1
|
Chen C, Liu X, Wang J, Wen X, Zhao H, Chen G, Wu K. Zinc-Mediated Deacetylation of Farnesoid X Receptor Activates the Adipose Triglyceride Lipase Pathway to Reduce Hepatic Lipid Accumulation and Enhance Lipolysis in Yellow Catfish. J Nutr 2025:S0022-3166(25)00163-4. [PMID: 40089111 DOI: 10.1016/j.tjnut.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND High-fat diets (HFDs) can lead to excessive accumulation of lipids in the liver, leading to liver injury. Dietary zinc (Zn) has been shown to reduce HFD-induced lipid accumulation and improve lipid profiles in mammals, yet it remains unclear whether waterborne Zn maintains its lipid-lowering effects in osteichthyes. OBJECTIVES This study aimed to elucidate the regulatory role of Zn in HFD-induced hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and its potential mechanisms. METHODS Yellow catfish were fed a control diet (11.21% lipid concentration), HFD (16.10% lipid concentration), or HFD combined with waterborne Zn exposure (0.2 mg/L) for 8 wk. Various biochemical, genetic, histologic, and molecular techniques were conducted to evaluate hepatic lipid deposition and lipid metabolism and determine protein interactions between silent information regulator (SIRT) 1 and farnesoid X receptor (FXR), as well as protein-gene interactions between FXR and adipose triglyceride lipase (ATGL). RESULTS HFD feeding significantly increased liver fat content and induced hepatic damage in yellow catfish, but concurrent exposure to waterborne Zn alleviated these detrimental effects. Zn treatment increased mRNA and protein concentrations of SIRT1 (mean ± SEM; 97.19% ± 11.67% and 83.25% ± 28.60%, respectively) and FXR (163.90% ± 24.60% and 24.90% ± 11.12%, respectively) in yellow catfish liver (P < 0.05). Zn-activated FXR directly interacted with the promoter of ATGL, stimulating the expression of atgl (54.40% ± 16.33%; P < 0.05) and facilitating the hydrolysis of triglycerides and lipid droplets. Furthermore, Zn reduced the acetylation concentration of FXR by SIRT1 deacetylation of FXR protein K167. CONCLUSIONS The findings reveal that Zn protect against HFD-induced liver injury in yellow catfish by promoting the deacetylation of FXR protein K167 by SIRT1 and activating FXR, thereby promoting the transcriptional activation of ATGL to increase lipolysis.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Xuebo Liu
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wang
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Wen
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Huihong Zhao
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Guanghui Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kun Wu
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China.
| |
Collapse
|
2
|
Wang T, Chen X, Gao Q, Huang C, Wang K, Qiu F. Herb-drug interaction potential of Astragali Radix: a metabolic perspective. Drug Metab Rev 2025; 57:9-25. [PMID: 39692050 DOI: 10.1080/03602532.2024.2441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Astragali Radix (AR) is one of the most widely used herbs in Asia and has a wide range of biological activities. These activities are attributed to its various compounds like flavonoids, saponins, and polysaccharides. AR and its major components are often used in combination with other drugs for the treatment of diseases such as cancer and cerebral ischemia. With the expanding range of AR combinations, the potential for herb-drug interaction (HDI) has been raised. Key targets in HDI studies include drug-metabolizing enzymes (DMEs) and transporters. Existing studies have shown that AR and its major components have various regulatory effects on these targets, notably CYP2C9, CYP3A4, UGT1A6, and P-gp. AR may contribute to HDI when it is taken with substrates of these biomolecules, such as tolbutamide, midazolam, and digoxin. However, there are also different views in the current study, such as the effect of AR on CYP3A4. To better understand the interactions of AR with drugs, we review the metabolic pathways and pharmacokinetic parameters of the main components of AR. Meanwhile, the regulatory effects and mechanisms of AR on DMEs and transporters are summarized to provide a theoretical and technical basis for the rational use of AR in clinical practice.
Collapse
Affiliation(s)
- Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xiaofei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Chonggang Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
3
|
Deng Y, Shen L, Zhu H, Zhou Y, Hu X. Network pharmacology analysis of the Huangqi-Gancao herb pair reveals quercetin as a therapeutics for allergic rhinitis via the RELA-regulated IFNG/IRF1 axis response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1597-1612. [PMID: 39133272 PMCID: PMC11825621 DOI: 10.1007/s00210-024-03353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Despite the complexity of allergic rhinitis (AR) pathogenesis, no FDA-approved drug has been developed to achieve optimal therapeutic effects. The present study explored the efficacy and mechanism of Huangqi (Hedysarum Multijugum Maxim)-Gancao (Glycyrrhizae Radix et Rhizoma or licorice) herb pair in treating AR by network pharmacology and experimental approaches. The bioactive ingredients of Huangqi and Gancao were identified and used to predict the targets of these herbs in AR and generate the pharmacological network. Ovalbumin (OVA)-induced AR mouse model was established to assess the anti-AR effect of the Huangqi decoction (HQD) prepared based on both herbs. We identified 90 active ingredients of the Huangqi-Gancao pair, targeting 69 AR-related genes. Quercetin (QUE) was identified as the hub ingredient of this pair, with 57 targets in AR. The protein-protein interaction (PPI) network analysis and molecular docking revealed IL1B, TNF, STAT1, IL6, PTGS2, RELA, IL2, NFKBIA, IFNG, IL10, IL1A, IRF1, EGFR, and CXCL10 as important targets of QUE in AR treatment. Experimentally, QUE or HQD significantly alleviated the AR-induced histopathological changes, AR symptoms, and IgE level and counteracted AR-induced expression changes of IFNG, IRF1, RELA, and NFKBIA. These effects were promoted by the NF-kB inhibitor helenalin, indicating that HQD and QUE counteracted AR in mice by regulating the IFNG/IRF1 signaling via the NF-κB pathway in AR mice. These findings shed light on the efficacy of the constituents of Huangqi-Gancao pair, their potential targets, and the molecular mechanisms of HQD in treating AR, which could advance the development of tailored therapeutic interventions for this disorder.
Collapse
Affiliation(s)
- Yongjun Deng
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Limin Shen
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Huilan Zhu
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Yanying Zhou
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Xin Hu
- Department of Otolaryngology, Renhe Hospital in Baoshan District, Shanghai, 200431, China.
| |
Collapse
|
4
|
Zhang J, Chen Y, Luo G, Luo Y. Molecular mechanism of geniposide against ANIT-induced intrahepatic cholestasis by integrative analysis of transcriptomics and metabolomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:765-779. [PMID: 39052058 DOI: 10.1007/s00210-024-03320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Geniposide (GE), a bioactive compound extracted from the fruit of Gardenia jasminoides Ellis, has attracted significant attention for its hepatoprotective therapeutic applications. Although GE displays a protective effect on treating intrahepatic cholestasis (IC), the underlying mechanism remains elusive. In this study, we aimed to elucidate the pharmacological mechanisms of GE in treating IC by an integrated analysis of transcriptomics and metabolomics. Firstly, we evaluated the hepatoprotective effect of GE in α-naphthylisothiocyanate (ANIT)-induced IC rats by examining biochemical indices, inflammatory factors, and oxidative stress levels. Secondly, by transcriptomics and serum metabolomics, we identified differentially expressed genes and metabolites, revealing phenotype-related metabolic pathways and gene functions. Lastly, we screened the core targets of GE in the treatment of IC by integrating transcriptomic and metabolomic data and validated these targets using western blotting. The results indicated that GE improved serum indexes and alleviated inflammation reactions and oxidative stress in the liver. The transcriptomics analysis revealed 739 differentially expressed genes after GE treatment, mainly enriched in retinol metabolism, steroid hormone synthesis, PPAR signal transduction, bile secretion metabolism, and other pathways. The metabolomics analysis identified 98 differential metabolites and 10 metabolic pathways. By constructing a "genes-targets-pathways-compounds" network, we identified two pathways: the bile secretion pathway and the glutathione pathway. Within these pathways, we discovered nine crucial targets that were subsequently validated through western blotting. The results revealed that the GE group significantly increased the expression of ABCG5, NCEH1, OAT3, and GST, compared with the ANIT group. We speculate that GE has a therapeutic effect on IC by modulating the bile secretion pathway and the glutathione pathway and regulating the expression of ABCG5, NCEH1, OAT3, and GST.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yunting Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Guangming Luo
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Yangjing Luo
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Hu Z, Cheng X, Cai J, Huang C, Hu J, Liu J. Emodin alleviates cholestatic liver injury by modulating Sirt1/Fxr signaling pathways. Sci Rep 2024; 14:16756. [PMID: 39033253 PMCID: PMC11271454 DOI: 10.1038/s41598-024-67882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Emodin (EMO) has the effect of anti-cholestasis induced by alpha-naphthylisothiocyanate (ANIT). But its mechanism is still unclear. The farnesoid X receptor (Fxr) is the master bile acid nuclear receptor. Recent studies have reported that Sirtuin 1 (Sirt1) can regulate the activities of Fxr. The purpose of the current study was to investigate the mechanism of EMO against ANIT-induced liver injury based on Sirt1/Fxr signaling pathway. The ANIT-induced cholestatic rats were used with or without EMO treatment. Serum biochemical indicators, as well as liver histopathological changes were examined. The genes expressions of Sirt1, Fxr, Shp, Bsep and Mrp2 were detected. The expressions of Sirt1, Fxr and their downstream related genes were investigated in vitro. The results showed that EMO significantly alleviated ANIT-induced liver injury in rats, and increased Sirt1, Fxr, Shp, Bsep and Mrp2 gene expression in liver, while decreased the expression of Cyp7a1. EMO significantly activated Fxr, while Sirt1 inhibitor and Sirt1 gene silencing significantly reduced Fxr activity in vitro. Collectively, EMO in the right dose has a protective effect on liver injury induced by ANIT, and the mechanism may be through activation of Fxr by Sirt1, thus regulating bile acid metabolism, and reducing bile acid load in hepatocytes.
