1
|
Abu-Baih RH, Ibrahim MFG, Elhamadany EY, Abu-Baih DH. Irbesartan mitigates the impact of cyclophosphamide-induced acute neurotoxicity in rats: Shedding highlights on NLRP3 inflammasome/CASP-1 pathway-driven immunomodulation. Int Immunopharmacol 2024; 135:112336. [PMID: 38801809 DOI: 10.1016/j.intimp.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
IIrbesartan (IRB), an angiotensin II type 1 receptor (AT1R) antagonist, has been widely employed in the medical field for its effectiveness in managing hypertension. However, there have been no documented investigations regarding the immunostimulatory properties of IRB. To address this gap, this study has been performed to assess the neuroprotective impact of IRB as an immunostimulatory agent in mitigating acute neurotoxicity induced by cyclophosphamide (CYP) in rats. mRNA levels of nuclear factor erythroid 2 (Nrf-2), interleukin (IL)-18, IL-1β, and MMP-1 have been assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the levels of malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) has been evaluated to assess the oxidative stress. Additionally, macrophage inflammatory protein 2 (MIP2) has been evaluated using enzyme-linked immunosorbent assay (ELISA). Western blotting has been used to investigate the protein expression of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 (CASP-1), along with an assessment of histopathological changes. Administration of IRB protected against oxidative stress by augmenting the levels of GSH and SOD as well as reducing MDA level. Also, administration of IRB led to a diminishment in the brain levels of MIP2 and MMP1. Furthermore, it led to a suppression of IL-1β and IL-18 levels, which are correlated with a reduction in the abundance of NLRP3 and subsequently CASP-1. This study provides new insights into the immunomodulatory effects of IRB in the context of CYP-induced acute neurotoxicity. Specifically, IRB exerts its effects by reducing oxidative stress, neuroinflammation, inhibiting chemokine recruitment, and mitigating neuronal degeneration through the modulation of immune markers. Therefore, it can be inferred that the use of IRB as an immunomodulator has the potential to effectively mitigate immune disorders associated with inflammation.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Drug Information Center, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Eyad Y Elhamadany
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt.
| | - Dalia H Abu-Baih
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| |
Collapse
|
2
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
3
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
4
|
Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol 2023; 14:1187411. [PMID: 37351510 PMCID: PMC10282138 DOI: 10.3389/fphar.2023.1187411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines on Public Health in Chongqing, Chongqing, China
| |
Collapse
|
5
|
Liu M, Wen H, Zuo L, Song X, Geng Z, Ge S, Ge Y, Wu R, Chen S, Yu C, Gao Y. Bryostatin-1 attenuates intestinal ischemia/reperfusion-induced intestinal barrier dysfunction, inflammation, and oxidative stress via activation of Nrf2/HO-1 signaling. FASEB J 2023; 37:e22948. [PMID: 37130016 DOI: 10.1096/fj.202201540r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shiyuan Chen
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chaowen Yu
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong Gao
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
El-Baz FK, Salama A, Ali SI, Elgohary R. Lutein isolated from Scenedesmus obliquus microalga boosts immunity against cyclophosphamide-induced brain injury in rats. Sci Rep 2022; 12:22601. [PMID: 36585479 PMCID: PMC9803677 DOI: 10.1038/s41598-022-25252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Lutein is a naturally potent antioxidant carotenoid synthesized in green microalgae with a potent ability to prevent different human chronic conditions. To date, there are no reports of the immune-stimulating effect of pure lutein isolated from Scenedesmus obliquus. Thus, we isolated the natural lutein from S. obliquus and evaluated its effectiveness as an immunostimulant against cyclophosphamide-induced brain injury. We purified all-E-(3R, 3'R, 6'R)-Lutein from S. obliquus using prep-HPLC and characterized it by 1H- and 13C-NMR spectroscopy. We assigned rats randomly to four experimental groups: the Control group got a vehicle for lutein dimethyl sulfoxide for ten successive days. The Cyclophosphamide