1
|
Nakamura A, Mabuchi T. Molecular Insights into Fluoride Ion Uptake and Selectivity in the CLCF Fluoride/Proton Antiporter. J Phys Chem B 2025; 129:4005-4011. [PMID: 40229944 PMCID: PMC12035849 DOI: 10.1021/acs.jpcb.4c08174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
In this study, we investigated the effect of the protonation state of glutamate E118 (Gluex) and glutamate E318 (Gluin) on fluoride ion uptake and selectivity in the CLCF F-/H+ antiporter using molecular dynamics simulations. Analyses of pore size and the potential of mean force (PMF) revealed that fluoride uptake is facilitated under the deprotonated E118 and protonated E318 state, consistent with the fluoride uptake state proposed in the original windmill mechanism. In this state, an increased pore size reduces the energy barrier, promoting fluoride transport from the intracellular solution to the intracellular binding site (Scen). Interestingly, we also observed a helix-to-coil transition (residues 74-87) in the presence of chloride at Scen, which enhances chloride dehydration and stabilizes its interaction with the coil structure. This conformational change likely impedes chloride transport, contributing to fluoride ion selectivity. Our findings confirm that fluoride ion selectivity is enhanced in the E118_E318p state, reinforcing its role in the original windmill mechanism. Additionally, we propose that refining the fluoride uptake process in the modified windmill mechanism could lead to a comparable selectivity mechanism, ultimately converging on a unified fluoride-selective uptake mechanism that integrates key aspects of both pathways.
Collapse
Affiliation(s)
- Akihiro
Y. Nakamura
- Graduate
School of Engineering, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute
of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takuya Mabuchi
- Institute
of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Fu Q, Ma Z, Gao J. Biomimetic ion channels with subnanometer sizes for ion sieving: a mini-review. NANOSCALE 2025; 17:9021-9039. [PMID: 40127218 DOI: 10.1039/d5nr00758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The remarkable ion selectivity of biological systems has inspired the development of artificial ion channels with Ångström-scale precision, expanding their potential applications in ion separation, energy conversion, and water purification. This mini-review systematically examines fundamental ion-sieving mechanisms operating at the subnanoscale, highlighting advanced fabrication strategies involving synthetic ion channels on lipid bilayers and solid-state ion channels. We further explore membrane material innovations spanning zero-dimensional nanopores to three-dimensional crystalline frameworks, emphasizing structure-function relationships in channel design. The discussion concludes with critical perspectives on scalability challenges and future research directions, outlining pathways toward next-generation sustainable ion sieving technologies.
Collapse
Affiliation(s)
- Qianqian Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Zhaoyu Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
3
|
Aljameeli AM, Alsuwayt B, Bharati D, Gohri V, Mohite P, Singh S, Chidrawar V. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05243-w. [PMID: 40038149 DOI: 10.1007/s11010-025-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.
Collapse
Affiliation(s)
- Ahmed M Aljameeli
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Deepak Bharati
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Vaishnavi Gohri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India.
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vijay Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, TSIIC, Polepally, Jadcherla, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
4
|
He Y, Qiu Y, Xiong Y, Shen Y, Jiang K, Yi H, Huang P, Zhu Y, Zhu M, Zhou M, Hong D, Tan D. Clinical and genetic characteristics of myotonia congenita in Chinese population. Channels (Austin) 2024; 18:2349823. [PMID: 38720415 PMCID: PMC11086022 DOI: 10.1080/19336950.2024.2349823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024] Open
Abstract
Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.
Collapse
Affiliation(s)
- Yuting He
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hancun Yi
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
6
|
Feng Y, Fu H, Zhang X, Liu S, Wei X. Lysosome toxicities induced by nanoparticle exposure and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117215. [PMID: 39427537 DOI: 10.1016/j.ecoenv.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Nanoparticles (NPs) have achieved extensive utilization across diverse domains, highlighting their unavoidable impact on health. The internalization of NPs carries the potential to trigger inflammation and instigate ailments by selectively targeting lysosomes, thereby posing significant public health concern. Lysosomes, essential organelles responsible for the degradation of biological macromolecules within cells, are crucial for cellular homeostasis and participate in key biological processes, including inter-organelle communication, signal transduction, plasma membrane repair, and immune responses. Consequently, a thorough understanding of lysosomal function is essential for elucidating the mechanisms underlying NPs-mediated toxicity. NPs-induced lysosomal dysfunction primarily involves disruptions in the acidic microenvironment of lysosomes, lysosomal membrane rupture, and membrane permeabilization. Additionally, potential molecular mechanisms contributing to the increased risk of lysosomal damage caused by NPs have been described, particularly concerning ion channel proteins such as V-ATPase, TRPM2, CLC-7, and LAMPs. This review aims to detail the alterations in lysosomal functionality induced by NPs and their associated mechanisms. By providing a theoretical framework, this review aims to support the potential application of NPs in biomedical fields.
Collapse
Affiliation(s)
- Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongying Fu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Suqin Liu
- Centre for Reproductive Medicine, Qingdao Woman and Children's Hospital, Qingdao University, Qingdao, China.