Collapse
Affiliation(s)
- Zhi Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaohua Cheng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Cai
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chao Huang
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jianming Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
6
|
Cai J, Zhu Z, Li Y, Li Q, Tian T, Meng Q, Wang T, Ma Y, Wu J. Artemisia capillaris Thunb. Polysaccharide alleviates cholestatic liver injury through gut microbiota modulation and Nrf2 signaling pathway activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118009. [PMID: 38447617 DOI: 10.1016/j.jep.2024.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Meng
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Han X, Lin C, Liu H, Li S, Hu B, Zhang L. Allocholic acid protects against α-naphthylisothiocyanate-induced cholestasis in mice by ameliorating disordered bile acid homeostasis. J Appl Toxicol 2024; 44:582-594. [PMID: 37968239 DOI: 10.1002/jat.4562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Cholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by α-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and β-muricholic acid (β-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.
Collapse
Affiliation(s)
- Xue Han
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chuyi Lin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huijie Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Fu K, Dai S, Li Y, Ma C, Xue X, Zhang S, Wang C, Zhou H, Zhang Y, Li Y. The protective effect of forsythiaside A on 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestatic liver injury in mice: Based on targeted metabolomics and molecular biology technology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166822. [PMID: 37523877 DOI: 10.1016/j.bbadis.2023.166822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Cholestasis is a disorder of bile secretion and excretion caused by a variety of etiologies. At present, there is a lack of functional foods or drugs that can be used for intervention. Forsythiaside A (FTA) is a natural phytochemical component isolated from the medicinal plant Forsythia suspensa (Thunb.) Vahl, which has a significant hepatoprotective effect. In this study, we investigated whether FTA could alleviate liver injury induced by cholestasis. In vitro, FTA reversed the decrease in viability of human intrahepatic bile duct epithelial cells, the decrease in antioxidant enzymes (SOD1, CAT and GSH-Px), and cell apoptosis induced by lithocholic acid. In vivo, FTA protected mice from 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury, abnormal serum biochemical indexes, abnormal bile duct hyperplasia, and inflammatory infiltration. Furthermore, FTA treatment alleviated liver fibrosis by inhibiting collagen deposition and HSC activation. The metabonomic results showed that DDC-induced bile acid disorders in the liver and serum were reversed after FTA treatment, which may benefit from the activation of the FXR/BSEP axis. In addition, FTA treatment increased the levels of antioxidant enzymes in the serum and liver. Meanwhile, FTA treatment inhibited ROS and MDA levels and cleaved caspase 3 protein expression, thereby reducing DDC-induced hepatic oxidative stress and apoptosis. Further studies showed that the antioxidant effects of FTA were dependent on the activation of the BRG1/NRF2/HO-1 axis. In a word, FTA has a significant hepatoprotective effect on cholestatic liver injury, and can be further developed as a functional food or drug to prevent and treat cholestatic liver injury.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z, Shen L, Cao S, Ma X, Zhou Z, Chen D, Peng G. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci 2023; 24:16086. [PMID: 38003277 PMCID: PMC10671340 DOI: 10.3390/ijms242216086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| |
Collapse
|
10
|
Fan S, Yu X, Li Y, Zhou Z, Ye J, Guo K, Huang K, Ke X. Combining lipidomics and efficacy-oriented compatibility revealed that Qi Ge decoction compatibility improved lipid metabolism in hyperlipidemic rats. Biomed Chromatogr 2023; 37:e5595. [PMID: 36734105 DOI: 10.1002/bmc.5595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The mechanism underlying traditional Chinese medicine (TCM) compatibility is difficult to understand. This study combined lipidomics and efficacy-oriented compatibility to explore underlying compatibility mechanisms of Qi Ge decoction (QG) for improving lipid metabolism in hyperlipidemic rats. The QG was divided into three groups according to the efficacy group strategy: the Huangqi-Gegen (HG), Chenpi (CP), and QG groups. Hyperlipidemic rats were treated with QG, HG, CP, or atorvastatin for 3 weeks. The mass spectral data of widely targeted lipidomics were used to evaluate lipid changes. Principal component analysis and orthogonal partial least squares discriminant analysis were used to assess the lipidomic differences between the groups. MetaboAnalyst 5.0 was used to explore metabolic pathways. Compared with the model group, serum cholesterol, triglyceride, and hepatic steatosis were significantly reduced by QG, whereas HG and CP had no significant effects on these indexes. Lipidomics showed that QG, HG, and CP back-regulated 60, 11, and 14 lipids, respectively. Compared with HG and CP, QG had more metabolic targets in diglycerides, triglycerides, ceramides, and phosphatidylethanolamines. Pathway analysis indicated that QG mainly regulated glycerophospholipid and glycerolipid metabolism. This study provided a new method of combining lipidomics and efficacy-oriented compatibility for exploring the scientific connotation of TCM compatibility.
Collapse
Affiliation(s)
- Simin Fan
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoqing Yu
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanfang Li
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zunming Zhou
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jintong Ye
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kaixin Guo
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Identification of Yinchenwuling fang's active components and hepatoprotective effects against cholestatic liver damage induced by alpha-naphthyl isothiocyanate in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123570. [PMID: 36542898 DOI: 10.1016/j.jchromb.2022.123570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Yinchenwuling Fang (YCWLF), a famous traditional Chinese medicine, has been used clinically for cholestatic liver disease treatment. However, quantification analysis for YCWLF components and their pharmacological effects remains largely unknown. Therefore, we aimed to determine the YCWLF components and their activities. Quantification analysis of 12 YCWLF components was performed using a comprehensive ultra-performance liquid chromatography (UPLC) coupled with the triple-quadrupole mass spectrometry method. Then, the anti-cholestasis effect and potential mechanism of YCWLF were performed in a mouse model induced by alpha-naphthyl isothiocyanate (ANIT). YCWLF decreased serum biochemical indicators (ALT, AST, ALP, TBA, TBIL, and DBIL) and ameliorated liver tissue damage in cholestatic mice. Mechanically, YCWLF increased the expression of the farnesoid X receptor (FXR) and its downstream efflux transporters and metabolic enzyme genes, reversed the disordered homeostasis of bile acids, and decreased cholestatic liver injury. Based on the important role of FXR in YCWLF amelioration on cholestasis, a dual-luciferase assay was used to screen the potential agonist of FXR from 12 YCWLF components. Chlorogenic acid, 4-hydroxyacetophenone, scoparone, atractylenolide Ⅰ, atractylenolide Ⅱ, and alisol B 23-acetate exhibited an activity effect of FXR. This study provides novel a therapeutic mechanism and potential active compounds of YCWLF on cholestatic liver injury.