group received a single i.p injection of Cyclophosphamide (200 mg/kg). Lutein groups received 50 and 100 (mg/kg) of lutein one time per day for ten successive days after the cyclophosphamide dose. Lutein administration reduced brain contents of Macrophage inflammatory protein2 (MIP2), cytokine-induced- neutrophil chemoattractant (CINC), and Matrix metalloproteinase 1 (MMP1). Besides, it lowered the contents of interleukin 1 beta (IL-1β) and interleukin 18 (IL-18), associated with low content of NLR pyrin domain protein 3 (NLRP3) and consequently caspase-1 compared to the cyclophosphamide group. In the histomorphometric analysis, lutein groups (50 and 100 mg/Kg) showed mild histopathological alterations as they significantly reduced nuclear pyknosis numbers by 65% and 69% respectively, compared to the cyclophosphamide group. This is the first study that showed the immunomodulatory roles of lutein against cyclophosphamide-induced brain injury via decreasing neuroinflammation, chemokines recruitment, and neuron degeneration with the modulation of immune markers. Hence, lutein can be an effective immunomodulator against inflammation-related immune disorders.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Abeer Salama
- grid.419725.c0000 0001 2151 8157Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Sami I. Ali
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Rania Elgohary
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics and Poisons Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| |
Collapse
|
7
|
Becker F, Kebschull L, Rieger C, Mohr A, Heitplatz B, Van Marck V, Hansen U, Ansari J, Reuter S, Strücker B, Pascher A, Brockmann JG, Castor T, Alexander JS, Gavins FNE. Bryostatin-1 Attenuates Ischemia-Elicited Neutrophil Transmigration and Ameliorates Graft Injury after Kidney Transplantation. Cells 2022; 11:cells11060948. [PMID: 35326400 PMCID: PMC8946580 DOI: 10.3390/cells11060948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a form of sterile inflammation whose severity determines short- and long-term graft fates in kidney transplantation. Neutrophils are now recognized as a key cell type mediating early graft injury, which activates further innate immune responses and intensifies acquired immunity and alloimmunity. Since the macrolide Bryostatin-1 has been shown to block neutrophil transmigration, we aimed to determine whether these findings could be translated to the field of kidney transplantation. To study the effects of Bryostatin-1 on ischemia-elicited neutrophil transmigration, an in vitro model of hypoxia and normoxia was equipped with human endothelial cells and neutrophils. To translate these findings, a porcine renal autotransplantation model with eight hours of reperfusion was used to study neutrophil infiltration in vivo. Graft-specific treatment using Bryostatin-1 (100 nM) was applied during static cold storage. Bryostatin-1 dose-dependently blocked neutrophil activation and transmigration over ischemically challenged endothelial cell monolayers. When applied to porcine renal autografts, Bryostatin-1 reduced neutrophil graft infiltration, attenuated histological and ultrastructural damage, and improved renal function. Our novel findings demonstrate that Bryostatin-1 is a promising pharmacological candidate for graft-specific treatment in kidney transplantation, as it provides protection by blocking neutrophil infiltration and attenuating functional graft injury.
Collapse
Affiliation(s)
- Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Linus Kebschull
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Constantin Rieger
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Annika Mohr
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Barbara Heitplatz
- Gerhard Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany; (B.H.); (V.V.M.)
| | - Veerle Van Marck
- Gerhard Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany; (B.H.); (V.V.M.)
| | - Uwe Hansen
- Department of Molecular Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, 48149 Münster, Germany;
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, 48149 Münster, Germany;
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Jens G. Brockmann
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | | | - J. Steve Alexander
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
- Correspondence: (J.S.A.); (F.N.E.G.)
| | - Felicity N. E. Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK
- Correspondence: (J.S.A.); (F.N.E.G.)
