, Hancock REW. Reassessing the Host Defense Peptide Landscape. Front Chem 2019; 7:43. [PMID: 30778385 PMCID: PMC6369191 DOI: 10.3389/fchem.2019.00043] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Current research has demonstrated that small cationic amphipathic peptides have strong potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, and anti-inflammatories. Although traditionally termed antimicrobial peptides (AMPs) these additional roles have prompted a shift in terminology to use the broader term host defense peptides (HDPs) to capture the multi-functional nature of these molecules. In this review, we critically examined the role of AMPs and HDPs in infectious diseases and inflammation. It is generally accepted that HDPs are multi-faceted mediators of a wide range of biological processes, with individual activities dependent on their polypeptide sequence. In this context, we explore the concept of chemical space as it applies to HDPs and hypothesize that the various functions and activities of this class of molecule exist on independent but overlapping activity landscapes. Finally, we outline several emerging functions and roles of HDPs and highlight how an improved understanding of these processes can potentially be leveraged to more fully realize the therapeutic promise of HDPs.
Collapse
Affiliation(s)
- Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Singulani JL, Scorzoni L, de Oliveira HC, Marcos CM, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. Applications of Invertebrate Animal Models to Dimorphic Fungal Infections. J Fungi (Basel) 2018; 4:jof4040118. [PMID: 30347646 PMCID: PMC6308930 DOI: 10.3390/jof4040118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Dimorphic fungi can be found in the yeast form during infection and as hyphae in the environment and are responsible for a large number of infections worldwide. Invertebrate animals have been shown to be convenient models in the study of fungal infections. These models have the advantages of being low cost, have no ethical issues, and an ease of experimentation, time-efficiency, and the possibility of using a large number of animals per experiment compared to mammalian models. Invertebrate animal models such as Galleria mellonella, Caenorhabditis elegans, and Acanthamoebacastellanii have been used to study dimorphic fungal infections in the context of virulence, innate immune response, and the efficacy and toxicity of antifungal agents. In this review, we first summarize the features of these models. In this aspect, the growth temperature, genome sequence, availability of different strains, and body characteristics should be considered in the model choice. Finally, we discuss the contribution and advances of these models, with respect to dimorphic fungi Paracoccidioides spp., Histoplasma capsulatum, Blastomyces dermatitidis, Sporothrix spp., and Talaromyces marneffei (Penicillium marneffei).
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Haroldo C de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Caroline M Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Patricia A Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | | |
Collapse
|
18
|
Sun S, Zhang D, Zhang J, Huang C, Xiong Y. High activity chimeric snake gamma-type phospholipase A2 inhibitor created by DNA shuffling. Toxicon 2018; 153:32-38. [DOI: 10.1016/j.toxicon.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
19
|
Borman AM. Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence 2017; 9:9-12. [PMID: 28933671 PMCID: PMC5955190 DOI: 10.1080/21505594.2017.1382799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrew M Borman
- a UK National Mycology Reference Laboratory (MRL) , Public Health England South-West , Bristol , UK
| |
Collapse
|
20
|
Tristão FSM, Rocha FA, Carlos D, Ketelut-Carneiro N, Souza COS, Milanezi CM, Silva JS. Th17-Inducing Cytokines IL-6 and IL-23 Are Crucial for Granuloma Formation during Experimental Paracoccidioidomycosis. Front Immunol 2017; 8:949. [PMID: 28871251 PMCID: PMC5566564 DOI: 10.3389/fimmu.2017.00949] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Paracoccidioidomycosis (PCM), a chronic granulomatous disease caused by the thermally dimorphic fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii, has the highest mortality rate among systemic mycosis. The T helper 1-mediated immunity is primarily responsible for acquired resistance during P. brasiliensis infection, while susceptibility is associated with Th2 occurrence. Th17 is a population of T CD4+ cells that, among several chemokines and cytokines, produces IL-17A and requires the presence of IL-1, IL-6, and TGF-β for differentiation in mice and IL-23 for its maintenance. Th17 has been described as an arm of the immune system that enhances host protection against several bacterial and fungal infections, as Pneumocystis carinii and Candida albicans. In this study, we aimed to evaluate the Th17 immune response and the role of Th17-associated cytokines (IL-6, IL-23, and IL-17A) during experimental PCM. First, we observed that P. brasiliensis infection [virulent yeast strain 18 of P. brasiliensis (Pb18)] increased the IL-17A production in vitro and all the evaluated Th17-associated cytokines in the lung tissue from C57BL/6 wild-type mice. In addition, the deficiency of IL-6, IL-23, or IL-17 receptor A (IL-17RA) impaired the compact granuloma formation and conferred susceptibility during infection, associated with reduced tumor necrosis factor-α, IFN-γ, and inducible nitric oxide synthase enzyme expression. Our data suggest that IL-6 production by bone marrow-derived macrophages (BMDMs) is important to promote the Th17 differentiation during Pb18 infection. In accordance, the adoptive transfer of BMDMs from C57BL/6 to infected IL-6-/- or IL-17RA-/- mice reduced the fungal burden in the lungs compared to nontransferred mice and reestablished the pulmonary granuloma formation. Taken together, these results suggest that Th17-associated cytokines are involved in the modulation of immune response and granuloma formation during experimental PCM.
Collapse
Affiliation(s)
- Fabrine Sales Massafera Tristão
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Agostini Rocha
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Oliveira Silva Souza
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|