Collapse
|
12
|
Wang W, Shi Y, Qiu T, Meng J, Ding J, Wang W, Wu D, Li K, Liu J, Wu Y. Modified rougan decoction alleviates lipopolysaccharide-enrofloxacin-induced hepatotoxicity via activating the Nrf2/ARE pathway in chicken. Poult Sci 2022; 102:102404. [PMID: 36584418 PMCID: PMC9827067 DOI: 10.1016/j.psj.2022.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Liver injury plays a heavy burden on the chicken industry. Although modified rougan decoction is a prescription for the treatment of liver disease based on the classical prescription of rougan decoction (containing peony and licorice). However, the effect and mechanism of modified rougan decoction on the liver remain unclear. In this study, the effects of the water extracts (MRGD) and the alcohol precipitates of water extracts (MRGDE) against lipopolysaccharide-enrofloxacin (LPS-ENR)-induced hepatotoxicity were discussed in vivo and in vitro. The isolated hepatocytes and 128 one-day-old Hyline chickens were considered research objects. The indices of liver injury and oxidative stress were evaluated by hematoxylin and eosin (H&E) stained and the assay kits, and the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway was detected by the RT-PCR, western blot, and immunofluorescence tests. All data were analyzed using the IBM SPSS 20.0 software. In vivo, the structural integrity of the liver was maintained, AST, ALT, and MDA levels were decreased, and antioxidant enzymes were increased, confirming that the oxidative stress was reduced and liver injury was alleviated. Correspondingly, MRGD and MRGDE were observed to improve cell viability and decrease lactate dehydrogenase (LDH) in vitro, and the cell oxidative damage was reduced. In addition, the nuclear translocation of Nrf2 was improved significantly, and the mRNA and protein expression levels of the related genes were upregulated. In conclusion, MRGD and MRGDE can exert a protective effect against LPS-ENR-induced hepatotoxicity by activating the Nrf2/ARE pathway, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, no significant difference was found between the 2 extracts, suggesting that a depth extraction method did not always improve the efficacy of natural medicine. Our results provided new insights into finding effective hepatoprotective medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | |
Collapse
|
13
|
Wei C, Qiu J, Wu Y, Chen Z, Yu Z, Huang Z, Yang K, Hu H, Liu F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115550. [PMID: 35863612 DOI: 10.1016/j.jep.2022.115550] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is mainly characterized by cholestasis. If not treated, it will deteriorate to cholestatic hepatitis, liver fibrosis, liver cirrhosis, and even liver failure. CLD has a high clinical incidence, and limited treatment with single therapy. In the long-term clinical exploration, traditional Chinese medicine (TCM) has been corroborated with unique therapeutic effects on the CLD process. AIM OF THIS REVIEW This paper summarizes the effective single and compound TCMs for the treatment of CLD. According to 4 important clinical stages of CLD: cholestasis, hepatitis, liver fibrosis, liver cirrhosis, pharmacological effects and mechanisms of 5 typical TCM examples are reviewed, aims to provide basis for clinical drug selection in different processes of CLD. MATERIALS AND METHODS Relevant scientific articles regarding therapeutic effects of TCM for the CLD were collected from different databases. We collated three single herbs including Artemisia scoparia Waldst. et Kit. or Artemisia capillaris Thunb. (Artemisiae Scopariae Herba, Yin Chen in Chinese), Paeonia lactiflora Pall. or Paeonia veitchii Lynch. (Paeoniae radix rubra, Chi Shao in Chinese), Poria cocos (Schw.) Wolf (Poria, Fu Ling in Chinese), and two compound herbs of Huang Qi Decoction (HQD) and Yin Chen Hao Decoction (YCHD) to studied and analyzed. RESULTS We proposed five promising TCMs treatments for the important developmental stages of CLD. Among them, Yin Chen is an essential medicine for protecting liver and gallbladder, and its TCM prescription is also a promising strategy for cholestasis. Based on clinical evidence, high-dose application of Chi Shao is a clinical special treatment of cholestasis hepatitis. Fu Ling can regulate immune cells and increase antibody levels in serum, which is expected to be an emerging therapy to prevent cholestatic liver fibrosis to cirrhosis. HQD can be used as routine clinical medicine for liver fibrosis. In addition, YCHD can exert better comprehensive advantages with multiple components, can treat the whole course of CLD and prevent it from developing to the end-stage. CONCLUSION Yin Chen, Chi Shao, Fu Ling, HQD and YCHD have shown good clinical efficacy in controlling the development of CLD. Clinically, it is easier to curb the development of CLD by adopting graded diagnosis and treatment measures. We suggest that CLD should be risk stratified in clinical treatment to ensure personalized treatment for patients, so as to slow down the development of the disease.
Collapse
Affiliation(s)
- Chunlei Wei
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Jing Qiu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Fang Liu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| |
Collapse
|
14
|
Shang J, Guo H, Li J, Li Z, Yan Z, Wei L, Hua Y, Lin L, Tian Y. Exploring the mechanism of action of Sanzi formula in intervening colorectal adenoma by targeting intestinal flora and intestinal metabolism. Front Microbiol 2022; 13:1001372. [PMID: 36160256 PMCID: PMC9504867 DOI: 10.3389/fmicb.2022.1001372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background Sanzi formula (SZF) is a kind of Chinese herbal compound that has a certain effect on the prevention and treatment of colorectal adenoma (CRA), which can prevent and control the process of CRA-cancer transformation. In this study, we explored the mechanism of action of SZF in anti-CRA using 16S rRNA sequencing and metabolomics technology. Methods Mice were randomly divided into three groups: Control group, Apcmin/+ model group, and SZF treatment group. Except for the Control group, which used C57BL/6 J mice, the remaining two groups used Apcmin/+ mice. The Control group and Apcmin/+ model group were treated with ultrapure water by gavage, while the SZF treatment group was treated with SZF for 12 weeks. During this period, the physical changes of mice in each group were observed. The gut microbiota was determined by high-throughput sequencing of the 16S rRNA gene, and LC-ESI-MS/MS was used for colorectal metabolomics analysis. Results Sequencing of the 16S rRNA gut flora yielded 10,256 operational taxonomic units and metabolomic analysis obtained a total of 366 differential metabolites. The intestinal flora analysis showed that SZF could improve intestinal flora disorders in Apcmin/+ mice. For instance, beneficial bacteria such as Gastranaerophilales significantly increased and harmful bacteria such as Angelakisella, Dubosiella, Muribaculum, and Erysipelotrichaceae UCG-003 substantially decreased after the SZF intervention. In addition, metabolomic data analysis demonstrated that SZF also improved the colorectal metabolic profile of Apcmin/+ mice. In Apcmin/+ mice, metabolites such as Anserine and Ectoine were typically increased after SZF intervention; in contrast, metabolites such as Taurocholic acid, Taurochenodesoxycholic acid, Hyocholic acid, Cholic acid, and Tauro-alpha-muricholic acid showed noteworthy reductions. Metabolic flora association analysis indicated that 13 differential flora and 11 differential metabolites were associated. Conclusion SZF affects the abundance of specific intestinal flora and regulates intestinal flora disorders, improves colorectal-specific metabolites, and ameliorates intestinal metabolic disorders to prevent and treat CRA. Furthermore, the application of intestinal flora and colorectal metabolomics association analysis offers new strategies to reveal the mechanism of action of herbal medicines for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Jingyu Shang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Guo
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhongyi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhanpeng Yan
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Lanfu Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yongzhi Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Lin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Lin Lin,
| | - Yaozhou Tian
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- Yaozhou Tian,
| |
Collapse
|
15
|
Liu J, Liu J, Meng C, Huang C, Liu F, Xia C. Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating Fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154173. [PMID: 35605478 DOI: 10.1016/j.phymed.2022.154173] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.