| |
Collapse
|
8
|
Safaeinejad F, Asadi S, Ghafghazi S, Niknejad H. The Synergistic Anti-Apoptosis Effects of Amniotic Epithelial Stem Cell Conditioned Medium and Ponesimod on the Oligodendrocyte Cells. Front Pharmacol 2021; 12:691099. [PMID: 34234678 PMCID: PMC8255610 DOI: 10.3389/fphar.2021.691099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system. The current treatment of Multiple sclerosis is based on anti-inflammatory disease-modifying treatments, which can not regenerate myelin and eventually neurons. So, we need new approaches for axonal protection and remyelination. Amniotic epithelial stem cells amniotic epithelial cells, as a neuroprotective and neurogenic agent, are a proper source in tissue engineering and regenerative medicine. Due to differentiation capability and secretion of growth factors, AECs can be a candidate for the treatment of MS. Moreover, sphingosine-1-phosphate (S1P) receptor modulators were recently approved by FDA for MS. Ponesimod is an S1P receptor-1 modulator that acts selectively as an anti-inflammatory agent and provides a suitable microenvironment for the function of the other neuroprotective agents. In this study, due to the characteristics of AECs, they are considered a treatment option in MS. The conditioned medium of AECs concurrently with ponesimod was used to evaluate the viability of the oligodendrocyte cell line after induction of cell death by cuprizone. Cell viability after treatment by conditioned medium and ponesimod was increased compared to untreated groups. Also, the results showed that combination therapy with CM and ponesimod had a synergistic anti-apoptotic effect on oligodendrocyte cells. The combination treatment with CM and ponesimod reduced the expression of caspase-3, caspase-8, Bax, and Annexin V proteins and increased the relative BCL-2/Bax ratio, indicating inhibition of apoptosis as a possible mechanism of action. Based on these promising results, combination therapy with amniotic stem cells and ponesimode could be a proper alternative for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sulfasalazine maintains blood-brain barrier integrity and relieves lipopolysaccharide-induced inflammation in hCMEC/D3 cells. Neuroreport 2021; 32:672-677. [PMID: 33913929 DOI: 10.1097/wnr.0000000000001632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfasalazine is a recognized therapy for inflammatory bowel disease and is of paramount importance for maintaining intestinal barrier homeostasis. However, its effects on blood-brain barrier (BBB) function and inflammation have not yet been explored. We sought to examine whether sulfasalazine has anti-inflammatory and antiapoptotic effects on the BBB. hCMEC/D3 cells are a well-established BBB in vitro model, were treated with 1 μg/mL Escherichia coli O111:B4 lipopolysaccharide for 12 h. The cell counting kit-8 assay was used to assess cell viability. The cells were also treated with gradient concentrations of sulfasalazine for 12 h. The levels of apoptosis-related proteins and inflammatory factors (IL-1χ and TNF-α IL-6) were measured by western blotting. ZO-1 and F-actin expression was measured by immunofluorescence staining. This study confirmed that 5 mM sulfasalazine improved the maintenance of BBB integrity and relieved lipopolysaccharide-induced inflammatory apoptosis and showed that sulfasalazine might be an effective treatment for BBB disruption.