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Reany O, Romero-Ruiz M, Khurana R, Mondal P, Keinan E, Bayley H. Stochastic Sensing of Chloride Anions Using an α-Hemolysin Pore with a semiaza-Bambusuril Adapter. Angew Chem Int Ed Engl 2024; 63:e202406719. [PMID: 38850111 DOI: 10.1002/anie.202406719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Pores containing molecular adapters provide internal selective binding sites, thereby allowing the stochastic sensing of analytes. Herein, we demonstrate that semiaza-bambusuril (BU) acts as a non-covalent molecular adapter when lodged within the lumen of the wild-type α-hemolysin (WT-αHL) protein pore. Because the bambusurils are recognized as anion receptors, the anion binding site within the adapter-nanopore complex allows the detection of chloride anions, thus converting a non-selective pore into an anion sensor.
Collapse
Affiliation(s)
- Ofer Reany
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Mercedes Romero-Ruiz
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Raman Khurana
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Pravat Mondal
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200001, Israel
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Singh A, Torres-Huerta A, Meyer F, Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem Sci 2024:d4sc04644g. [PMID: 39268212 PMCID: PMC11385378 DOI: 10.1039/d4sc04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Motivated by their potential biological applications, anion receptors are increasingly explored as transmembrane transporters for anions. The vast majority of the reported anion transporters rely on hydrogen bonding to interact with the anions. However, in recent decades, halogen, chalcogen, and pnictogen bonding, collectively referred to as sigma-hole interactions, have received increasing attention. Most research efforts on these interactions have focused on crystal engineering, anion sensing, and organocatalysis. In recent years, however, these sigma-hole interactions have also been explored more widely in synthetic anion transporters. This perspective shows why synthetic transporters are promising candidates for biological applications. We provide a comprehensive review of the compounds used to transport anions across membranes, with a particular focus on how the binding atoms and molecular design affect the anion transport activity and selectivity. Few cell studies have been reported for these transporters based on sigma-hole interactions and we highlight the critical need for further biological studies on the toxicity, stability, and deliverability of these compounds to explore their full potential in biological applications, such as the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Franck Meyer
- Université libre de Bruxelles (ULB), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy Boulevard du Triomphe 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| |
Collapse
|
9
|
Omori S, Hanazono Y, Nishi H, Kinoshita K. The role of the STAS domain in SLC26A9 for chloride ion transporter function. Biophys J 2024; 123:1751-1762. [PMID: 38773769 PMCID: PMC11214054 DOI: 10.1016/j.bpj.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/25/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
The anion exchanger solute carrier family 26 (SLC26)A9, consisting of the transmembrane (TM) domain and the cytoplasmic STAS domain, plays an essential role in regulating chloride transport across cell membranes. Recent studies have indicated that C-terminal helices block the entrance of the putative ion transport pathway. However, the precise functions of the STAS domain and C-terminal helix, as well as the underlying molecular mechanisms governing the transport process, remain poorly understood. In this study, we performed molecular dynamics simulations of three distinct models of human SLC26A9, full-length, STAS domain removal (ΔSTAS), and C-terminus removal (ΔC), to investigate their conformational dynamics and ion-binding properties. Stable binding of ions to the binding sites was exclusively observed in the ΔC model in these simulations. Comparing the full-length and ΔC simulations, the ΔC model displayed enhanced motion of the STAS domain. Furthermore, comparing the ΔSTAS and ΔC simulations, the ΔSTAS simulation failed to exhibit stable ion bindings to the sites despite the absence of the C-terminus blocking the ion transmission pathway in both systems. These results suggest that the removal of the C-terminus not only unblocks the access of ions to the permeation pathway but also triggers STAS domain motion, gating the TM domain to promote ions' entry into their binding site. Further analysis revealed that the asymmetric motion of the STAS domain leads to the expansion of the ion permeation pathway within the TM domain, resulting in the stiffening of the flexible TM12 helix near the ion-binding site. This structural change in the TM12 helix stabilizes chloride ion binding, which is essential for SLC26A9's alternate-access mechanism. Overall, our study provides new insights into the molecular mechanisms of SLC26A9 transport and may pave the way for the development of novel treatments for diseases associated with dysregulated ion transport.
Collapse
Affiliation(s)
- Satoshi Omori
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuya Hanazono
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan; Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hafumi Nishi
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan; Faculty of Core Research, Ochanomizu University, Bunkyo-ku, Tokyo, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
11
|
Rajappa S, Krishnamurthy P, Huang H, Yu D, Friml J, Xu J, Kumar PP. The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress. Nat Commun 2024; 15:3978. [PMID: 38729926 PMCID: PMC11087495 DOI: 10.1038/s41467-024-48234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.
Collapse
Affiliation(s)
- Sivamathini Rajappa
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore: Level 5, Centre for Life Sciences, 28 Medical Drive, Singapore, 117456, Singapore
- Cardiovascular Diseases Program, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore, 117599, Singapore
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore: Level 5, Centre for Life Sciences, 28 Medical Drive, Singapore, 117456, Singapore
- Cardiovascular Diseases Program, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore, 117599, Singapore
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria) Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jian Xu
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Huygens Building, Heyendaalseweg 135, 6500 AJ, Nijmegen, The Netherlands
| | - Prakash P Kumar
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
12
|
Hong JM, Gerard-O'Riley RL, Acton D, Alam I, Econs MJ, Bruzzaniti A. The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction. Calcif Tissue Int 2024; 114:430-443. [PMID: 38483547 PMCID: PMC11239147 DOI: 10.1007/s00223-024-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.