Collapse
Affiliation(s)
- Jianming Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Jiawei Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Meng
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Huang
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
16
|
Si YC, Ren CC, Zhang EW, Kang ZX, Mo XY, Li QQ, Chen B. Integrative Analysis of the Gut Microbiota and Metabolome in Obese Mice with Electroacupuncture by 16S rRNA Gene Sequencing and HPLC-MS-based Metabolic Profiling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:673-690. [PMID: 35282806 DOI: 10.1142/s0192415x22500276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acupuncture has been used to treat numerous diseases such as obesity in China for thousands of years. Several mechanisms of acupuncture on obesity have been surveyed based on metabolomics, but the effects of acupuncture on the alterations in the gut flora are still unclear. In this study, an integrated approach based on 16S rRNA gene sequencing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) metabolic profiling was conducted to investigate the effects of acupuncture on high-fat-diet-induced obesity through the regulation of the relative abundances of gut microbiota and their relationships with biomarker candidates. A total of 10 significantly altered bacterial genera and 11 metabolites were recognized, which recovered to normal levels after electroacupuncture treatment. The relative abundances of the bacterial families Muribaculaceae,Lachnospiraceae,Desulfovibrionaceae,Helicobacteraceae, Prevotellaceae,Ruminococcaceae,Rikenellaceae,Deferribacteraceae,Bacteroidaceae andTannerellaceaewere remarkedly changed among the three groups. Potential biomarkers, including LysoPC(0:0/16:0) ([Formula: see text]1),PC(0:0/18:0) ([Formula: see text]2),Cholic acid([Formula: see text]3),LysoPC(16:0) ([Formula: see text]4), 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid([Formula: see text]5), 5beta-Cyprinolsulfate([Formula: see text]6),PC(18:0/0:0) ([Formula: see text]7), 1-Nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene([Formula: see text]8),Glycocholic acid([Formula: see text]9),[Formula: see text]-Arginine([Formula: see text]10) andGulonic acid([Formula: see text]11), were involved in several metabolic pathways, such as the glycerophospholipid metabolism and primary bile acid biosynthesis. Interestingly, there was a strong correlation between the perturbed gut flora in Bilophila and Bifidobacterium and the altered intestinal metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. This finding suggested that the effects of electroacupuncture might change the proportions of Bilophila and Bifidobacterium by regulating the constituents of the functional metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. These results indicated that the effects of electroacupuncture focused on custom metabolic pathways as well as depend on the changes in the gut microbiota in obesity. These findings suggest that the 16S rRNA gene sequencing and HPLC-MS-based metabolomics approach can be applied to comprehensively assess the effects of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yuan-Cheng Si
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Chen-Chen Ren
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Er-Wei Zhang
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Zhao-Xia Kang
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Xi-Ya Mo
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Qing-Qing Li
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| | - Bo Chen
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
17
|
Fang S, Wang T, Li Y, Xue H, Zou J, Cai J, Shi R, Wu J, Ma Y. Gardenia jasminoides Ellis polysaccharide ameliorates cholestatic liver injury by alleviating gut microbiota dysbiosis and inhibiting the TLR4/NF-κB signaling pathway. Int J Biol Macromol 2022; 205:23-36. [PMID: 35176320 DOI: 10.1016/j.ijbiomac.2022.02.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Gardenia jasminoides Ellis is a well-known herbal medicine. In this study, the effect of G. jasminoides Ellis polysaccharide (GPS) on liver injury in an alpha-naphthylisothiocyanate (ANIT)-induced cholestatic mouse model and the associated molecular mechanisms were investigated. GPS administration dose-dependently ameliorated impaired hepatic function, including a 2-7-fold decrease in aminotransferase levels, ameliorating tissue damage, upregulating the expression of farnesoid X receptor (FXR) and pregnane X receptor (PXR) and their downstream efflux transporters, and decreasing the levels of 12 bile acids (BAs), in cholestatic mice. Furthermore, GPS ameliorated gut microbiota dysbiosis, improved intestinal barrier function, and reduced serum and hepatic lipopolysaccharide levels 1.5-fold. GPS also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling, decreased the expression of inflammatory factor genes, and ameliorated hepatic inflammation. Notably, fecal microbiota transplantation from GPS-fed mice also increased the hepatic expression of FXR, PXR, and efflux transporters; decreased the levels of 12 BAs; restored intestinal barrier function; and decreased hepatic inflammation mediated by the TLR4/NF-κB pathway. In conclusion, GPS has a protective effect against cholestatic liver injury through modulation of gut microbiota and inhibition of the TLR4/NF-κB pathway. Regulating gut microbiota using herbal medicine polysaccharides may hold unique therapeutic promise for cholestatic liver diseases.
Collapse
Affiliation(s)
- Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Haoyu Xue
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Cai J, Wu J, Fang S, Liu S, Wang T, Li Y, Zou J, Shi R, Wang Z, Yang L, Ma Y. Cultured bear bile powder ameliorates acute liver injury in cholestatic mice via inhibition of hepatic inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114829. [PMID: 34763041 DOI: 10.1016/j.jep.2021.114829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural bear bile powder (NBBP) is a traditional Chinese medicine used for treating liver dysfunction. Cultured bear bile powder (CBBP), which is produced using biotransformation of chicken bile, acts as an appropriate substitute for NBBP when treating cholestatic liver injury. AIM OF THE STUDY To investigate the molecular mechanisms underlying the hepatoprotective effects of CBBP in an α-naphthylisothiocyanate (ANIT)-induced cholestatic mouse model. MATERIALS AND METHODS Cholestatic mice were pretreated with CBBP or NBBP via oral gavage once a day for two weeks. Their blood biochemistry and liver histopathology were then evaluated using standard protocols. Western blot analyses, real-time polymerase chain reaction, and immunohistochemistry were used to evaluate changes in the protein levels and gene expression profiles of factors associated with hepatic inflammation and apoptosis in cholestatic mice. RESULTS CBBP significantly decreased the serum indices of liver injury, and ameliorated neutrophil infiltration and hepatocyte necrosis within liver tissue of cholestatic mice. Expression of the inflammatory factors, such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1, and intercellular adhesion molecule 1, was significantly reduced in CBBP-treated cholestatic mice. Moreover, proteins involved in the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-kappa B (TLR4/Myd88/NF-κB) signaling pathway, such as CD14, TLR4, Myd88, and NF-κB, that were increased in cholestatic mice, were downregulated by CBBP. Meanwhile, increased expression of the apoptosis-related proteins, caspase-3 and Bax, in cholestatic mice was reversed by CBBP treatment. CONCLUSION CBBP treatment alleviates ANIT-induced cholestasis and liver injury by reducing hepatocyte inflammation and apoptosis.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd., Shanghai, 201401, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- Center for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Tong G, Chen X, Lee J, Fan J, Li S, Zhu K, Hu Z, Mei L, Sui Y, Dong Y, Chen R, Jin Z, Zhou B, Li X, Wang X, Cong W, Huang P, Jin L. Fibroblast growth factor 18 attenuates liver fibrosis and HSCs activation via the SMO-LATS1-YAP pathway. Pharmacol Res 2022; 178:106139. [DOI: 10.1016/j.phrs.2022.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
|
20
|
Wang C, Peng F, Zhong B, Shi Y, Wang X, Jin X, Niu J. Metabolomic Analysis Reveals the Therapeutic Effects of MBT1805, a Novel Pan-Peroxisome Proliferator-Activated Receptor Agonist, on α-Naphthylisothiocyanate-Induced Cholestasis in Mice. Front Pharmacol 2021; 12:732478. [PMID: 34776958 PMCID: PMC8585842 DOI: 10.3389/fphar.2021.732478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aims: Therapeutic drugs that are used to treat cholestatic liver disease are limited; however, the results of clinical trials on primary biliary cholangitis treatment targeting peroxisome proliferator-activated receptors (PPARs) are encouraging. In this study, we aimed to identify the effects of MBT1805, a novel balanced PPARα/γ/δ agonist, on cholestasis induced by α-naphthylisothiocyanate (ANIT) and elucidate the underlying mechanisms through untargeted and bile acid-targeted metabolomic analysis. Methods: Levels of serum biochemical indicators (transaminase, aspartate transaminase, alkaline phosphatase, and total bilirubin) and liver histopathology were analyzed to evaluate the therapeutic effects of MBT1805 on ANIT-induced cholestasis in C57BL/6 mice. Untargeted and bile acid-targeted metabolomic analysis of liver tissues was performed using ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MC/MC). qRT-PCR and Western blot analysis were carried out to measure the expression of key enzymes and transporters regulating bile acid synthesis, biotransformation, and transport. Results: MBT1805 significantly improved abnormal levels of liver biochemical indicators and gallbladder enlargement induced by ANIT. Histopathological analysis showed that MBT1805 effectively relieved ANIT-induced necrosis, vacuolation, and inflammatory infiltration. Untargeted metabolomic analysis identified 27 metabolites that were involved in the primary biliary acid biosynthesis pathway. In addition, bile acid-targeted metabolomics showed that MBT1805 could alleviate the abnormal bile acid content and composition induced by ANIT. Furthermore, qRT-PCR and Western blot results confirmed that MBT1805 could effectively regulate bile acid synthesis, biotransformation, and transport which helps relieve cholestasis. Conclusions: MBT1805 is a potential candidate drug for cholestasis, with a balanced PPARα/γ/δ activation effect.
