1
|
Park GS, Shin J, Hong S, Saini RK, Gopal J, Oh JW. Evaluating the Diverse Anticancer Effects of Laos Kaempferia parviflora (Black Ginger) on Human Melanoma Cell Lines. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1371. [PMID: 39202650 PMCID: PMC11356165 DOI: 10.3390/medicina60081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Cancer has become a consistent concern globally and increasingly fatal. Malignant melanoma is a rising concern, with its increased mortality. Kaempferia parviflora Wall. ex Baker (K. parviflora (KP)), commonly known as black ginger, is well known for its medicinal contributions. For the first time, in the following study we investigated the antimelanoma potential of Laos KP extracts in human cell lines. KP extracts (KPE) in methanol, DCM, and ethyl acetate showed strong cell inhibition in both melanomas, with KPE-DCM being particularly effective in inhibiting melanoma cell migration, invasion, and proliferation by inducing cell cycle arrest and apoptosis, while KPE-Hexane exhibited a low cell inhibition rate and a more limited effect. KPE affected the increased expression of caspase-3, PARP andBax and the decreased expression of the BcL-2, Mu-2-related death-inducing gene (MUDENG, MuD) protein. Furthermore, KPE enhanced apoptotic cells in the absence and presence of the pancaspase inhibitor Z-VAD-FMK. Interestingly, these apoptotic cells were significantly suppressed by the caspase inhibitor. Moreover, elevated mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) levels, suggestive of KPE's mitochondrial-mediated apoptosis in melanoma cells, were also confirmed. KPE treatment increased MMP levels, and upregulated the generation of ROS in A375 cells but not in A2058 cells. However, pretreatment with an ROS scavenger (NAC) suppressed KPE-induced cell death and ROS generation. These results clearly pointed out KPE-induced mitochondrial-mediated apoptotic cell death as the mechanism behind the inhibition of the human melanoma cells. Future studies exploring the role of specific ROS sources and their interaction with mitochondrial dynamics could deepen the existing understanding on KPE-induced apoptosis.
Collapse
Affiliation(s)
- Gyun Seok Park
- Department of Bio-Resources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| | - Seongwoo Hong
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| | - Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| |
Collapse
|
2
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Tan B, Wikan N, Lin S, Thaklaewphan P, Potikanond S, Nimlamool W. Inhibitory actions of oxyresveratrol on the PI3K/AKT signaling cascade in cervical cancer cells. Biomed Pharmacother 2024; 170:115982. [PMID: 38056236 DOI: 10.1016/j.biopha.2023.115982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
The phosphatidyl inositol 3-kinase (PI3K)/AKT signaling plays a critical role in cancer cell proliferation, migration, and invasion. This signal transduction axis in HPV-positive cervical cancer has been proved to be directly activated by E6/E7 proteins of the virus enhancing cervical cancer progression. Hence, the PI3K/AKT pathway is one of the key therapeutic targets for HPV-positive cervical cancer. Here we discovered that oxyresveratrol (Oxy) at noncytotoxic concentration specifically suppressed the phosphorylation of AKT but not ERK1/2. This potent inhibitory effect of Oxy was still observed even when cells were stimulated with fetal bovine serum. Inhibition of AKT phosphorylation at serine 473 by Oxy resulted in a significant decrease in serine 9 phosphorylation of GSK-3β, a downstream target of AKT. Dephosphorylation of GSK-3β at this serine residue activates its function in promoting the degradation of MCL-1, an anti-apoptotic protein. Results clearly demonstrated that in association with GSK-3β activation, Oxy preferentially downregulated the expression of anti-apoptotic protein MCL-1. Furthermore, results from the functional analyses revealed that Oxy inhibited cervical cancer cell proliferation, at least in part through suppressing nuclear expression of Ki-67. Besides, the compound retarded cervical cancer cell migration even the cells were exposed to a potent enhancer of epithelial-mesenchymal transition, TGF-β1. In consistent with these data, Oxy reduced the expression of β-catenin, N-cadherin, and vimentin. In conclusion, the study disclosed that Oxy specifically inhibits the AKT/GSK-3β/MCL-1 axis resulting in reduction in cervical cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Bing Tan
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shike Lin
- Office for Science and Technology, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Ruttanapattanakul J, Wikan N, Potikanond S, Nimlamool W. Combination of Pinocembrin and Epidermal Growth Factor Enhances the Proliferation and Survival of Human Keratinocytes. Int J Mol Sci 2023; 24:12450. [PMID: 37569825 PMCID: PMC10418855 DOI: 10.3390/ijms241512450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Re-epithelialization is delayed in aged skin due to a slow rate of keratinocyte proliferation, and this may cause complications. Thus, there has been development of new therapies that increase treatment efficacy for skin wounds. Epidermal growth factor (EGF) has been clinically used, but this agent is expensive, and its activity is less stable. Therefore, a stable compound possessing EGF-like properties may be an effective therapy, especially when combined with EGF. The current study discovered that pinocembrin (PC) effectively synergized with EGF in increasing keratinocyte viability. The combination of PC and EGF significantly enhanced the proliferation and wound closure rate of the keratinocyte monolayer through activating the phosphorylation of ERK and Akt. Although these effects of PC were like those of EGF, we clearly proved that PC did not transactivate EGFR. Recent data from a previous study revealed that PC activates G-protein-coupled receptor 120 which further activates ERK1/2 and Akt phosphorylation. Therefore, this clearly indicates that PC possesses a unique property to stimulate the growth and survival of keratinocytes through activating a different receptor, which subsequently conveys the signal to cross-talk with the effector kinases downstream of the EGFR, suggesting that PC is a potential compound to be combined with EGF.