Collapse
Affiliation(s)
- Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Asgharpour S, Chi LA, Spehr M, Carloni P, Alfonso-Prieto M. Fluoride Transport and Inhibition Across CLC Transporters. Handb Exp Pharmacol 2024; 283:81-100. [PMID: 36042142 DOI: 10.1007/164_2022_593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Chloride Channel (CLC) family includes proton-coupled chloride and fluoride transporters. Despite their similar protein architecture, the former exchange two chloride ions for each proton and are inhibited by fluoride, whereas the latter efficiently transport one fluoride in exchange for one proton. The combination of structural, mutagenesis, and functional experiments with molecular simulations has pinpointed several amino acid changes in the permeation pathway that capitalize on the different chemical properties of chloride and fluoride to fine-tune protein function. Here we summarize recent findings on fluoride inhibition and transport in the two prototypical members of the CLC family, the chloride/proton transporter from Escherichia coli (CLC-ec1) and the fluoride/proton transporter from Enterococcus casseliflavus (CLCF-eca).
Collapse
Affiliation(s)
- Somayeh Asgharpour
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - L América Chi
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
| | - Marc Spehr
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Paolo Carloni
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
- Department of Physics, RWTH Aachen University, Aachen, Germany.
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Agrawal M, Singh CV. Sensorineural Hearing Loss in Patients With Chronic Kidney Disease: A Comprehensive Review. Cureus 2023; 15:e48244. [PMID: 38054127 PMCID: PMC10694477 DOI: 10.7759/cureus.48244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
This article aims to ascertain the prevalence of loss of hearing in patients with chronic kidney disease (CKD) and also to examine potential causes of sensorineural hearing loss (SNHL) in patients suffering from CKD. It has been discovered in recent years that there is a relationship between the occurrence of SNHL and CKD. Nowadays many people are suffering from CKD. These patients deal with several otorhinolaryngological issues, such as SNHL, candidiasis, epistaxis, halitosis, dysgeusia, xerostomia, and lip and thyroid malignancies. One of the most frequent otorhinolaryngological complications is audiovestibular system impairment. There are various proposed mechanisms for the appearance of loss of hearing in people suffering from CKD. The kidney and the inner ear have multiple functional and structural similarities, which may be the cause of these problems in CKD patients. In addition, changes in the homeostasis of water and electrolytes can affect the endolymphatic fluid and result in endolymphatic hydrops. Finally, some medications, like aminoglycosides and loop diuretics, are well known for their ototoxicity and are utilized to treat patients with CKD. Only a small number of population-based research have so far been able to show a connection between CKD and audiovestibular system impairment. Some investigation has shown that CKD patients are more likely than healthy people to experience vestibular impairment. The quality of life of a patient can be reduced by hearing loss. People with hearing loss experience communication issues in daily life, which negatively affects their cognitive and psychosocial functioning. Social isolation and a poor quality of life in terms of health can all result from hearing loss. In addition, decreased renal function has also been linked to poor quality of life, hospitalization, and cognitive dysfunction.
Collapse
Affiliation(s)
- Manasi Agrawal
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Chandra Veer Singh
- Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Li S, Zhang W, Liang P, Zhu M, Zheng B, Zhou W, Wang C, Zhao X. Novel variants in the CLCN4 gene associated with syndromic X-linked intellectual disability. Front Neurol 2023; 14:1096969. [PMID: 37789889 PMCID: PMC10542403 DOI: 10.3389/fneur.2023.1096969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Objective The dysfunction of the CLCN4 gene can lead to X-linked intellectual disability and Raynaud-Claes syndrome (MRXSRC), characterized by severe cognitive impairment and mental disorders. This study aimed to investigate the genetic defects and clinical features of Chinese children with CLCN4 variants and explore the effect of mutant ClC-4 on the protein expression level and subcellular localization through in vitro experiments. Methods A total of 401 children with intellectual disabilities were screened for genetic variability using whole-exome sequencing (WES). Clinical data, including age, sex, perinatal conditions, and environmental exposure, were collected. Cognitive, verbal, motor, and social behavioral abilities were evaluated. Candidate variants were verified using Sanger sequencing, and their pathogenicity and conservation were analyzed using in silico prediction tools. Protein expression and localization of mutant ClC-4 were measured using Western blotting (WB) and immunofluorescence microscopy. The impact of a splice site variant was assessed with a minigene assay. Results Exome analysis identified five rare CLCN4 variants in six unrelated patients with intellectual disabilities, including two recurrent heterozygous de novo missense variants (p.D89N and p.A555V) in three female patients, and two hemizygous missense variants (p.N141S and p.R694Q) and a splicing variant (c.1390-12T > G) that are maternally inherited in three male patients. The p.N141S variant and the splicing variant c.1390-12(T > G were novel, while p.R694Q was identified in two asymptomatic heterozygous female patients. The six children with CLCN4 variants exhibited a neurodevelopmental spectrum disease characterized by intellectual disability (ID), delayed speech, autism spectrum disorders (ASD), microcephaly, hypertonia, and abnormal imaging findings. The minigene splicing result indicated that the c.1390-12T > G did not affect the splicing of CLCN4 mRNA. In vitro experiments showed that the mutant protein level and localization of mutant protein are similar to the wild type. Conclusion The study identified six probands with CLCN4 gene variants associated with X-linked ID. It expanded the gene and phenotype spectrum of CLCN4 variants. The bioinformatic analysis supported the pathogenicity of CLCN4 variants. However, these CLCN4 gene variants did not affect the ClC-4 expression levels and protein location, consistent with previous studies. Further investigations are necessary to investigate the pathogenetic mechanism.