Collapse
Affiliation(s)
- Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Fei Peng
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Bohua Zhong
- Beijing JK HuaYuan Med Tech Company LTD, Beijing, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xueyuan Jin
- International Center for Liver Disease Treatment, Fifth Medical Center of China PLA General Hospital, Beijing, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| |
Collapse
|
21
|
Total flavonoids of Astragalus Ameliorated Bile Acid Metabolism Dysfunction in Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6675567. [PMID: 33953787 PMCID: PMC8057874 DOI: 10.1155/2021/6675567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
Astragalus Radix is one of the common traditional Chinese medicines used to treat diabetes. However, the underlying mechanism is not fully understood. Flavones are a class of active components that have been reported to exert various activities. Existing evidence suggests that flavones from Astragalus Radix may be pivotal in modulating progression of diabetes. In this study, total flavones from Astragalus Radix (TFA) were studied to observe its effects on metabolism of bile acids both in vivo and in vitro. C57BL/6J mice were treated with STZ and high-fat feeding to construct diabetic model, and HepG2 cell line was applied to investigate the influence of TFA on liver cells. We found a serious disturbance of bile acids and lipid metabolism in diabetic mice, and oral administration or cell incubation with TFA significantly reduced the production of total cholesterol (TCHO), total triglyceride, glutamic oxalacetic transaminase (AST), glutamic-pyruvic transaminase (ALT), and low-density lipoprotein (LDL-C), while it increased the level of high-density lipoprotein (HDL-C). The expression of glucose transporter 2 (GLUT2) and cholesterol 7α-hydroxylase (CYP7A1) was significantly upregulated on TFA treatment, and FXR and TGR5 play pivotal role in modulating bile acid and lipid metabolism. This study supplied a novel understanding towards the mechanism of Astragalus Radix on controlling diabetes.
Collapse
|
22
|
Zhang K, Wang M, Yao Y, Huang T, Liu F, Zhu C, Lin C. Pharmacokinetic study of seven bioactive components of Xiaoyan Lidan Formula in cholestatic and control rats using UPLC-MS/MS. Biomed Pharmacother 2021; 139:111523. [PMID: 33831838 DOI: 10.1016/j.biopha.2021.111523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
A rapid, sensitive, and reliable ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed to simultaneously determine the major bioactive components of Xiaoyan Lidan Formula (XYLDF) in rat plasma, using sulfamethoxazole as the internal standard (IS). The seven major bioactive components are andrographolide, dehydroandrographolide, enmein, 1-methoxicabony-β-carboline, 4,5-dimethoxy-canthin-6-one, 4-methoxy-5-hydroxy-canthin-6-one, and 1-hydroxymethyl-β-carboline. After pretreating by protein precipitation with methanol, separation was performed on a UPLC C18 column using gradient elution with a mobile phase consisting of acetonitrile and 0.1% formic acid at a flowing rate of 0.7 mL/min. Detection was performed on TSQ Quantum mass spectrometry set at the positive/negative ionization and multiple reaction monitoring (MRM) mode. The intra- and inter-day precision were less than 9.8%, whereas the intra- and inter-day accuracy were within ± 13.4%. The method was validated and applied to compare the pharmacokinetic profiles of the analytes in serum of Alpha-naphthylisothiocyanate (ANIT)-induced cholestasis and control rats after oral administration of XYLDF. The results showed remarkable differences in pharmacokinetic properties of the analytes between cholestatic (model) and control groups, thereby providing essential scientific information for better understanding of mechanism of XYLDF and a reference for its clinical applications.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Tao Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
23
|
Qiu J, Yan J, Liu W, Liu X, Lin J, Du Z, Qi L, Liu J, Xie G, Liu P, Wang X. Metabolomics analysis delineates the therapeutic effects of Huangqi decoction and astragalosides on α-naphthylisothiocyanate (ANIT) -induced cholestasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113658. [PMID: 33307056 DOI: 10.1016/j.jep.2020.113658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis caused by bile secretion and excretion disorders is a serious manifestation of liver disease. With limited treatment methods, it affects millions of people worldwide. Huangqi decoction (HQD), an effective traditional Chinese medicine, is used to treat chronic cholestatic liver diseases. However, the action mechanisms of it were not fully elucidated. AIM OF THE STUDY We aim to investigate the therapeutic effect of HQD, and its active component, astragalosides, against α-naphthylisothiocyanate (ANIT)-induced cholestasis in rats based on targeted metabolomics analysis and revel the potential mechanism. MATERIALS AND METHODS The therapeutic effect of HQD and astragalosides on ANIT-induced cholestasis model rats were evaluated by serum biochemical analysis. Liver damage was identified by histopathology. The levels of bile acids (BAs) and free fatty acids (FFAs) in serum and liver tissues were measured by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQMS). qRT-PCR and Western blot analysis were used to measure the expression of nuclear hormone receptor, membrane receptor and BA transporter protein in cholestatic rats before and after HQD and astragalosides treatment. RESULTS The obtained data showed that the administration of ANIT caused obvious cholestasis with significantly increased intrahepatic retention of hydrophobic BAs and altered FFAs, which were consistent with the liver histopathological and serum biochemical findings. HQD and astragalosides treatment were able to attenuate ANIT-induced BAs and FFAs perturbation, ameliorate the impaired liver function, histopathological ductular reaction, and lipid peroxidation damage by ANIT. Elevated mRNA and protein expression of transporters related to BA metabolism and genes related to lipogenesis and lipid oxidation metabolism in cholestasis were attenuated or normalized by HQD and astragalosides treatment. CONCLUSIONS Intervention by ANIT can significantly change the homeostasis of BAs and FFAs. HQD and astragalosides exerted a hepatoprotective effect against cholestatic liver injury by restoring the altered BA and FFA metabolism through the improvement of BA transporter, nucleus hormone receptor, and membrane receptor.
Collapse
Affiliation(s)
- Jiannan Qiu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyu Yan
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanxi Technology and Business College, Taiyuan, 030006, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinzhu Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Zeng Du
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Qi
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jia Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guoxiang Xie
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Zou J, Li W, Wang G, Fang S, Cai J, Wang T, Zhang H, Liu P, Wu J, Ma Y. Hepatoprotective effects of Huangqi decoction (Astragali Radix and Glycyrrhizae Radix et Rhizoma) on cholestatic liver injury in mice: Involvement of alleviating intestinal microbiota dysbiosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113544. [PMID: 33152436 DOI: 10.1016/j.jep.2020.113544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gut microbiome dysbiosis is closely associated with cholestatic liver disease. Huangqi decoction (HQD), a traditional herbal formula, has protection against cholestatic liver injury. However, the effect of HQD on gut microbiome remains unknown. AIM OF THE STUDY To investigate the effect of HQD on 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) induced cholestatic liver injury and its effect on the gut microbiome profiles. MATERIALS AND METHODS Mice with DDC-induced cholestatic liver injury were treated with low and high doses of HQD for 8 weeks. Fecal samples were analyzed by 16 S ribosomal DNA sequencing. Barrier function as well as intestinal and hepatic inflammation was analyzed by real-time PCR and western blotting. RESULTS HQD treatment ameliorated the DDC-induced liver injury and collagen deposition around hepatic bile ducts. Moreover, decreased diversity, reduced richness, and abnormal composition of intestinal microbiota of cholestatic mice were remarkably attenuated by HQD supplementation. Differences in bacterial abundance, including levels of Prevotellaceae_NK3B31_group, Alistipes, and Gordonibacter, were increased in DDC-induced mice, as compared with control mice, and were decreased after HQD treatment. Moreover, intestinal dysbiosis promoted disruption of the intestinal barrier in cholestatic mice. However, HQD treatment alleviated intestinal barrier dysfunction. Importantly, increased hepatic expression of pro-inflammatory factors and the NLRP3 inflammasome, which have a positive correlation with differential bacteria, were characteristics found in DDC-induced cholestatic mice that were alleviated upon treatment with HQD. CONCLUSION HQD treatment alleviated gut microbiota dysbiosis, ameliorated the intestinal barrier dysfunction, inhibited liver inflammation, and protected against DDC-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Wenkai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Guofeng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201204, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201204, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
25
|
Wu J, Fang S, Li W, Li Y, Li Y, Wang T, Yang L, Liu S, Wang Z, Ma Y. Metabolomics research on the hepatoprotective effect of cultured bear bile powder in α-naphthylisothiocyanate-induced cholestatic mice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122269. [PMID: 32739790 DOI: 10.1016/j.jchromb.2020.122269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
Natural bear bile powder (NBBP) is a famous traditional medicine and has been widely used in clinic. However, access to the sources of bear bile is restricted; hence, it is essential to discover new substitutes for NBBP. Cultured bear bile powder (CBBP) is transformed from chicken bile and contains main ingredients as to NBBP. In the present study, the effect and potential mechanism of action of CBBP on cholestatic liver injury in-naphthylisothiocyanate (ANIT)-induced mouse model was explored using metabolomics. CBBP treatment ameliorated impaired hepatic dysfunction and tissue damage that induced by ANIT. Metabolomics showed there were 28 different metabolites induced by ANIT as compared with control mice, and 18 of which was reversed by CBBP. Pathway analysis revealed that those 18 metabolites are mainly involved in bile acid (BA) biosynthesis and D-glutamine and D-glutamate metabolism. Further LC-MS/MS analysis showed that CBBP and NBBP both reduced serum and liver levels of BAs, but increased their biliary levels. Additionally, CBBP and NBBP upregulated expression of BA efflux transporters, Mrp2, Mrp3, and Mrp4, and metabolic enzymes, Cyp2b10 and Ugt1a1 of liver tissue of cholestatic mice, increased the BA excretion and metabolism. Moreover, CBBP and NBBP treatment upregulated GCLc/GCLm expression, and restored glutathione metabolism. In conclusion, the protective effects of CBBP against cholestatic liver injury were similar to those of NBBP. Mechanistically, both CBBP and NBBP reversed the disruption in homeostasis of BAs and glutathione, alleviating damage to hepatocytes.