Collapse
Affiliation(s)
- Jirapak Ruttanapattanakul
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| |
Collapse
|
5
|
Zhou J, Xu L, Zhou H, Wang J, Xing X. Prediction of Prognosis and Chemotherapeutic Sensitivity Based on Cuproptosis-Associated lncRNAs in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes (Basel) 2023; 14:1381. [PMID: 37510286 PMCID: PMC10379127 DOI: 10.3390/genes14071381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer is the fourth most common cancer. The 5-year survival rate for metastatic cervical cancer is less than 10%. The survival time of patients with recurrent cervical cancer is approximately 13-17 months. Cuproptosis is a novel type of cell death related to mitochondrial respiration. Accumulative studies showed that long non-coding RNAs (lncRNAs) regulated cervical cancer progression. Compressive bioinformatic analysis showed that nine cuproptosis-related lncRNAs (CRLs), including C002128.2, AC002563.1, AC009237.14, AC048337.1, AC145423.1, AL117336.1, AP001542.3, ATP2A1-AS1, and LINC00426, were independently correlated with the overall survival (OS) of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. The time-dependent area under curve value reached 0.716 at 1 year, 0.718 at 3 years, and 0.719 at 5 years. Notably, CESC patients in the low-risk group had increased immune cell infiltration and expression of several immune checkpoints, which indicated that they may benefit more from immune checkpoint blockade therapy. In addition, we also used the model for drug sensitivity analysis. Several drug sensitivities were more sensitive in high-risk patients and showed significant correlations with the risk models, such as Bortezomib_1191, Luminespib_1559, and Rapamycin_1084, suggesting that these drugs may be candidate clinical drugs for patients with a high risk of CESC. In summary, this study further explored the mechanism of CRLs in CESC and provided a more optimized prognostic model and some insights into chemotherapy of CESC.
Collapse
Affiliation(s)
- Jianghong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Lili Xu
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Hong Zhou
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Jingjin Wang
- Department of Gynecology, Department of Obsterics and Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China; (J.Z.); (L.X.); (H.Z.); (J.W.)
| | - Xiaoliang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
6
|
Hairunisa I, Bakar MFA, Da'i M, Bakar FIA, Syamsul ES. Cytotoxic Activity, Anti-Migration and In Silico Study of Black Ginger ( Kaempferia parviflora) Extract against Breast Cancer Cell. Cancers (Basel) 2023; 15:2785. [PMID: 37345122 DOI: 10.3390/cancers15102785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Metastatic breast cancer remains the leading cause of death in women worldwide. This condition necessitates extensive research to find an effective treatment, one of which is the natural medicine approach. Kaempferia parviflora (KP) is a plant believed to possess anticancer properties. Therefore, this study aims to determine KP's bioactive compound, cytotoxic, and anti-migration activity in the highly metastatic breast cancer cell line model 4T1, also in the breast cancer cell model MCF-7 and noncancerous cell line NIH-3T3. Maceration with ethanol (EEKP) and infusion with distilled water (EWKP) was used for extraction. The MTT assay was used to test for cytotoxicity, and the scratch wound healing assay was used to test for the inhibition of migration. Phytochemical profiling of EEKP was performed using UHPLC-MS, and the results were studied for in silico molecular docking. Result showed that EEKP had a better cytotoxic activity than EWKP with an IC50 value of 128.33 µg/mL (24 h) and 115.09 µg/mL (48 h) on 4T1 cell line, and 138.43 µg/mL (24 h) and 124.81 µg/mL (48 h) on MCF-7 cell line. Meanwhile, no cytotoxic activity was observed at concentrations ranging from 3-250 µg/mL in NIH-3T3. EEKP also showed anti-migration activity in a concentration of 65 µg/mL. Mass Spectrophotometer (MS) structures from EEKP are 5-Hydroxy-7,4'-dimethoxyflavanone (HDMF), 5-Hydro-7,8,2'-trimethoxyflavanone (HTMF), Retusine, and Denbinobin. The in silico docking was investigated for receptors Bcl-2, Bcl-XL, ERK2, and FAK, as well as their activities. In silico result indicates that HTMF and denbinobin are bioactive compounds responsible for EEKP's cytotoxic and anti-migration activity. These two compounds and standardized plant extract can be further studied as potential breast cancer treatment candidates.
Collapse
Affiliation(s)
- Indah Hairunisa
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Muar 84600, Malaysia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur (UMKT), Samarinda 75124, Indonesia
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Muar 84600, Malaysia
| | - Muhammad Da'i
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta (UMS), Solo 57162, Indonesia
| | - Fazleen Izzany Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Muar 84600, Malaysia
| | | |
Collapse
|
7
|
Hankittichai P, Thaklaewphan P, Wikan N, Ruttanapattanakul J, Potikanond S, Smith DR, Nimlamool W. Resveratrol Enhances Cytotoxic Effects of Cisplatin by Inducing Cell Cycle Arrest and Apoptosis in Ovarian Adenocarcinoma SKOV-3 Cells through Activating the p38 MAPK and Suppressing AKT. Pharmaceuticals (Basel) 2023; 16:ph16050755. [PMID: 37242538 DOI: 10.3390/ph16050755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In the current study, we identified a mechanism of resveratrol (RES) underlying its anti-cancer properties against human ovarian adenocarcinoma SKOV-3 cells. We investigated its anti-proliferative and apoptosis-inducing effects in combination with cisplatin, using cell viability assay, flow cytometry, immunofluorescence study and Western blot analysis. We discovered that RES suppressed cancer cell proliferation and stimulated apoptosis, especially when combined with cisplatin. This compound also inhibited SKOV-3 cell survival, which may partly be due to its potential to inhibit protein kinase B (AKT) phosphorylation and induce the S-phase cell cycle arrest. RES in combination with cisplatin strongly induced cancer cell apoptosis through activating the caspase-dependent cascade, which was associated with its ability to stimulate nuclear phosphorylation of p38 mitogen-activated protein kinase (MAPK), well recognized to be involved in transducing environmental stress signals. RES-induced p38 phosphorylation was very specific, and the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) was not mainly affected. Taken together, our study provides accumulated evidence that RES represses proliferation and promotes apoptosis in SKOV-3 ovarian cancer cells through activating the p38 MAPK pathway. It is interesting that this active compound may be used as an effective agent to sensitize ovarian cancer to apoptosis induced by standard chemotherapies.