Collapse
Affiliation(s)
- Sinan Li
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Piao Liang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Lee D, Hong JH. Modulation of Lysosomal Cl - Mediates Migration and Apoptosis through the TRPML1 as a Lysosomal Cl - Sensor. Cells 2023; 12:1835. [PMID: 37508500 PMCID: PMC10378694 DOI: 10.3390/cells12141835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes are responsible for protein degradation and clearance in cellular recycling centers. It has been known that the lysosomal chloride level is enriched and involved in the intrinsic lysosomal function. However, the mechanism by which chloride levels can be sensed and that of the chloride-mediated lysosomal function is unknown. In this study, we verified that reduced chloride levels acutely induced lysosomal calcium release through TRPML1 and lysosomal repositioning toward the juxtanuclear region. Functionally, low chloride-induced lysosomal calcium release attenuated cellular migration. In addition, spontaneous exposure to low chloride levels dysregulated lysosomal biogenesis and subsequently induced delayed migration and promoted apoptosis. Two chloride-sensing GXXXP motifs in the TRPML1 were identified. Mutations in the GXXXP motif of TRPML1 did not affect chloride levels, and there were no changes in migratory ability. In this study, we demonstrated that the depletion of chloride induces reformation of the lysosomal calcium pool and subsequently dysregulated cancer progression, which will assist in improving therapeutic strategies for lysosomal accumulation-associated diseases or cancer cell apoptosis.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jeong Hee Hong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
17
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
19
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
20
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
21
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
22
|
Nedelyaeva OI, Popova LG, Khramov DE, Volkov VS, Balnokin YV. Chloride Channel Family in the Euhalophyte Suaeda altissima (L.) Pall: Cloning of Novel Members SaCLCa2 and SaCLCc2, General Characterization of the Family. Int J Mol Sci 2023; 24:ijms24020941. [PMID: 36674457 PMCID: PMC9867446 DOI: 10.3390/ijms24020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
CLC family genes, comprising anion channels and anion/H+ antiporters, are widely represented in nearly all prokaryotes and eukaryotes. CLC proteins carry out a plethora of functions at the cellular level. Here the coding sequences of the SaCLCa2 and SaCLCc2 genes, homologous to Arabidopsis thaliana CLCa and CLCc, were cloned from the euhalophyte Suaeda altissima (L.) Pall. Both the genes cloned belong to the CLC family as supported by the presence of the key conserved motifs and glutamates inherent for CLC proteins. SaCLCa2 and SaCLCc2 were heterologously expressed in Saccharomyces cerevisiae GEF1 disrupted strain, Δgef1, where GEF1 encodes the only CLC family protein, the Cl− transporter Gef1p, in undisrupted strains of yeast. The Δgef1 strain is characterized by inability to grow on YPD yeast medium containing Mn2+ ions. Expression of SaCLCa2 in Δgef1 cells growing on this medium did not rescue the growth defect phenotype of the mutant. However, a partial growth restoration occurred when the Δgef1 strain was transformed by SaCLCa2(C544T), the gene encoding protein in which proline, specific for nitrate, was replaced with serine, specific for chloride, in the selectivity filter. Unlike SaCLCa2, expression of SaCLCc2 in Δgef1 resulted in a partial growth restoration under these conditions. Analysis of SaCLCa2 and SaCLCc2 expression in the euhalophyte Suaeda altissima (L.) Pall by quantitative real-time PCR (qRT-PCR) under different growth conditions demonstrated stimulation of SaCLCa2 expression by nitrate and stimulation of SaCLCc2 expression by chloride. The results of yeast complementation assay, the presence of both the “gating” and “proton” glutamates in aa sequences of both the proteins, as well results of the gene expression in euhalophyte Suaeda altissima (L.) Pall suggest that SaCLCa2 and SaCLCc2 function as anion/H+ antiporters with nitrate and chloride specificities, respectively. The general bioinformatic overview of seven CLC genes cloned from euhalophyte Suaeda altissima is given, together with results on their expression in roots and leaves under different levels of salinity.
Collapse
|
23
|
Hodin J, Lind C, Marmagne A, Espagne C, Bianchi MW, De Angeli A, Abou-Choucha F, Bourge M, Chardon F, Thomine S, Filleur S. Proton exchange by the vacuolar nitrate transporter CLCa is required for plant growth and nitrogen use efficiency. THE PLANT CELL 2023; 35:318-335. [PMID: 36409008 PMCID: PMC9806559 DOI: 10.1093/plcell/koac325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.