Collapse
Affiliation(s)
- Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wenkai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yifei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Yang
- Research Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd., Shanghai 201401, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2012013, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
26
|
Wang GF, Li YY, Shi R, Wang TM, Li YF, Li WK, Zheng M, Fan FB, Zou J, Zan B, Wu JS, Ma YM. Yinchenzhufu decoction protects against alpha-naphthylisothiocyanate-induced acute cholestatic liver injury in mice by ameliorating disordered bile acid homeostasis and inhibiting inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112672. [PMID: 32084553 DOI: 10.1016/j.jep.2020.112672] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intrahepatic cholestasis is a common condition of many liver diseases with few therapies. Yinchenzhufu decoction (YCZFD) is a representative traditional Chinese herbal formula used for treating jaundice and liver disease. AIM OF THE STUDY To investigate the hepatoprotective effect of YCZFD against cholestatic liver injury and reveal its potential mechanism. MATERIALS AND METHODS Mice with alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis were orally administered YCZFD at doses of 3, 6, and 12g crude drug/kg for 2 weeks followed by subsequent analyses. A serum metabolomics study was then performed to explore the different metabolites influenced by YCZFD using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap hybrid mass spectrometry (UPLC-LTQ-Orbitrap-MS/MS).The levels of individual bile acids in the serum, liver, and bile were determined by UPLC-MS/MS. The expression of metabolic enzymes, transporters, inflammatory factors, and cytokeratin-19 (CK-19) was determined by real-time PCR, western blotting, and immunohistochemistry. RESULTS YCZFD administration decreased the serum biochemical indexes and ameliorated pathological damage, such as hepatic necrosis and inflammatory cell infiltration. Serum metabolomics revealed that the metabolites influenced by YCZFD were mainly associated with bile acid metabolism and inflammation. YCZFD administration effectively ameliorated the disordered bile acid homeostasis. The bile acid transporter, multidrug-resistance associated protein 2 (Mrp2), and the metabolic enzyme, cytochrome P450 2b10 (Cyp2b10), were upregulated in the YCZFD intervention group compared to those in the ANIT-induced group. YCZFD administration also significantly inhibited nuclear factor-κB (NF-κB) and its phosphorylation and decreased the expression of proinflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and intercellular adhesion molecule-1 in ANIT-induced cholestatic mice. Additionally, the level of CK-19 was lower in the YCZFD intervention group than in the ANIT-induced cholestatic mice. CONCLUSION YCZFD administration ameliorated disordered bile acid homeostasis, inhibited NF-κB pathway-mediated inflammation, and protected the liver from bile duct injury. Therefore, YCZFD exerted a protective effect against cholestatic liver injury.
Collapse
Affiliation(s)
- Guo-Feng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng-Bo Fan
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Zan
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Ju WJ, Zhao ZK, Chen SL, Zhou DD, Yang WN, Wen XP, Du GL. Buzhongyiqi Decoction Protects Against Loperamide-Induced Constipation by Regulating the Arachidonic Acid Pathway in Rats. Front Pharmacol 2020; 11:423. [PMID: 32317976 PMCID: PMC7146620 DOI: 10.3389/fphar.2020.00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Constipation is a common gastrointestinal disorder without effective treatment approach. Buzhongyiqi decoction (BZYQD) is a classical formula that has been commonly used for gastrointestinal disorders for nearly 1,000 years. In this study, we aimed to investigate the protective effect of BZYQD against loperamide-induced constipation and its potential mechanism. Rats with loperamide-induced constipation were orally administered BZYQD. BZYQD treatment obviously increased the small intestinal transit rate and alleviated colon tissue pathological damage. Subsequently, serum metabolomics study was performed to identify the metabolites affected by BZYQD. Metabolomics identified that the levels of 17 serum metabolites, including prostaglandin E2 (PGE2), arachidonic acid (AA), and inositol, were significantly changed in BZYQD-treated group compared with those in the loperamide-induced group. Pathway analysis revealed that those metabolites were mainly associated with arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, ascorbate and aldarate metabolism, inositol phosphate metabolism. Additionally, BZYQD treatment down-regulated the cyclooxygenase-2 expression and decrease production of the proinflammatory mediator PGE2. Further study revealed that BZYQD administration decreased serum levels of the inflammatory factors IL-1β and TNF-α, inhibited phosphorylation of the nuclear transcription factor NF-κB, and down-regulated expression of the inflammatory factors IL-1β and IL-6 in the constipated rat colon. Moreover, BZYQD treatment also increased serum levels of inositol, motilin and gastrin, and promoted gastrointestinal motility. In conclusion, the present study suggested that BZYQD exerted a protective effect against loperamide-induced constipation, which may be associated with its role in regulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Wan-Jun Ju
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ze-Kuo Zhao
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shao-Li Chen
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan-Dan Zhou
- R & D Department, GenChim Testing Co., Ltd, Shanghai, China
| | - Wen-Ning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Ping Wen
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Li Du
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Wang X, Wang G, Qu J, Yuan Z, Pan R, Li K. Calcipotriol Inhibits NLRP3 Signal Through YAP1 Activation to Alleviate Cholestatic Liver Injury and Fibrosis. Front Pharmacol 2020; 11:200. [PMID: 32296329 PMCID: PMC7136474 DOI: 10.3389/fphar.2020.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is common in multiple clinical circumstances. The NOD-like receptor protein 3 (NLRP3) inflammasome pathway has been demonstrated to play an important role in liver injury and fibrosis induced by cholestasis. We previously proved that MCC950, a selective NLRP3 inhibitor, alleviates liver fibrosis and injury in experimental liver cholestasis induced by bile-duct ligation (BDL) in mice. Herein, we investigate the role of calcipotriol, a potent vitamin D receptor agonist, in experimental liver cholestasis, test its therapeutic efficacy, and explore its potential protective mechanism. C57BL/6 mice were made to undergo BDL or fed the 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to establish two classic cholestatic models. Calcipotriol was administered intraperitoneally to these mice daily. Serum makers of liver damage and integrity, liver histological changes, levels of liver pro-fibrotic markers, bile acid synthetases and transporters were measured in vivo. The underlying mechanism by which calcipotriol alleviates cholestatic liver injury and fibrosis was further investigated. The results of the current study demonstrated that calcipotriol supplement significantly alleviate cholestatic liver injury and fibrosis. Moreover, calcipotriol supplement markedly inhibited NLRP3 inflammasome pathway activation to alleviate liver injury and fibrosis in vivo and inhibit hepatic stellate cell (HSC) activation in vitro. In addition, VDR agonist calcipotriol exert inhibitory effect on NLRP3 inflammasome activation through activating yes-associated protein 1 (YAP1). In conclusion, our findings proved that calcipotriol suppressed the NLRP3 signal by activating YAP1 to alleviate liver injury and retard fibrogenesis in cholestasis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiyang Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Second Military Medical University, Shanghai, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruogu Pan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Zhang R, Huang T, Zhang Q, Yao Y, Liu C, Lin C, Zhu C. Xiaoyan lidan formula ameliorates α-naphthylisothiocyanate-induced intrahepatic cholestatic liver injury in rats as revealed by non-targeted and targeted metabolomics. J Pharm Biomed Anal 2020; 179:112966. [DOI: 10.1016/j.jpba.2019.112966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023]