Collapse
Affiliation(s)
- Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Singh A, Singh N, Singh S, Srivastava RP, Singh L, Verma PC, Devkota HP, Rahman LU, Kumar Rajak B, Singh A, Saxena G. The industrially important genus Kaempferia: An ethnopharmacological review. Front Pharmacol 2023; 14:1099523. [PMID: 36923360 PMCID: PMC10008896 DOI: 10.3389/fphar.2023.1099523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Kaempferia, a genus of the family Zingiberaceae, is widely distributed with more than 50 species which are mostly found throughout Southeast Asia. These plants have important ethnobotanical significance as many species are used in Ayurvedic and other traditional medicine preparations. This genus has received a lot of scholarly attention recently as a result of the numerous health advantages it possesses. In this review, we have compiled the scientific information regarding the relevance, distribution, industrial applications, phytochemistry, ethnopharmacology, tissue culture and conservation initiative of the Kaempferia genus along with the commercial realities and limitations of the research as well as missing industrial linkages followed by an exploration of some of the likely future promising clinical potential. The current review provides a richer and deeper understanding of Kaempferia, which can be applied in areas like phytopharmacology, molecular research, and industrial biology. The knowledge from this study can be further implemented for the establishment of new conservation strategies.
Collapse
Affiliation(s)
- Arpit Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nitesh Singh
- Department of Plant-Pathology, Faculty of Agriculture and Science, SGT University, Gurgaon, India
| | - Sanchita Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.,CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | | | - Lav Singh
- 4 PG Department of Botany, R.D and D.J. College, Munger University, Munger, India.,Central Academy for State Forest Services, Burnihat, Assam, India
| | - Praveen C Verma
- CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | - Hari P Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Pharmacy Program, Gandaki University, Pokhara, Nepal
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Bikash Kumar Rajak
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Amrita Singh
- Department of Botany, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Zhao D, Yuan H, Fang Y, Gao J, Li H, Li M, Cong H, Zhang C, Liang Y, Li J, Yang H, Yao M, Du M, Tu H, Gan Y. Histone Methyltransferase KMT2B Promotes Metastasis and Angiogenesis of Cervical Cancer by Upregulating EGF Expression. Int J Biol Sci 2023; 19:34-49. [PMID: 36594087 PMCID: PMC9760441 DOI: 10.7150/ijbs.72381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence has indicated that lysine methyltransferase 2B (KMT2B), a major H3K4 tri-methyltransferase (H3K4me3), contributes to the development of various cancers; however, its role in cervical cancer (CC) is unclear. In this study, increased KMT2B expression was observed in human CC specimens and significantly associated with poor prognosis. The condition medium of KMT2B-overexpressing cells facilitated angiogenesis in vitro. In the subcutaneous model of human CC, KMT2B overexpression significantly promoted tumor growth and increased tumor vascular density. Meanwhile, KMT2B enhanced the migration and invasion of CC cells and promoted their metastasis to bone in a tail-vein-metastasis model. Mechanistically, the genes upregulated by KMT2B were significantly enriched in PI3K-AKT pathway. Using H3K4me3 ChIP-seq analysis, we found increased H3K4me3 level at EGF promoter region in KMT2B-overexpressing HeLa cells. ChIP-qPCR experiments not only confirmed the increased H3K4me3 level of EGF promoter but also determined that in KMT2B-overexpressing HeLa cells, KMT2B increased binding with the EGF promoter. Blocking EGFR diminished the KMT2B-induced PI3K-AKT signaling activation and CC cell migration and invasion. Moreover, EGFR inhibitors abolished the KMT2B-drived tube formation capacity of HUVECs. In conclusion, KMT2B facilitates CC metastasis and angiogenesis by upregulating EGF expression, and may serve as a new therapeutic target for CC.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenglin Zhang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, 415 Fengyang road, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hancao Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Sookkhee S, Sakonwasun C, Mungkornasawakul P, Khamnoi P, Wikan N, Nimlamool W. Synergistic Effects of Some Methoxyflavones Extracted from Rhizome of Kaempferia parviflora Combined with Gentamicin against Carbapenem-Resistant Strains of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. PLANTS (BASEL, SWITZERLAND) 2022; 11:3128. [PMID: 36432857 PMCID: PMC9695190 DOI: 10.3390/plants11223128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate the antibacterial activity of ethanolic Kaempferia parviflora extracts and the combined effects of the plant's specific compounds with gentamicin against clinical strains of carbapenem-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The minimal inhibitory concentrations (MIC) of gentamicin and Kaempferia parviflora extracts against the tested bacterial strains were determined by using broth microdilution. The combined effects of Kaempferia parviflora extract and gentamicin were investigated by using a checkerboard assay and expressed as a fractional inhibitory concentration index (FICI). Crude ethanolic extract of Kaempferia parviflora showed the lowest median values of MIC towards the tested isolates (n = 10) of these tested bacteria at doses of 64 µg/mL, compared to those of other Kaempferia extracts. Among the isolated compounds, only three compounds, namely 3,5,7-trimethoxyflavone, 3,5,7,3'4'-pentamethoxyflavone, and 5,7,4'-trimethoxyflavone, were identified by NMR structural analysis. According to their FICIs, the synergistic effects of gentamicin combined with 3,5,7,3'4'-pentamethoxyflavone were approximately 90%, 90%, and 80% of tested carbapenem-resistant Klebsiella pneumoniae (CRKP), Pseudomonas aeruginosa (CRPA), and Acinetobacter baumannii (CRAB), respectively. The present study concluded that 3,5,7,3'4'-pentamethoxyflavone extracted from Kaempferia parviflora potentiated the antibacterial action of gentamicin to combat bacterial resistance against the tested bacteria.