Collapse
Affiliation(s)
- Julie Hodin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, F-75205 Paris Cedex 13, France
| | - Christof Lind
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Anne Marmagne
- AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, 78000 Versailles, France
| | - Christelle Espagne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Michele Wolfe Bianchi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Université Paris-Est-Créteil-Val-de-Marne, 94010 Creteil Cedex, France
| | - Alexis De Angeli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fadi Abou-Choucha
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fabien Chardon
- AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, 78000 Versailles, France
| | - Sebastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Sophie Filleur
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, F-75205 Paris Cedex 13, France
| |
Collapse
|
24
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Wang Z, Choi K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front Physiol 2023; 14:1122444. [PMID: 36935741 PMCID: PMC10017882 DOI: 10.3389/fphys.2023.1122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Chloride homeostasis is critical in the physiological functions of the central nervous system (CNS). Its concentration is precisely regulated by multiple ion-transporting proteins such as chloride channels and transporters that are widely distributed in the brain cells, including neurons and glia. Unlike ion transporters, chloride channels provide rapid responses to efficiently regulate ion flux. Some of chloride channels are also permeable to selected organic anions such as glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and neuroinhibitory functions while gating. Dysregulated chloride channels are implicated in neurological disorders, e.g., ischemia and neuroinflammation. Modulation of chloride homeostasis through chloride channels has been suggested as a potential therapeutic approach for neurological disorders. The drug design for CNS diseases is challenging because it requires the therapeutics to traverse the blood-brain-barrier. Small molecules are a well-established modality with better cell permeability due to their lower molecular weight and flexibility for structure optimization compared to biologics. In this article, we describe the important roles of chloride homeostasis in each type of brain cells and introduce selected chloride channels identified in the CNS. We then discuss the contribution of their dysregulations towards the pathogenesis of neurological disorders, emphasizing the potential of targeting chloride channels as a therapeutic strategy for CNS disease treatment. Along with this literature survey, we summarize the small molecules that modulate chloride channels and propose the potential strategy of optimizing existing drugs to brain-penetrants to support future CNS drug discovery.
Collapse
|
26
|
De novo CLCN3 variants affecting Gly327 cause severe neurodevelopmental syndrome with brain structural abnormalities. J Hum Genet 2022; 68:291-298. [PMID: 36536096 DOI: 10.1038/s10038-022-01106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
A recent study revealed that monoallelic missense or biallelic loss-of-function variants in the chloride voltage-gated channel 3 (CLCN3) cause neurodevelopmental disorders resulting in brain abnormalities. Functional studies suggested that some missense variants had varying gain-of-function effects on channel activity. Meanwhile, two patients with homozygous frameshift variants showed severe neuropsychiatric disorders and a range of brain structural abnormalities. Here we describe two patients with de novo CLCN3 variants affecting the same amino acid, Gly327 (p.(Gly327Ser) and p.(Gly327Asp)). They showed severe neurological phenotypes including global developmental delay, intellectual disability, hypotonia, failure to thrive, and various brain abnormalities. They also presented with characteristic brain and ophthalmological abnormalities, hippocampal and retinal degradation, which were observed in patients harboring homozygous loss-of-function variants. These findings were also observed in CLCN3-deficient mice, indicating that the monoallelic missense variant may also have a dominant negative effect. This study will expand the phenotypic spectrum of CLCN3-related disorders.
Collapse
|
27
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
28
|
Dent Disease Type 1: Still an Under-Recognized Renal Proximal Tubulopathy: A Case Report. REPORTS 2022. [DOI: 10.3390/reports5040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dent disease is a rare renal tubular disorder that appears almost exclusively in males. The diagnosis is still challenging, and therefore Dent disease is occasionally misdiagnosed. We report a case of a 45-year-old man with Dent disease who developed renal failure. Since the age of 7 months, he persistently exhibited proteinuria. At the age of 24 years, he underwent kidney biopsy, which revealed focal segmental glomerulosclerosis. The patient’s brother was found to have proteinuria since he was 2 years old. At the age of 45 years, the patient was transferred to a tertiary care nephrologist, and Dent disease was suspected. Genetic testing revealed a CLCN5 mutation. We highlight the broad spectrum of clinical manifestations in Dent disease and the importance of having a high clinical suspicion to attain a definitive diagnosis. Furthermore, future research regarding the clinical course of the disease, prognosis, and effective treatment options is needed.
Collapse
|
29
|
Stark RJ, Nguyen HN, Bacon MK, Rohrbough JC, Choi H, Lamb FS. Chloride Channel-3 (ClC-3) Modifies the Trafficking of Leucine-Rich Repeat-Containing 8A (LRRC8A) Anion Channels. J Membr Biol 2022; 256:125-135. [PMID: 36322172 PMCID: PMC10085862 DOI: 10.1007/s00232-022-00271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.
Collapse
Affiliation(s)
- Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Matthew K Bacon
- Department of Pediatrics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA.
| |
Collapse
|
30
|
Ion Channels in Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14194733. [PMID: 36230654 PMCID: PMC9564232 DOI: 10.3390/cancers14194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Uterine or endometrial cancer is one of the most common types of cancer among the female population. Different alterations of molecules are related to many types of cancer. Some molecules called ion channels have been described as involved in the development of cancer, including endometrial cancer. We review the scientific evidence about the involvement of the ion channels in endometrial cancer and how some treatments can be developed with these molecules as a target. Even though they are involved in the progression of endometrial cancer, since they are present throughout the whole body, some possible treatments based on these could be studied. Abstract Uterine or endometrial cancer (EC) is the sixth most common neoplasia among women worldwide. Cancer can originate from a myriad of causes, and increasing evidence suggests that ion channels (IC) play an important role in the process of carcinogenesis, taking part in many pathways such as self-sufficiency in growth signals, proliferation, evasion of programmed cell death (apoptosis), angiogenesis, cell differentiation, migration, adhesion, and metastasis. Hormones and growth factors are well-known to be involved in the development and/or progression of many cancers and can also regulate some ion channels and pumps. Since the endometrium is responsive and regulated by these factors, the ICs could make an important contribution to the development and progression of endometrial cancer. In this review, we explore what is beyond (ion) flow regulation by investigating the role of the main families of ICs in EC, including as possible targets for EC treatment.