Collapse
|
10
|
Farhadihosseinabadi B, Salimi M, Kazemi B, Samadikuchaksaraei A, Ghanbarian H, Mozafari M, Niknejad H. Inducing type 2 immune response, induction of angiogenesis, and anti-bacterial and anti-inflammatory properties make Lacto-n-Neotetraose (LNnT) a therapeutic choice to accelerate the wound healing process. Med Hypotheses 2020; 134:109389. [PMID: 31627122 DOI: 10.1016/j.mehy.2019.109389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
Abstract
The healing process of non-healing and full-thickness wounds is currently facing some serious challenges. In such ulcers, losing a large part of skin causes a chronic infection due to the entrance of various pathogens in the wound bed. Moreover, poor vascularization, uncontrolled inflammation, and delayed re-epithelialization increase the healing time in patients suffering from such wounds. In this light, tissue engineering provides a wide range of strategies using a variety of biomaterials, biofactors and stem cells to decrease the healing time and restore the function of the damaged site. A suitable wound healing agent should possess some critical parameters such as inducing re-epithelialization, anti-inflammatory and anti-bacterial properties, and angiogenic capability. The Lacto-n-Neotetraose (LNnT) with chemical formula C26H45NO21 is an oligosaccharide present in human milk and soluble antigens extracted from Schistosoma mansoni eggs. It is reported that LNnT induces type 2 immune response (Th2 immunity). Th2 immunity promotes re-epithelialization, angiogenesis and wound contraction by recruiting the cells which produce Th2-related cytokines. Moreover, LNnT shows some special characteristics such as angiogenic capability, anti-inflammatory, and anti-bacterial effects which can address the mentioned challenges in the treatment of non-healing and full-thickness wounds. Here, we hypothesize that utilizing LNnT is an appropriate biofactor which would improve the healing process in full-thickness and non-healing wounds.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), PO Box 14155-4777, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Victoria ECG, Toscano ECDB, Oliveira FMS, de Carvalho BA, Caliari MV, Teixeira AL, de Miranda AS, Rachid MA. Up-regulation of brain cytokines and metalloproteinases 1 and 2 contributes to neurological deficit and brain damage in transient ischemic stroke. Microvasc Res 2019; 129:103973. [PMID: 31891716 DOI: 10.1016/j.mvr.2019.103973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/24/2022]
Abstract
Ischemic stroke represents a major cause of adult death and severe neurological disability worldwide. Reperfusion following brain ischemia produces an inflammatory cascade that increases brain damage. In this context, matrix metalloproteinases (MMPs) play an important role as pro-inflammatory mediators. The MMP 2 up-regulation seems to promote matrix degradation, blood-brain barrier (BBB) disruption and facilitates the influx of peripheral inflammatory cells to the brain after stroke. However, there are not studies about MMP-1 in this condition. The aim of this study is to evaluate the association of brain damage, inflammatory response and the immunostaining profile of matrix metalloproteinases 1 and 2 after transient global cerebral ischemia. Mice were submitted to bilateral common carotid arterial occlusion (BCCAo) during 25 min. After three days of reperfusion, the neurological deficit score was evaluated and the animals were euthanized. Brain samples were collected in order to analyze the histopathological damage, MMPs 1 and 2 immunostaining and cytokines and chemokines levels. Ischemic group showed neurological deficits associated with brain lesions, characterized by necrotic core and penumbra zone three days after reperfusion. Higher brain immunostaining of MMP-1 and MMP-2 was observed in BCCAo samples than in sham samples. Ischemic group also exhibited increased brain levels of the cytokines tumoral necrosis factor (TNF) and interleukin 1β (IL-1β), chemokine (C-X-C motif) ligand 1 (CXCL1), and chemokine (C-C motif) ligand 5 (CCL5) in comparison to sham group. Our results suggest that the MMP-1 and MMP-2 raise, associated with the up-regulation of inflammatory mediators, contributes to brain damage and neurological deficits after global brain ischemia followed by three days of reperfusion in mice.
Collapse
Affiliation(s)
- Edna Constanza Gómez Victoria
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Eliana Cristina de Brito Toscano
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabrício Marcus Silva Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Bárbara Andrade de Carvalho
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States
| | - Aline Silva de Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Abstract
Background:
Immunomodulation-based therapy has achieved a breakthrough in
the last decade, which stimulates the passion of searching for potential immunomodulatory
substances in recent years.
Objective:
Marine natural products are a unique source of immunomodulatory substances.
This paper summarized the emerging marine natural small-molecules and related synthesized
derivatives with immunomodulatory activities to provide readers an overview of these bioactive
molecules and their potential in immunomodulation therapy.
Conclusion:
An increasing number of immunomodulatory marine small-molecules with diverse
intriguing structure-skeletons were discovered. They may serve as a basis for further
studies of marine natural products for their chemistry, related mechanism of action and structure-
activity relationships.