Collapse
Affiliation(s)
- Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Choompone Sakonwasun
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Phadungkiat Khamnoi
- Diagnostic Laboratory Unit, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Huang J, Tagawa T, Ma S, Suzuki K. Black Ginger ( Kaempferia parviflora) Extract Enhances Endurance Capacity by Improving Energy Metabolism and Substrate Utilization in Mice. Nutrients 2022; 14:3845. [PMID: 36145222 PMCID: PMC9501856 DOI: 10.3390/nu14183845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Black ginger (Kaempferia parviflora) extract (KPE), extracted from KP, a member of the ginger family that grows in Thailand, has a good promotion effect on cellular energy metabolism and therefore has been used to enhance exercise performance and treatment of obesity in previous studies. However, the effect of single-dose administration of KPE on endurance capacity has not been thoroughly studied, and whether the positive effect of KPE on cellular energy metabolism can have a positive effect on exercise capacity in a single dose is unknown. In the present study, we used a mouse model to study the effects of acute KPE administration 1 h before exercise on endurance capacity and the underlying mechanisms. The purpose of our study was to determine whether a single administration of KPE could affect endurance performance in mice and whether the effect was produced through a pro-cellular energy metabolic pathway. We found that a single administration of KPE (62.5 mg/kg·bodyweight) can significantly prolong the exercise time to exhaustion. By measuring the mRNA expression of Hk2, Slc2a4 (Glut4), Mct1, Ldh, Cd36, Cpt1β, Cpt2, Lpl, Pnpla2 (Atgl), Aco, Acadm (Mcad), Hadh, Acacb (Acc2), Mlycd (Mcd), Pparg, Ppargc1a (Pgc-1α), Tfam, Gp, Gs, Pfkm, Pck1 (Pepck), G6pc (G6pase), Cs, and Pfkl in skeletal muscle and liver, we found that acute high-concentration KPE administration significantly changed the soleus muscle gene expression levels (p < 0.05) related to lipid, lactate, and glycogen metabolism and mitochondrial function. In gastrocnemius muscle and liver, glycogen metabolism-related gene expression is significantly changed by a single-dose administration of KPE. These results suggest that KPE has the potential to improve endurance capacity by enhancing energy metabolism and substrate utilization in muscles and liver.
Collapse
Affiliation(s)
- Jiapeng Huang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Takashi Tagawa
- Maruzen Pharmaceuticals Co., Ltd., Hiroshima 7293102, Japan
| | - Sihui Ma
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| |
Collapse
|
12
|
The Leaf Extract of Mitrephora chulabhorniana Suppresses Migration and Invasion and Induces Human Cervical Cancer Cell Apoptosis through Caspase-Dependent Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2028082. [PMID: 35655474 PMCID: PMC9152413 DOI: 10.1155/2022/2028082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Cervical cancer is rated to be the leading cause of cancer-related death in women worldwide. Since screening test and conventional treatments are less accessible for people in developing countries, an alternative use of medicinal plants exhibiting strong anticancer activities may be an affordable means to treat cervical cancer. Mitrephora chulabhorniana (MC) is the newly identified species; however, its biological functions including anticancer activities have been largely unexplored. Hence, in this study, we were interested in investigating anticancer effects of this plant on the human cervical cell line (HeLa). MC extract was profiled for phytochemicals by TLC. This plant was tested to contain alkaloids, flavonoids, and terpenes. HeLa cells were treated with MC extract to investigate the anticancer activities. Cytotoxicity and viability of cells treated with MC were determined by MTT assay and Trypan blue exclusion assay. Cell migration was tested by wound healing assay, and cell invasion was determined by Transwell assay. The level of caspase 7, caspase 9, and PARP was determined by western blot analysis. We found that the leaf extract of MC strongly reduced cancer cell survival rate. This finding was consistent with the discovery that the extract dramatically induced apoptosis of cervical cancer cells through the activation of caspase 7 and caspase 9 which consequently degraded PARP protein. Furthermore, MC extract at lower concentrations which were not cytotoxic to the cancer cells showed potent inhibitory activities against HeLa cervical cancer cell migration and invasion. Mitrephora chulabhorniana possesses its pharmacological properties in inhibiting cervical cancer cell migration/invasion and inducing apoptotic signaling. This accumulated information suggests that Mitrephora chulabhorniana may be a beneficial source of potential agents for cervical cancer treatment.
Collapse
|
13
|
Hashiguchi A, San Thawtar M, Duangsodsri T, Kusano M, Watanabe KN. Biofunctional properties and plant physiology of Kaempferia spp.: Status and trends. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Zhao K, Yi Y, Ma Z, Zhang W. INHBA is a Prognostic Biomarker and Correlated With Immune Cell Infiltration in Cervical Cancer. Front Genet 2022; 12:705512. [PMID: 35058963 PMCID: PMC8764128 DOI: 10.3389/fgene.2021.705512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Inhibin A (INHBA), a member of the TGF-β superfamily, has been shown to be differentially expressed in various cancer types and is associated with prognosis. However, its role in cervical cancer remains unclear. Methods: We aimed to demonstrate the relationship between INHBA expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated INHBA expression in cervical cancer using the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750 datasets. Enrichment analysis of INHBA was performed using the R package “clusterProfiler.” We analyzed the association between immune infiltration level and INHBA expression in cervical cancer using the single-sample gene set enrichment analysis (ssGSEA) method by the R package GSVA. We explored the association between INHBA expression and prognosis using the R package “survival”. Results: Pan-cancer data analysis showed that INHBA expression was elevated in 19 tumor types, including cervical cancer. We further confirmed that INHBA expression was higher in cervical cancer samples from GEO database and cervical cancer cell lines than in normal cervical cells. Survival prognosis analysis indicated that higher INHBA expression was significantly associated with reduced Overall Survival (p = 0.001), disease Specific Survival (p = 0.006), and Progression Free Interval (p = 0.001) in cervical cancer and poorer prognosis in other tumors. GSEA and infiltration analysis showed that INHBA expression was significantly associated with tumor progression and some types of immune infiltrating cells. Conclusion:INHBA was highly expressed in cervical cancer and was significantly associated with poor prognosis. Meanwhile, it was correlated with immune cell infiltration and could be used as a promising prognostic target for cervical cancer.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Takuathung MN, Potikanond S, Sookkhee S, Mungkornasawakul P, Jearanaikulvanich T, Chinda K, Wikan N, Nimlamool W. Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed Pharmacother 2021; 143:112229. [PMID: 34649355 DOI: 10.1016/j.biopha.2021.112229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022] Open
Abstract