Collapse
|
31
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
32
|
Wang G, Nauseef WM. Neutrophil dysfunction in the pathogenesis of cystic fibrosis. Blood 2022; 139:2622-2631. [PMID: 35213685 PMCID: PMC9053701 DOI: 10.1182/blood.2021014699] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) figure prominently in host defense against infection and in noninfectious inflammation. Mobilized early in an inflammatory response, PMNs mediate immediate cellular defense against microbes and orchestrate events that culminate in cessation of inflammation and restoration of homeostasis. Failure to terminate the inflammatory response and its causes can fuel exuberant inflammation characteristic of many human diseases, including cystic fibrosis (CF), an autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator. CF affects multiple end organs, with persistent bacterial infection and chronic neutrophilic inflammation in airways predominating the clinical picture. To match the diverse microbial challenges that they may encounter, PMNs possess a variety of antimicrobial systems to slow or kill invading microorganisms confined in their phagosomes. Prominent among PMN defense systems is their ability to generate hypochlorous acid, a potent microbicide, by reacting oxidants generated by the NADPH oxidase with myeloperoxidase (MPO) released from azurophilic granules in the presence of chloride (Cl-). Products of the MPO-H2O2-Cl system oxidize susceptible biomolecules and support robust antimicrobial action against many, but not all, potential human pathogens. Underscoring that the MPO-H2O2-Cl system is integral to optimal host defense and proper regulation of inflammation, individuals with defects in any component of this system, as seen in chronic granulomatous disease or MPO deficiency, incur increased rates or severity of infection and signs of dysregulated inflammatory responses. We focus attention in this review on the molecular basis for and the clinical consequences of defects in the MPO-H2O2-Cl system because of the compromised Cl transport seen in CF. We will discuss first how the MPO-H2O2-Cl system in healthy PMNs participates in host defense and resolution of inflammation and then review how a defective MPO-H2O2-Cl system contributes to the increased susceptibility to infection and dysregulated inflammation associated with the clinical manifestations of CF.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, and
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA
| | - William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
- Veterans Administration Medical Center, Iowa City, IA
| |
Collapse
|
33
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
34
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2022; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
35
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
37
|
Huang J, Sheng X, Zhuo Z, Xiao D, Wu K, Wan G, Chen H. ClC-c regulates the proliferation of intestinal stem cells via the EGFR signalling pathway in Drosophila. Cell Prolif 2021; 55:e13173. [PMID: 34952996 PMCID: PMC8780901 DOI: 10.1111/cpr.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. Materials and Methods Flies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms. Results Here, we report a member of the chloride channel family, ClC‐c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC‐c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. Conclusion Our findings reveal an ISC‐specific function of ClC‐c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.
Collapse
Affiliation(s)
- Jinping Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangpeng Zhuo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Danqing Xiao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Orabi EA, Öztürk TN, Bernhardt N, Faraldo-Gómez JD. Corrections in the CHARMM36 Parametrization of Chloride Interactions with Proteins, Lipids, and Alkali Cations, and Extension to Other Halide Anions. J Chem Theory Comput 2021; 17:6240-6261. [PMID: 34516741 DOI: 10.1021/acs.jctc.1c00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonpolarizable CHARMM force field is one of the most widely used energy functions for all-atom biomolecular simulations. Chloride is the only halide ion included in the latest version, CHARMM36m, and is used widely in simulation studies, often as an electrolyte ion but also as the biological substrate of transport proteins and enzymes. Here, we find that existing parameters systematically underestimate the interaction of Cl- with proteins and lipids. Accordingly, when examined in solution, little to no Cl-association can be observed with most components of the protein, including backbone, polar side chains and aromatic rings. The strength of the interaction with cationic side chains and with alkali ions is also incongruent with experimental measurements, specifically osmotic coefficients of concentrated solutions. Consistent with these findings, a 4-μs trajectory of the Cl--specific transport protein CLC-ec1 shows irreversible Cl- dissociation from the so-called Scen binding site, even in a 150 mM NaCl buffer. To correct for these deficiencies, we formulate a series of pair-specific Lennard-Jones parameters that override those resulting from the conventional Lorentz-Berthelot combination rules. These parameters, referred to as NBFIX, are systematically calibrated against available experimental data as well as ab initio geometry optimizations and energy evaluations, for a wide set of binary and ternary Cl- complexes with protein and lipid analogs and alkali cations. Analogously, we also formulate parameter sets for the other three biological halide ions, namely, fluoride, bromide, and iodide. The resulting parameters are used to calculate the potential of mean force defining the interaction of each anion and each of the protein and lipid analogues in bulk water, revealing association free energies in the range of -0.3 to -3.3 kcal/mol, with the F- complexes being the least stable. The NBFIX corrections also preserve the Cl- occupancy of CLC-ec1 in a second 4-μs trajectory. We posit that these optimized molecular-mechanics models provide a more realistic foundation for all-atom simulation studies of processes entailing changes in hydration, recognition, or transport of halide anions.