Collapse
Affiliation(s)
- Ran Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu-Cheng Gu
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Shou JW, Cheung CK, Gao J, Shi WW, Shaw PC. Berberine Protects C17.2 Neural Stem Cells From Oxidative Damage Followed by Inducing Neuronal Differentiation. Front Cell Neurosci 2019; 13:395. [PMID: 31551713 PMCID: PMC6733922 DOI: 10.3389/fncel.2019.00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodegeneration is the loss of structure and/or function of neurons. Oxidative stress has been suggested as one of the common etiology in most of the neurodegenerative diseases. Previous studies have demonstrated the beneficial effects of berberine in various neurodegenerative and neuropsychiatric disorders. In this study, we hypothesized that berberine could protect C17.2 neural stem cells (NSCs) from 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage then promote neuronal differentiation. AAPH was used to induce oxidative damage. After the damage, berberine protected C17.2 cells were kept cultured for another week in differentiation medium with/without berberine. Changes in cell morphology were detected by microscopy and cell viability was determined by MTT assay. Real-time PCR and western blot analysis were performed to confirm the associated pathways. Berberine was able to protect C17.2 NSCs from the oxidative damage. It lowered the cellular reactive oxygen species (ROS) level in C17.2 cells via Nuclear Factor Erythroid 2-Related Factor 1/2 (NRF1/2) – NAD(P)H Quinone Dehydrogenase 1 (NQO-1) – Heme Oxygenase 1 (HO-1) pathway. It also down-regulated the apoptotic factors-Caspase 3 and Bcl2 Associated X (Bax) and upregulated the anti-apoptotic factor-Bcl2 to reduce cell apoptosis. Besides, berberine increased C17.2 cell viability via up-regulating Extracellular-signal-Related Kinase (ERK) and phosphor-Extracellular-signal-Related Kinase (pERK) expression. Then, berberine promoted C17.2 cell to differentiate into neurons and the differentiation mechanism involved the activation of WNT/β-catenin pathway as well as the upregulation of expression levels of pro-neural factors Achaete-Scute Complex-Like 1 (ASCL1), Neurogenin 1 (NeuroG1), Neuronal Differentiation 2 (NeuroD2) and Doublecortin (DCX). In conclusion, berberine protected C17.2 NSCs from oxidative damage then induced them to differentiate into neurons.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun-Kai Cheung
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jian Gao
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Wei-Wei Shi
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
14
|
Zuo L, Li J, Ge S, Ge Y, Shen M, Wang Y, Zhou C, Wu R, Hu J. Bryostatin-1 ameliorated experimental colitis in Il-10 -/- Mice by protecting the intestinal barrier and limiting immune dysfunction. J Cell Mol Med 2019; 23:5588-5599. [PMID: 31251471 PMCID: PMC6652299 DOI: 10.1111/jcmm.14457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Bryostatin‐1 (Bry‐1) has been proven to be effective and safe in clinical trials of a variety of immune‐related diseases. However, little is known about its effect on Crohn's disease (CD). We aimed to investigate the impact of Bry‐1 on CD‐like colitis and determine the mechanism underlying this effect. In the present study, 15‐week‐old male Il‐10−/− mice with spontaneous colitis were divided into positive control and Bry‐1‐treated (Bry‐1, 30 μg/kg every other day, injected intraperitoneally for 4 weeks) groups. Age‐matched, male wild‐type (WT) mice were used as a negative control. The effects of Bry‐1 on colitis, intestinal barrier function and T cell responses as well as the potential regulatory mechanisms were evaluated. We found that the systemic delivery of Bry‐1 significantly ameliorated colitis in Il‐10−/− mice, as demonstrated by decreases in the disease activity index (DAI), inflammatory score and proinflammatory mediator levels. The protective effects of Bry‐1 on CD‐like colitis included the maintenance of intestinal barrier integrity and the helper T cell (Th)/regulatory T cell (Treg) balance. These effects of Bry‐1 may act in part through nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling activation and STAT3/4 signalling inhibition. The protective effect of Bry‐1 on CD‐like colitis suggests Bry‐1 has therapeutic potential in human CD, particularly given the established clinical safety of Bry‐1.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Jing Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengdi Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Yan Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Changmin Zhou
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Blanco FA, Czikora A, Kedei N, You Y, Mitchell GA, Pany S, Ghosh A, Blumberg PM, Das J. Munc13 Is a Molecular Target of Bryostatin 1. Biochemistry 2019; 58:3016-3030. [PMID: 31243993 PMCID: PMC6620733 DOI: 10.1021/acs.biochem.9b00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Bryostatin
1 is a natural macrolide shown to improve neuronal connections and
enhance memory in mice. Its mechanism of action is largely attributed
to the modulation of novel and conventional protein kinase Cs (PKCs)
by binding to their regulatory C1 domains. Munc13-1 is a C1 domain-containing
protein that shares common endogenous and exogenous activators with
novel and conventional PKC subtypes. Given the essential role of Munc13-1
in the priming of synaptic vesicles and neuronal transmission overall,
we explored the potential interaction between bryostatin 1 and Munc13-1.