Kaempferia parviflora (KP) has been used as folk medicine for curing various conditions, including anti-inflammatory diseases. However, anti-psoriatic effects in an aspect of suppression of NF-κB activation have not been explored. Therefore, our current study aimed to elucidate the anti-inflammation of KP in lipopolysaccharide (LPS)-induced RAW264.7 cells and anti-psoriatic effects of KP in cytokine-induced human keratinocytes, HaCaT cells. We discovered that KP extract significantly suppressed LPS-induced inflammation at both gene expression and protein production. Specifically, dramatic reduction of nitric oxide (NO) was explored by using Griess method. Consistently, data from RT-qPCR, ELISA, and western blot analysis confirmed that crucial inflammatory and psoriatic markers including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-17, IL-22, and IL-23 were significantly decreased by the action of KP. These events were associated with the results from immunofluorescence study and western blot analysis where the activation of NF-κB upon LPS stimulation was clearly inhibited by KP through its ability to suppress IκB-α degradation resulting in inhibition of NF-κB nuclear translocation. Furthermore, KP extract significantly inhibited LPS-stimulated phosphorylation of ERK1/2, JNK, and p38 in a dose-dependent manner, along with inhibition of ERK1/2 activation in both TNF-α- and EGF-induced HaCaT cells. Interestingly, HaCaT cells exposed to 15 μg/mL of KP also exhibited significant decrease of cell migration and proliferation. Our results revealed that KP extract has a potential to be developed as a promising agent for treating inflammation and psoriasis, in part through targeting the proliferation and the NF-κB pathways.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kittinan Chinda
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
16
|
Alghamdi YS, Saleh OM, Alqadri N, Mashraqi MM, Bahattab O, Awad NS. Effect of Ducrosia flabellifolia and Savignya parviflora Extracts on Inhibition of Human Colon and Prostate Cancer Cell Lines. Curr Issues Mol Biol 2021; 43:1518-1528. [PMID: 34698080 PMCID: PMC8929105 DOI: 10.3390/cimb43030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The goal of this study was to investigate whether Ducrosia flabellifolia and Savignya parviflora methanol extract the have effect on colon and prostate cancer cell lines. Analysis of total content of phenolics and flavonoids of each plant extract was carried out. Cytotoxic effect, cell cycle analysis, induction of apoptosis and gene expression of Bcl-2 and Bax genes were studied. Obtained results indicated that, the plant extracts exhibit growth inhibition of used cancer cell lines and induced apoptosis as well as arresting of cell cycle. At the molecular level, changes in gene expression were detected via qPCR and confirmed by western blotting. The exhibited anticancer potentialities of plant extracts against utilized cancer cell lines are due to its containing bioactive compounds. Further detailed isolation, fractionation and characterization of bioactive compounds are needed.
Collapse
Affiliation(s)
- Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (Y.S.A.); (N.A.)
| | - Osama Moseilhy Saleh
- Natural Products Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 9621, Egypt;
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (Y.S.A.); (N.A.)
| | - Mutaib Mosaued Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71497, Saudi Arabia;
| | - Nabil Saied Awad
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
- Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
- Correspondence: ; Tel.: +20-1126546410
| |
Collapse
|
17
|
Ruttanapattanakul J, Wikan N, Chinda K, Jearanaikulvanich T, Krisanuruks N, Muangcha M, Okonogi S, Potikanond S, Nimlamool W. Essential Oil from Zingiber ottensii Induces Human Cervical Cancer Cell Apoptosis and Inhibits MAPK and PI3K/AKT Signaling Cascades. PLANTS 2021; 10:plants10071419. [PMID: 34371622 PMCID: PMC8309419 DOI: 10.3390/plants10071419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/15/2023]
Abstract
Zingiber ottensii (ZO) is a local plant in Thailand and has been used as a Thai traditional therapy for many conditions. ZO has been reported to exhibit many pharmacological effects, including anti-cancer activity. Nevertheless, its anti-cancer effects explored at the signaling level have not been elucidated in cervical cancer, which is one of the leading causes of fatality in females. We discovered that the essential oil of ZO significantly increased the apoptosis of human cervical cancer cells (HeLa) after 24 h of treatment in a concentration-dependent manner. Our data also clearly demonstrated that ZO essential oil reduced IL-6 levels in the culture supernatants of the cancer cells. Moreover, Western blot analysis clearly verified that cells were induced to undergo apoptotic death via caspase activation upon treatment with ZO essential oil. Interestingly, immunofluorescence studies and Western blot analyses showed that ZO essential oil suppressed epidermal growth factor (EGF)-induced pAkt and pERK1/2 signaling pathway activation. Together, our study demonstrates that ZO essential oil can reduce the proliferation and survival signaling of HeLa cervical cancer cells. Our study provides convincing data that ZO essential oil suppresses the growth and survival of cervical cancer cells, and it may be a potential choice for developing an anti-cancer agent for treating certain cervical cancers.
Collapse
Affiliation(s)
- Jirapak Ruttanapattanakul
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand;
| | - Kittinan Chinda
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
| | - Thanathorn Jearanaikulvanich
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
| | - Napatsorn Krisanuruks
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
| | - Muantep Muangcha
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (K.C.); (T.J.); (N.K.); (M.M.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-93-4597
| |
Collapse
|
18
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
19
|
Sun S, Kim MJ, Dibwe DF, Omar AM, Athikomkulchai S, Phrutivorapongkul A, Okada T, Tsuge K, Toyooka N, Awale S. Anti-Austerity Activity of Thai Medicinal Plants: Chemical Constituents and Anti-Pancreatic Cancer Activities of Kaempferia parviflora. PLANTS 2021; 10:plants10020229. [PMID: 33503922 PMCID: PMC7911922 DOI: 10.3390/plants10020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Human pancreatic tumor cells have an intrinsic ability to tolerate nutrition starvation and survive in the hypovascular tumor microenvironment, the phenomenon termed as "austerity". Searching for an agent that inhibits such tolerance to nutrient starvation and kills the pancreatic cancer cells preferentially in nutrient-starvation is a unique anti-austerity strategy in anti-cancer drug discovery. In this strategy, plant extracts and compounds are tested against PANC-1 human pancreatic cancer cell line under the conditions of nutrient-deprived medium (NDM) and nutrient-rich medium (DMEM), to discover the compounds that show selective cytotoxicity in NDM. Screening of twenty-five Thai indigenous medicinal plant extracts for their anti-austerity activity against the PANC-1 human pancreatic cancer cell line in nutrient deprived medium (NDM) resulted in the identification of four active plants, Derris scandens, Boesenbergia pandurata, Citrus hystrix, and Kaempferia parviflora, with PC50 values 0.5-8.9 µg/mL. K. parviflora extract also inhibited PANC-1 cancer cell colony formation. Phytochemical investigation of K. parviflora extract led to the isolation of fourteen compounds, including two polyoxygenated cyclohexanes (1 and 2), eleven flavonoids (3-13), and β-sitosterol (14). Stereochemical assignment of compound 1 was confirmed through X-ray analysis. All isolated compounds were tested for their preferential cytotoxicity against PANC-1 cells. Among them, 5-hydroxy-7-methoxyflavone (3) displayed the most potent activity with a PC50 value of 0.8 µM. Mechanistically, it was found to induce apoptosis in PANC-1 cell death in NDM as evident by caspase cleavage. It was also found to inhibit PANC-1 cancer cell colony formation in DMEM. Therefore, compound 3 can be considered as a potential lead compound for the anticancer drug development based on the anti-austerity strategy.