Collapse
Affiliation(s)
- Esam A Orabi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - Tuǧba N Öztürk
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nathan Bernhardt
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| |
Collapse
|
40
|
Kowalczyk A, Gbadamosi O, Kolor K, Sosa J, Andrzejczuk L, Gibson G, Croix C, Chikina M, Aizenman E, Clark N, Kiselyov K. Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochem J 2021; 478:3205-3220. [PMID: 34397090 PMCID: PMC10491466 DOI: 10.1042/bcj20210342] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Recent advances in genome sequencing have led to the identification of new ion and metabolite transporters, many of which have not been characterized. Due to the variety of subcellular localizations, cargo and transport mechanisms, such characterization is a daunting task, and predictive approaches focused on the functional context of transporters are very much needed. Here we present a case for identifying a transporter localization using evolutionary rate covariation (ERC), a computational approach based on pairwise correlations of amino acid sequence evolutionary rates across the mammalian phylogeny. As a case study, we find that poorly characterized transporter SLC30A9 (ZnT9) coevolves with several components of the mitochondrial oxidative phosphorylation chain, suggesting mitochondrial localization. We confirmed this computational finding experimentally using recombinant human SLC30A9. SLC30A9 loss caused zinc mishandling in the mitochondria, suggesting that under normal conditions it acts as a zinc exporter. We therefore propose that ERC can be used to predict the functional context of novel transporters and other poorly characterized proteins.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA 15213, U.S.A
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
| | - Omotola Gbadamosi
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Kathryn Kolor
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Jahree Sosa
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Livia Andrzejczuk
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Gregory Gibson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Claudette Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, U.S.A
| | - Nathan Clark
- Department of Human Genetics, University of Utah, Utah 84112, U.S.A
| | - Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| |
Collapse
|
41
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
42
|
Yu M, Wei Y, Zheng Y, Yang L, Meng L, Lin J, Xu P, Mahdy SANA, Zhu L, Peng S, Chen L, Wang L. 17β-Estradiol activates Cl - channels via the estrogen receptor α pathway in human thyroid cells. Channels (Austin) 2021; 15:516-527. [PMID: 34414859 PMCID: PMC8381838 DOI: 10.1080/19336950.2021.1957627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estradiol regulates thyroid function, and chloride channels are involved in the regulation of thyroid function. However, little is known about the role of chloride channels in the regulation of thyroid functions by estrogen. In this study, the effects of estrogen on chloride channel activities in human thyroid Nthy-ori3-1 cells were therefore investigated using the whole cell patch-clamp technique. The results showed that the extracellular application of 17β-estradiol (E2) activated Cl− currents, which reversed at a potential close to Cl− equilibrium potential and showed remarkable outward rectification and an anion permeability of I− > Br− > Cl− > gluconate. The Cl− currents were inhibited by the chloride channel blockers, NPPB and tamoxifen. Quantitative Real-time PCR results demonstrated that ClC-3 expression was highest in ClC family member in Nthy-ori3-1 cells. The down-regulation of ClC-3 expression by ClC-3 siRNA inhibited E2-induced Cl− current. The Cl− current was blocked by the estrogen receptor antagonist, ICI 182780 (fulvestrant). Estrogen receptor alpha (ERα) and not estrogen receptor beta was the protein expressed in Nthy-ori3-1 cells, and the knockdown of ERα expression with ERα siRNA abolished E2-induced Cl− currents. Estradiol can promote the accumulation of ClC-3 in cell membrane. ERα and ClC-3 proteins were partially co-localized in the cell membrane of Nthy-ori3-1 cells after estrogen exposure. The results suggest that estrogen activates chloride channels via ERα in normal human thyroid cells, and ClC-3 proteins play a pivotal role in the activation of E2-induced Cl− current.
Collapse
Affiliation(s)
- Meisheng Yu
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou, China
| | - Yanfang Zheng
- Department of Physiology, Medical College, The Zhuhai Campus of the Zunyi Medical University, Zhuhai, China
| | - Lili Yang
- Academic Affairs Office, Guangzhou Medical University, Guangzhou, China
| | - Long Meng
- Department of Obstetrics, Shiyan Maternal and Child Health Hospital, Hubei, Shiyan, China
| | - Jiawei Lin
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Peisheng Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | | | - Linyan Zhu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
44
|
Ion channelopathies to bridge molecular lesions, channel function, and clinical therapies. Pflugers Arch 2021; 472:733-738. [PMID: 32607810 DOI: 10.1007/s00424-020-02424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Chiariello MG, Alfonso-Prieto M, Ippoliti E, Fahlke C, Carloni P. Mechanisms Underlying Proton Release in CLC-type F -/H + Antiporters. J Phys Chem Lett 2021; 12:4415-4420. [PMID: 33950673 DOI: 10.1021/acs.jpclett.1c00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CLC family of anion channels and transporters includes Cl-/H+ exchangers (blocked by F-) and F-/H+ exchangers (or CLCFs). CLCFs contain a glutamate (E318) in the central anion-binding site that is absent in CLC Cl-/H+ exchangers. The X-ray structure of the protein from Enterococcus casseliflavus (CLCF-eca) shows that E318 tightly binds to F- when the gating glutamate (E118; highly conserved in the CLC family) faces the extracellular medium. Here, we use classical and DFT-based QM/MM metadynamics simulations to investigate proton transfer and release by CLCF-eca. After up to down movement of protonated E118, both glutamates combine with F- to form a triad, from which protons and F- anions are released as HF. Our results illustrate how glutamate insertion into the central anion-binding site of CLCF-eca permits the release of H+ to the cytosol as HF, thus enabling a net 1:1 F-/H+ stoichiometry.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-HPC, Forschungszentrum Jülich, 54245 Jülich, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emiliano Ippoliti
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-HPC, Forschungszentrum Jülich, 54245 Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-HPC, Forschungszentrum Jülich, 54245 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
46
|
Haider MHA, Ali M, Ensinger W. Anions effect on ion transport properties of polyelectrolyte modified single conical nanopores. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Abstract
Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.