|
30
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
31
|
Wu JS, Liu Q, Fang SH, Liu X, Zheng M, Wang TM, Zhang H, Liu P, Zhou H, Ma YM. Quantitative Proteomics Reveals the Protective Effects of Huangqi Decoction Against Acute Cholestatic Liver Injury by Inhibiting the NF-κB/IL-6/STAT3 Signaling Pathway. J Proteome Res 2019; 19:677-687. [DOI: 10.1021/acs.jproteome.9b00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Qian Liu
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Shan-Hua Fang
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | | |
Collapse
|
32
|
Chen Z, Wang X, Li Y, Wang Y, Tang K, Wu D, Zhao W, Ma Y, Liu P, Cao Z. Comparative Network Pharmacology Analysis of Classical TCM Prescriptions for Chronic Liver Disease. Front Pharmacol 2019; 10:1353. [PMID: 31824313 PMCID: PMC6884058 DOI: 10.3389/fphar.2019.01353] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic liver disease (CLD) has become a major global health problem while herb prescriptions are clinically observed with significant efficacy. Three classical Traditional Chinese Medicine (TCM) formulae, Yinchenhao Decoction (YCHT), Huangqi Decoction (HQT), and Yiguanjian (YGJ) have been widely applied in China to treat CLD, but no systematic study has yet been published to investigate their common and different mechanism of action (MOA). Partial limitation may own to deficiency of effective bioinformatics methods. Here, a computational framework of comparative network pharmacology is firstly proposed and then applied to herbal recipes for CLD disease. The analysis showed that, the three formulae modulate CLD mainly through functional modules of immune response, inflammation, energy metabolism, oxidative stress, and others. On top of that, each formula can target additional unique modules. Typically, YGJ ingredients can uniquely target the ATP synthesis and neurotransmitter release cycle. Interestingly, different formulae may regulate the same functional module in different modes. For instance, YCHT and YGJ can activate oxidative stress-related genes of SOD family while HQT are found to inhibit SOD1 gene. Overall, our framework of comparative network pharmacology proposed in our work may not only explain the MOA of different formulae treating CLD, but also provide hints to further investigate the biological basis of CLD subtypes.
Collapse
Affiliation(s)
- Zikun Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoning Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yahang Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dingfeng Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Zhao Q, Ren X, Chen M, Yue SJ, Zhang MQ, Chen KX, Guo YW, Shao CL, Wang CY. Effects of traditional Chinese medicine formula Le-Cao-Shi on hepatitis B: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112132. [PMID: 31381954 DOI: 10.1016/j.jep.2019.112132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Formula Le-Cao-Shi (LCS) is a traditional Chinese medicine (TCM), which has long been used as a folk remedy against hepatitis B in China. The present study was conducted to evaluate the anti-hepatitis B effects of aqueous extract of LCS in vivo and in vitro. MATERIALS AND METHOD we investigated the anti-HBV effects of LCS in vivo and in vitro with duck hepatitis B model and HepG2.2.15 cell line model, respectively. The serologic and cellular biomarkers and the histopathological changes were examined. RESULTS By a duck hepatitis B model, the extract of LCS was found to restrain the expressions of duck hepatitis B surface antigen (DHBsAg), hepatitis B e antigen (DHBeAg), and HBV-DNA (DHBV-DNA). Moreover, LCS could decrease the levels of aspartate and alanine aminotransferases (AST and ALT) and ameliorate duck liver histological lesions. Correspondingly, in a HepG2.2.15 cellular model, LCS could also significantly inhibit the secretions of HBsAg and HBeAg. CONCLUSION LCS exerted potent anti-hepatitis effects against the infection of HBV. The above results demonstrated the first-hand experimental evidences for the anti-hepatitis B efficiency of LCS. Our study provides a basis for further exploration and development of this promising compound prescription to treat hepatitis B disease.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral
- Drugs, Chinese Herbal/therapeutic use
- Ducks
- Hepatitis B/drug therapy
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/virology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Virus, Duck/drug effects
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B e Antigens/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Liver/drug effects
- Liver/pathology
- Medicine, Chinese Traditional
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Min Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
34
|
Li WK, Wang GF, Wang TM, Li YY, Li YF, Lu XY, Wang YH, Zhang H, Liu P, Wu JS, Ma YM. Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152948. [PMID: 31129431 DOI: 10.1016/j.phymed.2019.152948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Huangqi decoction (HQD), a classic traditional herbal medicine, has been used for liver fibrosis, but its effect on intrahepatic chronic cholestatic liver injury remains unknown. PURPOSE In the present study, we investigated the hepatoprotective effect of HQD and the underlying molecular mechanisms in 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine (DDC)-induced chronic cholestatic mice. METHODS The DDC-induced cholestatic mice were administrated HQD for 4 or 8 weeks. Serum biochemistry and morphology were investigated. The serum and liver bile acid (BA) levels were detected by ultra performance liquid chromatography-tandem mass spectrometry. The liver expression of BA metabolizing enzymes and transporters, and inflammatory and fibrotic markers was measured by real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS HQD treatment for 4 or 8 weeks ameliorated DDC-induced liver injury by improving impaired hepatic function and tissue damage. HQD treatment for 8 weeks further decreased the liver expression of cytokeratin 19, tumor growth factor (TGF)-β, collagen I, and α-smooth muscle actin, and ameliorated ductular reaction and liver fibrosis. HQD markedly decreased the accumulation of serum and liver BA. The expression of BA-metabolizing enzymes, cytochrome P450 2b10 and UDP glucuronosyltransferase 1 A1, and multidrug resistance-associated protein 2, Mrp3, and Mrp4 involved in BA homeostasis was increased by 4 weeks of HQD treatment. The expression of BA uptake transporter Na+-taurocholate cotransporting polypeptide was decreased and that of Mrp4 was increased after 8 weeks of HQD treatment. Nuclear factor-E2-related factor-2 (Nrf2) was remarkably induced by HQD treatment. Additionally, HQD treatment for 8 weeks decreased the liver expression of inflammatory factors, interleukin (IL)-6, IL-1β, tumor necrosis factor-α, monocyte chemoattractant protein-1, and intracellular adhesion molecule-1. HQD suppressed the nuclear factor (NF)-κB pathway. CONCLUSION HQD protected mice against chronic cholestatic liver injury and biliary fibrosis, which may be associated with the induction of the Nrf2 pathway and inhibition of the NF-κB pathway, ameliorating BA-stimulated inflammation.