Collapse
Affiliation(s)
- Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.S.); (M.J.K.); (D.F.D.); (A.M.O.)
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.S.); (M.J.K.); (D.F.D.); (A.M.O.)
| | - Dya Fita Dibwe
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.S.); (M.J.K.); (D.F.D.); (A.M.O.)
| | - Ashraf M. Omar
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.S.); (M.J.K.); (D.F.D.); (A.M.O.)
| | | | | | - Takuya Okada
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (T.O.); (K.T.); (N.T.)
| | - Kiyoshi Tsuge
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (T.O.); (K.T.); (N.T.)
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (T.O.); (K.T.); (N.T.)
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.S.); (M.J.K.); (D.F.D.); (A.M.O.)
- Correspondence: ; Tel.: +81-76-434-7640
| |
Collapse
|
20
|
Jantrapirom S, Nimlamool W, Chattipakorn N, Chattipakorn S, Temviriyanukul P, Inthachat W, Govitrapong P, Potikanond S. Liraglutide Suppresses Tau Hyperphosphorylation, Amyloid Beta Accumulation through Regulating Neuronal Insulin Signaling and BACE-1 Activity. Int J Mol Sci 2020; 21:ijms21051725. [PMID: 32138327 PMCID: PMC7084306 DOI: 10.3390/ijms21051725] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal insulin resistance is a significant feature of Alzheimer's disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model of neuronal insulin resistance with Alzheimer's formation has not been thoroughly investigated. The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y. Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular, the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3β). Moreover, liraglutide reduced the activity of beta secretase 1 (BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells. This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal transduction but also inhibit the formation of pathogenic Alzheimer's proteins like Aβ in neuronal cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide administration, these findings suggest that the use of liraglutide may be a promising therapy for AD with insulin-resistant condition.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (S.C.)
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (S.C.)
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand (W.I.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand (W.I.)
| | - Piyarat Govitrapong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or ; Tel.: +66-53-934-593; Fax: +66-53-935-355
| |
Collapse
|
21
|
Hankittichai P, Buacheen P, Pitchakarn P, Na Takuathung M, Wikan N, Smith DR, Potikanond S, Nimlamool W. Artocarpus lakoocha Extract Inhibits LPS-Induced Inflammatory Response in RAW 264.7 Macrophage Cells. Int J Mol Sci 2020; 21:ijms21041355. [PMID: 32079307 PMCID: PMC7072914 DOI: 10.3390/ijms21041355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Artocarpus lakoocha Roxb. (AL) has been known for its high content of stilbenoids, especially oxyresveratrol. AL has been used in Thai traditional medicine for centuries. However, the role of AL in regulating inflammation has not been elucidated. Here we investigated the molecular mechanisms underlying the anti-inflammation of AL ethanolic extract in RAW 264.7 murine macrophage cell line. The HPLC results revealed that this plant was rich in oxyresveratrol, and AL ethanolic extract exhibited anti-inflammatory properties. In particular, AL extract decreased lipopolysaccharide (LPS)-mediated production and secretion of cytokines and chemokine, including IL-6, TNF-α, and MCP-1. Consistently, the extract inhibited the production of nitric oxide (NO) in the supernatants of LPS-stimulated cells. Data from the immunofluorescence study showed that AL extract suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. Results from Western blot analysis further confirmed that AL extract strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB. The protein expression of iNOS and COX-2 in response to LPS stimulation was significantly decreased with the presence of AL extract. AL extract was found to play an anti-inflammatory role, in part through inhibiting LPS-induced activation of Akt. The extract had negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Specifically, incubation of cells with the extract for only 3 h demonstrated the rapid action of AL extract on inhibiting the phosphorylation of Akt, but not ERK1/2. Longer exposure (24 h) to AL extract was required to mildly reduce the phosphorylation of ERK1/2, p38, and JNK MAPKs. These results indicate that AL extract manipulates its anti-inflammatory effects mainly through blocking the PI3K/Akt and NF-κB signal transduction pathways. Collectively, we believe that AL could be a potential alternative agent for alleviating excessive inflammation in many inflammation-associated diseases.
Collapse
Affiliation(s)
- Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (M.N.T.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pensiri Buacheen
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (M.N.T.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand; (N.W.); (D.R.S.)
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand; (N.W.); (D.R.S.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (M.N.T.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (M.N.T.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel./Fax: +66-53-934597
| |
Collapse
|
22
|
Kaempferia parviflora Extract Inhibits STAT3 Activation and Interleukin-6 Production in HeLa Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20174226. [PMID: 31470515 PMCID: PMC6747281 DOI: 10.3390/ijms20174226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Kaempferia parviflora (KP) has been reported to have anti-cancer activities. We previously reported its effects against cervical cancer cells and continued to elucidate the effects of KP on inhibiting the production and secretion of interleukin (IL)-6, as well as its relevant signaling pathways involved in cervical tumorigenesis. We discovered that KP suppressed epidermal growth factor (EGF)-induced IL-6 secretion in HeLa cells, and it was associated with a reduced level of Glycoprotein 130 (GP130), phosphorylated signal transducers and activators of transcription 3 (STAT3), and Mcl-1. Our data clearly showed that KP has no effect on nuclear factor kappa B (NF-κB) localization status. However, we found that KP inhibited EGF-stimulated phosphorylation of tyrosine 1045 and tyrosine 1068 of EGF receptor (EGFR) without affecting its expression level. The inhibition of EGFR activation was verified by the observation that KP significantly suppressed a major downstream MAP kinase, ERK1/2. Consistently, KP reduced the expression of Ki-67 protein, which is a cellular marker for proliferation. Moreover, KP potently inhibited phosphorylation of STAT3, Akt, and the expression of Mcl-1 in response to exogenous IL-6 stimulation. These data suggest that KP suppresses EGF-induced production of IL-6 and inhibits its autocrine IL-6/STAT3 signaling critical for maintaining cancer cell progression. We believe that KP may be a potential alternative anti-cancer agent for suppressing cervical tumorigenesis.