Collapse
|
48
|
Duan N, Huang C, Pang L, Jiang S, Yang W, Li H. Clinical manifestation and genetic findings in three boys with low molecular Weight Proteinuria - three case reports for exploring Dent Disease and Fanconi syndrome. BMC Nephrol 2021; 22:24. [PMID: 33430795 PMCID: PMC7802264 DOI: 10.1186/s12882-020-02225-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/23/2020] [Indexed: 11/27/2022] Open
Abstract
Background Dent disease is an X-linked form of progressive renal disease. This rare disorder was characterized by hypercalciuria, low molecular weight (LMW) proteinuria and proximal tubular dysfunction, caused by pathogenic variants in CLCN5 (Dent disease 1) or OCRL (Dent disease 2) genes. Fanconi syndrome is a consequence of decreased water and solute resorption in the proximal tubule of the kidney. Fanconi syndrome caused by proximal tubular dysfunction such as Dent disease might occur in early stage of the disease. Case presentation Three cases reported in this study were 3-, 10- and 14-year-old boys, and proteinuria was the first impression in all the cases. All the boys presented with LMW proteinuria and elevated urine albumin-to-creatinine ratio (ACR). Case 1 revealed a pathogenic variant in exon 11 of CLCN5 gene [NM_001127899; c.1444delG] and a nonsense mutation at nucleotide 1509 [p.L503*], and he was diagnosed as Dent disease 1. Case 2 carried a deletion of exon 3 and 4 of OCRL1 gene [NM_000276.4; c.120-238delG…A] and a nonsense mutation at nucleotide 171 in exon 5 [p.E57*], and this boy was diagnosed as Dent disease 2. Genetic analysis of Case 3 showed a missense mutation located in exon 2 of HNF4A gene [EF591040.1; c.253C > T; p.R85W] which is responsible for Fanconi syndrome. All of three pathogenic variants were not registered in GenBank. Conclusions Urine protein electrophoresis should be performed for patients with proteinuria. When patients have LMW proteinuria and/or hypercalciuria, definite diagnosis and identification of Dent disease and Fanconi syndrome requires further genetic analyses.
Collapse
Affiliation(s)
- Nan Duan
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China
| | - Chenwei Huang
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China
| | - Lu Pang
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China
| | - Shiju Jiang
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China
| | - Wenshuang Yang
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, No.8 Xishiku St., Xicheng District, 100034, Beijing, China.
| |
Collapse
|
49
|
Klemens CA, Chulkov EG, Wu J, Hye Khan MA, Levchenko V, Flister MJ, Imig JD, Kriegel AJ, Palygin O, Staruschenko A. Loss of Chloride Channel 6 (CLC-6) Affects Vascular Smooth Muscle Contractility and Arterial Stiffness via Alterations to Golgi Calcium Stores. Hypertension 2021; 77:582-593. [PMID: 33390052 DOI: 10.1161/hypertensionaha.120.16589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies have found a number of potential genes involved in blood pressure regulation; however, the functional role of many of these candidates has yet to be established. One such candidate gene is CLCN6, which encodes the transmembrane protein, chloride channel 6 (ClC-6). Although the CLCN6 locus has been widely associated with human blood pressure regulation, the mechanistic role of ClC-6 in blood pressure homeostasis at the molecular, cellular, and physiological levels is completely unknown. In this study, we demonstrate that rats with a functional knockout of ClC-6 on the Dahl Salt-Sensitive rat background (SS-Clcn6) have lower diastolic but not systolic blood pressures. The effect of diastolic blood pressure attenuation was independent of dietary salt exposure in knockout animals. Moreover, SS-Clcn6 rats are protected from hypertension-induced cardiac hypertrophy and arterial stiffening; however, they have impaired vasodilation and dysregulated intracellular calcium handling. ClC-6 is highly expressed in vascular smooth muscle cells where it is targeted to the Golgi apparatus. Using bilayer electrophysiology, we provide evidence that recombinant human ClC-6 protein can function as a channel. Last, we demonstrate that loss of ClC-6 function reduces Golgi calcium stores, which may play a previously unidentified role in vascular contraction and relaxation signaling in vascular smooth muscle cells. Collectively, these data indicate that ClC-6 may modulate blood pressure by regulating Golgi calcium reserves, which in turn contribute to vascular smooth muscle function.
Collapse
Affiliation(s)
- Christine A Klemens
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Evgeny G Chulkov
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy (E.G.C.), Medical College of Wisconsin
| | - Jing Wu
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin
| | - Vladislav Levchenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Michael J Flister
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - John D Imig
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alison J Kriegel
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Oleg Palygin
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alexander Staruschenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin.,Clement J. Zablocki VA Medical Center, Milwaukee (A.S.)
| |
Collapse
|
50
|
Koster AK, Reese AL, Kuryshev Y, Wen X, McKiernan KA, Gray EE, Wu C, Huguenard JR, Maduke M, Du Bois J. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel. Proc Natl Acad Sci U S A 2020; 117:32711-32721. [PMID: 33277431 PMCID: PMC7768775 DOI: 10.1073/pnas.2009977117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.
Collapse
Affiliation(s)
- Anna K Koster
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Austin L Reese
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Yuri Kuryshev
- Charles River Laboratories Cleveland, Inc., Cleveland, OH 44128
| | - Xianlan Wen
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Keri A McKiernan
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Caiyun Wu
- Charles River Laboratories Cleveland, Inc., Cleveland, OH 44128
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305;
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|