Collapse
Affiliation(s)
- Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Feng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Hang Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201204, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201204, China
| | - Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Li N, Wang B, Wu Y, Luo X, Chen Z, Sang C, Xiong T. Modification effects of SanWei GanJiang Powder on liver and intestinal damage through reversing bile acid homeostasis. Biomed Pharmacother 2019; 116:109044. [DOI: 10.1016/j.biopha.2019.109044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/11/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
|
36
|
Liu F, Sun Z, Hu P, Tian Q, Xu Z, Li Z, Tian X, Chen M, Huang C. Determining the protective effects of Yin-Chen-Hao Tang against acute liver injury induced by carbon tetrachloride using 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 2019; 174:567-577. [PMID: 31261038 DOI: 10.1016/j.jpba.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Yin-Chen-Hao Tang (YCHT), consisting of Artemisia annua L., Gardenia jasminoides Ellis, and Rheum Palmatum L., has been used to relieve liver diseases in China for thousands of years. Several protective mechanisms of YCHT on liver injury have been investigated based on metabolomics, but the effects of YCHT on the alterations in the gut microbiota are still unclear. In this study, an integrated approach based on 16S rRNA gene sequencing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) metabolic profiling was performed to assess the effects of YCHT on liver injury induced by carbon tetrachloride (CCl4) through the regulation of the relative abundances of gut microbiota and their relationships with biomarker candidates. A total of twelve significantly altered bacterial genera and nine metabolites were identified, which returned to normal levels after YCHT treatment. The relative abundances of the identified microbiota, including significantly elevated amounts of p_Firmicutes, c_Clostridia, o_Clostridiales, f_Ruminococcaceae, g_[Eubacterium]_coprostanoligenes_group, s_uncultured_bacterium_f_Lachnospiraceae and remarkedly increased amounts of p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_Bacteroidaceae, g_Bacteroides and s_uncultured_bacterium_g_Bacteroides, were found in model rats compared with controls. Potential biomarkers, including lower levels of LysoPC (16:1(9Z)/0:0), LysoPC (20:3(5Z,8Z,11Z)), LysoPC (17:0), LysoPC (20:1(11Z)) and 3-hydroxybutyric acid and higher amounts of ornithine, L-kynurenine, hippuric acid and taurocholic acid are involved in several custom metabolic pathways, such as arginine and proline metabolism, tryptophan metabolism, glycerophospholipid metabolism and primary bile acid biosynthesis. Interestingly, there was a strong correlation between the perturbed gut microbiota in genera c_Clostridia and o_Clostridiales and the altered plasma metabolite 3-hydroxybutyric acid. This finding means that the hepatoprotective effects of YCHT may be due to the regulation of the production of the functional metabolite 3-hydroxybutyric acid through changes in the proportions of c_Clostridia and o_Clostridiales. These results showed that the hepatoprotective effects of YCHT not only focused on custom metabolic pathways but also depended on the changes in the gut microbiota in liver injury. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be applied to comprehensively evaluate the effects of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
- Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Zhaolin Sun
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Pei Hu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Qiang Tian
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Zhou Xu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Zhixiong Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Xiaoting Tian
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Mingcang Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China.
| | - Chenggang Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China.
| |
Collapse
|
37
|
Zhang Y, Shi D, Abagyan R, Dai W, Dong M. Population Scale Retrospective Analysis Reveals Potential Risk of Cholestasis in Pregnant Women Taking Omeprazole, Lansoprazole, and Amoxicillin. Interdiscip Sci 2019; 11:273-281. [PMID: 31106388 PMCID: PMC7172024 DOI: 10.1007/s12539-019-00335-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
In nearly 50% of patients with drug-induced liver injury, the bile flow is impaired known as cholestasis. Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease that happens in pregnancy. Some of the clinical symptoms include pruritus, dark urine, and abnormal liver function tests. A rise of serum bile acids is the most accurate diagnostic evidence. ICP may lead to premature birth, fetal distress, and even postpartum hemorrhage or stillbirth in some severe cases. Higher bile acid levels (> 40 μmol/L) are associated with higher rates of adverse fetal outcomes. Due to the multifactorial nature of ICP, its etiology is still not fully understood. Therefore, the current treatments of ICP are limited to control symptoms and protect fetuses. Among various causing factors, drug exposure during pregnancy is one common factor, and it can be prevented if we know drugs with increasing risk of cholestasis. Here we analyzed over 9.5 million FDA adverse effect reports to identify drugs with increasing risks of cholestasis as an adverse effect. Patients treated for cholestasis or liver diseases were removed. The odds ratio analysis reveals that lansoprazole (LSPZ), omeprazole (OMPZ) and amoxicillin (AMXC) are associated with an increased risk of cholestasis. LSPZ is associated with increased reported cholestasis by a factor of 2.32 (OR with 95% confidence interval [2.21, 2.43]). OMPZ is associated with increased reported cholestasis by a factor of 2.61 [2.54, 2.69]. AMXC is associated with increased reported cholestasis adverse effect by a factor of 6.79 [6.49, 7.11]. The risk of cholestasis associated with these three drugs is further increased in pregnant women. These findings justify careful reassessment of the safety of the three identified drugs.
Collapse
Affiliation(s)
- Yonghong Zhang
- Medicine Engineering Research Center, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Weina Dai
- Medicine Engineering Research Center, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Mingyang Dong
- Medicine Engineering Research Center, College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| |
Collapse
|
38
|
Li S, Qiu B, Lu H, Lai Y, Liu J, Luo J, Zhu F, Hu Z, Zhou M, Tian J, Zhou Z, Yu S, Yi F, Nie J. Hyperhomocysteinemia Accelerates Acute Kidney Injury to Chronic Kidney Disease Progression by Downregulating Heme Oxygenase-1 Expression. Antioxid Redox Signal 2019; 30:1635-1650. [PMID: 30084650 DOI: 10.1089/ars.2017.7397] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS The risk factors promoting acute kidney injury (AKI) to chronic kidney disease (CKD) progression remain largely unknown. The aim of the present study was to investigate whether hyperhomocysteinemia (Hhcy) accelerates the development of renal fibrosis after AKI. RESULTS Hhcy aggravated ischemia-reperfusion-induced AKI and the subsequent development of renal fibrotic lesions characterized by excessive extracellular matrix deposition. Mechanistically, the RNA binding protein human antigen R (HuR) bound to the 3'-untranslated region (3'-UTR) of heme oxygenase-1 (HO-1) messenger RNA (mRNA). Homocysteine (Hcy) downregulated HuR expression, reduced the binding of HuR to the 3'-UTR of HO-1, and thereafter decreased HO-1 expression. Administration of the HO-1 inducer cobalt protoporphyrin-IX significantly hindered Hhcy-augmented reactive oxygen species production and renal fibrotic lesions. Innovation and Conclusion: These data indicate that Hhcy might be a novel risk factor that promotes AKI to CKD progression. Lowering Hcy level or HO-1 induction might be a potential therapeutic strategy to improve the outcome of AKI.
Collapse
Affiliation(s)
- Shuang Li
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingbing Qiu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Lu
- 2 Department of Public Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunshi Lai
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jixing Liu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajun Luo
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxin Zhu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Hu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Zhou
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwei Tian
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanmei Zhou
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouyi Yu
- 2 Department of Public Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fan Yi
- 3 Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jing Nie
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Andrographolide impairs alpha-naphthylisothiocyanate-induced cholestatic liver injury in vivo. J Nat Med 2019; 73:388-396. [DOI: 10.1007/s11418-018-01275-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
40
|
18β-Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacol Sin 2018; 39:1865-1873. [PMID: 30061734 DOI: 10.1038/s41401-018-0110-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023]
Abstract
Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18β-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.
Collapse
|
41
|
Lu S, Lu R, Song H, Wu J, Liu X, Zhou X, Yang J, Zhang H, Tang C, Guo H, Hu J, Mao G, Lin H, Su Z, Zheng H. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int J Biol Macromol 2018; 124:1264-1273. [PMID: 30508545 DOI: 10.1016/j.ijbiomac.2018.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Natrin, a new member of the cysteine-rich secretory protein (CRISP) family purified from the snake venom of Naja naja atra, has been demonstrated to have anticancer activity. However, the underlying molecular mechanisms need further elucidation. In this study, MTT was used to evaluate cell viability. Apoptotic cells were analyzed by employing a transmission electron microscope (TEM). Metabolomic study of the metabolic perturbations caused by natrin-induced apoptosis in differentiated SMMC-7721 cells was performed for the first time by using integrative ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). To investigate the possible mechanism in the mitochondrial pathway of natrin-induced apoptosis, we measured apoptosis-related mRNA changes using real-time fluorescent quantitative PCR (FQ-PCR). Cell proliferation was significantly inhibited after treatment with natrin in a dose-dependent manner. Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) clearly demonstrated that metabolic profiles were affected by natrin. The results of multivariate statistical analysis showed that a total of 13 metabolites were characterized as potential biomarkers highly implicated in natrin-induced apoptosis, which corresponded to fluctuations of five pathways, including sphingolipid metabolism, fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism and glycosphingolipid biosynthesis. Furthermore, natrin-induced apoptosis showed an increase in the Bax/Bcl-2 ratio in the mitochondrial pathway compared with controls. This study illustrated that rapid and holistic cell metabolomics combining molecular biological approaches might be a powerful tool for evaluating the underlying mechanisms of natrin-induced apoptosis, which would help to deepen specific insights into the anti-hepatoma mechanisms of natrin and facilitate the clinical application of natrin in the future.
Collapse
Affiliation(s)
- Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China; Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Rigang Lu
- Guangxi Institute For Food and Drug Control, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Jianqing Yang
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jian Hu
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Guifu Mao
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hanmei Lin
- Gynaecology, The First Affiliated Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning, China.
| |
Collapse
|