Collapse
|
23
|
Kaempferia parviflora and Its Methoxyflavones: Chemistry and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4057456. [PMID: 30643531 PMCID: PMC6311295 DOI: 10.1155/2018/4057456] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Kaempferia parviflora (KP), a health-promoting herb, has been traditionally used for treating a variety of diseases. Pharmacological studies have claimed the various benefits from KP and its main effective methoxyflavones, including cellular metabolism-regulating activity, anticancer activity, vascular relaxation and cardioprotective activity, sexual enhancing activity, neuroprotective activity, antiallergic, anti-inflammatory, and antioxidative activity, antiosteoarthritis activity, antimicroorganism activity, and transdermal permeable activity. These might be associated with increased mitochondrial functions and activated cGMP-NO signaling pathway. However, the underlying molecular mechanisms of KP and its methoxyflavones are still under investigation. The clinical applications of KP and its methoxyflavones may be limited due to their low bioavailability. But promising strategies are on the way. This review will comprehensively discuss the biological activities of KP and its methoxyflavones.
Collapse
|
24
|
Asamenew G, Kim HW, Lee MK, Lee SH, Kim YJ, Cha YS, Yoo SM, Kim JB. Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3188-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Jin S, Lee MY. Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, Sebostatic and Anti- Propionibacterium acnes Activity. Int J Mol Sci 2018; 19:ijms19113457. [PMID: 30400322 PMCID: PMC6274695 DOI: 10.3390/ijms19113457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Kaempferia parviflora, referred to as black ginger, has traditionally been used as a health-promoting alternative medicine. In this study, we examined the anti-inflammatory, sebostatic, and anti-Propionibacterium acnes activities of K. parviflora extract. The extract significantly down-regulated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) level. Moreover, the phosphorylation of IĸBα and nuclear factor-kappa B (NF-κB), and the enhanced nuclear translocation of NF-κB p65 in lipopolysaccharide-stimulated murine macrophage-like cell line (RAW 264.7) cells were markedly decreased by the extract. Notably, the main component of K. parviflora, 5,7-dimethoxyflavone, also modulated the expression of iNOS and NF-κB signal molecules in P. acnes-stimulated human keratinocyte (HaCaT) cells. Additionally, K. parviflora extract inhibited the lipogenesis of sebocytes, as evidenced by a reduced level of triglyceride and lipid accumulation in the sebocytes. The sebostatic effect was also confirmed by a reduced expression of peroxisome proliferation-activating receptors (PPAR-γ) and oil-red O staining in sebocytes. Taken together, this study suggests for the first time that K. parviflora extract could be developed as a potential natural anti-acne agent with anti-inflammatory, sebostatic, and anti-P. acnes activity.
Collapse
Affiliation(s)
- Solee Jin
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
- Department of Medical Biotechnology, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| |
Collapse
|
26
|
Kim H, Moon JY, Burapan S, Han J, Cho SK. Induction of ER Stress-Mediated Apoptosis by the Major Component 5,7,4'-Trimethoxyflavone Isolated from Kaempferia parviflora Tea Infusion. Nutr Cancer 2018; 70:984-996. [PMID: 30273054 DOI: 10.1080/01635581.2018.1491607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kaempferia parviflora (KP) is a famous medicinal plant from Thailand, and is a rich source of various kinds of methoxyflavones (MFs). Many kinds of food products such as tea, capsule, and liquor are manufactured from the rhizomes of KP. In this study, KP infusions were prepared with different brewing conditions, and the amounts of three major methoxylflavones, 5,7-dimethoxyflavone (DMF), 5,7,4'-trimethoxyflavone (TMF), and 3,5,7,3',4'-pentamethoxyflavone (PMF), were analyzed. The antiproliferative activities of DMF, TMF, and PMF isolated from the brewed tea samples were evaluated. TMF was discovered to be significantly effective at inhibiting proliferation of SNU-16 human gastric cancer cells in a concentration dependent manner. TMF induced apoptosis, as evidenced by increments of sub-G1 phase, DNA fragmentation, annexin-V/PI staining, the Bax/Bcl-xL ratio, proteolytic activation of caspase-3,-7,-8, and degradation of poly (ADP-ribose) polymerase (PARP) protein. Furthermore, it was found that TMF induced apoptosis via ER stress, verified by an increase in the level of C/EBP homologous protein (CHOP), glucose regulated protein 78 (GRP78), inositol-requiring enzyme 1 α (IRE1α), activating transcription factor-4 (ATF-4), and the splice isoform of X-box-binding protein-1 (XBP-1) mRNA.