Our results indicate that in vitro bryostatin 1 binds
to both the isolated C1 domain of Munc13-1 (Ki = 8.07 ± 0.90 nM) and the full-length Munc13-1 protein
(Ki = 0.45 ± 0.04 nM). Furthermore,
confocal microscopy and immunoblot analysis demonstrated that in intact
HT22 cells bryostatin 1 mimics the actions of phorbol esters, a previously
established class of Munc13-1 activators, and induces plasma membrane
translocation of Munc13-1, a hallmark of its activation. Consistently,
bryostatin 1 had no effect on the Munc13-1H567K construct
that is insensitive to phorbol esters. Effects of bryostatin 1 on
the other Munc13 family members, ubMunc13-2 and bMunc13-2, resembled
those of Munc13-1 for translocation. Lastly, we observed an increased
level of expression of Munc13-1 following a 24 h incubation with bryostatin
1 in both HT22 and primary mouse hippocampal cells. This study characterizes
Munc13-1 as a molecular target of bryostatin 1. Considering the crucial
role of Munc13-1 in neuronal function, these findings provide strong
support for the potential role of Munc13s in the actions of bryostatin
1.
Collapse
Affiliation(s)
- Francisco A Blanco
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Anamitra Ghosh
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
16
|
Kim HJ. Regulation of Neural Stem Cell Fate by Natural Products. Biomol Ther (Seoul) 2019; 27:15-24. [PMID: 30481958 PMCID: PMC6319553 DOI: 10.4062/biomolther.2018.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|
17
|
Abstract
INTRODUCTION Numerous studies have highlighted the intimate association between erectile dysfunction (ED) and diabetes mellitus (DM). However, the true pathogenesis of ED among diabetic men has not yet been fully discovered. The treatment of ED in diabetic patients remains an interesting area of research. The last two decades have witnessed phenomenal advances in the management of ED with the efficacy of pharmacotherapy for ED in diabetic patients encouraging, especially with introduction of innovative conservative tools for treatment. AREAS COVERED The aim of this review is to discuss the currently available information on ED pharmacotherapy in diabetic males and provide an expert perspective on the current treatment strategies. EXPERT OPINION Conservative treatment remains the initial step for the treatment of ED in diabetic patients. This kind of therapy consists of different modalities including: oral treatments, intracavernosal pharmacotherapy, and evolving modalities such as soluble guanylate cyclase activators, stem cells (SCs), and alternative treatments such as herbal treatment and transdermal/topical pharmacotherapy. However, it should be noted that the currently available pharmacotherapy is still far from ideal. One hopes to witness new drugs and technologies that may revolutionize ED treatment in the future, especially in such complex cases as DM.
Collapse
Affiliation(s)
- Ahmed I El-Sakka
- a Department of Urology , Suez Canal University , Ismailia , Egypt
| |
Collapse
|