Collapse
Affiliation(s)
- Hyeonji Kim
- a Faculty of Biotechnology, College of Applied Life Sciences , SARI, Jeju National University , Jeju , Republic of Korea
| | - Jeong Yong Moon
- b Subtropical/Tropical Organism Gene Bank, Jeju National University , Jeju , Republic of Korea
| | - Supawadee Burapan
- c Metalloenzyme Research Group and Department of Integrative Plant Science , Chung-Ang University , Anseong , Republic of Korea
| | - Jaehong Han
- c Metalloenzyme Research Group and Department of Integrative Plant Science , Chung-Ang University , Anseong , Republic of Korea
| | - Somi Kim Cho
- a Faculty of Biotechnology, College of Applied Life Sciences , SARI, Jeju National University , Jeju , Republic of Korea.,b Subtropical/Tropical Organism Gene Bank, Jeju National University , Jeju , Republic of Korea
| |
Collapse
|
27
|
Das A, K H, S K DK, K HR, Jayaprakash B. Evaluation of Therapeutic Potential of Eugenol-A Natural Derivative of Syzygium aromaticum on Cervical Cancer. Asian Pac J Cancer Prev 2018; 19:1977-1985. [PMID: 30051686 PMCID: PMC6165650 DOI: 10.22034/apjcp.2018.19.7.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/18/2018] [Indexed: 02/01/2023] Open
Abstract
Background: The intendment of this study is to determine the pursuance in – vitro anticancer activity and cytotoxicity of Syzygium aromaticum against the human cervical cancer cell line (HeLa) compared to the normal cell lines. Apoptogenic properties of DCM extract of Eugenol was determined in this entire study. Materials and Methods: HeLa cell lines were cultured in DMEM medium and incubated with different concentration of DCM – Eugenol extract. MTT assay brought out the way to determine the cell viability and quantification was done with the optical absorbance at 570 nm and 620 nm as reference. Apoptotic cells were affirmed by dual staining using acridine orange bromide. Besides, the morphology of the nucleus was also confirmed by dual staining. Eugenol inhibited 50% growth (IC50) of HeLa cell lines at 200 mg/ml of extract concentration. Results: Inhibitory efficacy of eugenol isolated from Syzyzgyium aromaticum showed the cell – viability in time and dose dependent manner with consistent morphological changes. Flow cytometer determined the apoptosis confirming the cytotoxicity value for MTT at IC50 with 81.85% cell viability. Dual staining firmly enacts the damaged cells due to AO indicating apoptosis confirmation by dual staining. Morphological analysis also clearly states that nil apoptosis has been seen in control and similarly in eugenol treated when compared to cancerous HeLa cell – line. Conclusion: Evaluation of cytotoxicity effect of eugenol isolated from Syzygium aromaticum showed it can be unrivalled dormant source of prodigious changes in HeLa cell line indicating (revealing) that chemotherapeutic agent.
Collapse
Affiliation(s)
- Arunava Das
- Department of Biotechnology, Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Bannari Amman Institute of Technology, Sathyamangalam, India
| | | | | | | | | |
Collapse
|
28
|
Paramee S, Sookkhee S, Sakonwasun C, Na Takuathung M, Mungkornasawakul P, Nimlamool W, Potikanond S. Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:178. [PMID: 29891015 PMCID: PMC5996531 DOI: 10.1186/s12906-018-2241-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Kaempferia parviflora (KP) is an herb found in the north of Thailand and used as a folk medicine for improving vitality. Current reports have shown the anti-cancer activities of KP. However, the anti-cancer effects of KP on highly aggressive ovarian cancer have not been investigated. Therefore, we determined the effects of KP on cell proliferation, migration, and cell death in SKOV3 cells. METHODS Ovarian cancer cell line, SKOV3 was used to investigate the anti-cancer effect of KP extract. Cell viability, cell proliferation, MMP activity, cell migration, and invasion were measured by MTT assay, cell counting, gelatin zymography, wound healing assay, and Transwell migration and invasion assays, respectively. Cell death was determined by trypan blue exclusion test, AnnexinV/PI with flow cytometry, and nuclear staining. The level of ERK and AKT phosphorylation, and caspase-3, caspase-7, caspase-9 was investigated by western blot analysis. RESULTS KP extract was cytotoxic to SKOV3 cells when the concentration was increased, and this effect could still be observed even though EGF was present. Besides, the cell doubling time was significantly prolonged in the cells treated with KP. Moreover, KP strongly suppressed cell proliferation, cell migration and invasion. These consequences may be associated with the ability of KP in inhibiting the activity of MMP-2 and MMP-9 assayed by gelatin zymography. Moreover, KP at high concentrations could induce SKOV3 cell apoptosis demonstrated by AnnexinV/PI staining and flow cytometry. Consistently, nuclear labelling of cells treated with KP extract showed DNA fragmentation and deformity. The induction of caspase-3, caspase-7, and caspase-9 indicates that KP induces cell death through the intrinsic apoptotic pathway. The antitumor activities of KP might be regulated through PI3K/AKT and MAPK pathways since the phosphorylation of AKT and ERK1/2 was reduced. CONCLUSIONS The inhibitory effects of KP in cell proliferation, cell migration and invasion together with apoptotic cell death induction in SKOV3 cells suggest that KP has a potential to be a new candidate for ovarian cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Suthasinee Paramee
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
- Graduate School, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Choompone Sakonwasun
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
29
|
Ochiai W, Kobayashi H, Kitaoka S, Kashiwada M, Koyama Y, Nakaishi S, Nagai T, Aburada M, Sugiyama K. Effect of the active ingredient of Kaempferia parviflora, 5,7-dimethoxyflavone, on the pharmacokinetics of midazolam. J Nat Med 2018; 72:607-614. [PMID: 29550915 DOI: 10.1007/s11418-018-1184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
Abstract
5,7-Dimethoxyflavone (5,7-DMF), one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. On the other hand, in vitro studies have reported that it directly inhibits the drug metabolizing enzyme family cytochrome P450 (CYP) 3As. In this study, its safety was evaluated from a pharmacokinetic point of view, based on daily ingestion of 5,7-DMF. Midazolam, a substrate of CYP3As, was orally administered to mice treated with 5,7-DMF for 10 days, and its pharmacokinetic properties were investigated. In the group administered 5,7-DMF, the area under the curve (AUC) of midazolam increased by 130% and its biological half-life was extended by approximately 100 min compared to the control group. Compared to the control group, 5,7-DMF markedly decreased the expression of CYP3A11 and CYP3A25 in the liver. These results suggest that continued ingestion of 5,7-DMF decreases the expression of CYP3As in the liver, consequently increasing the blood concentrations of drugs metabolized by CYP3As.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Hiroko Kobayashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mayumi Kashiwada
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saho Nakaishi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomomi Nagai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masaki Aburada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kiyoshi Sugiyama
- Department of Functional Molecule, Kinetics Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|