1
|
Wang YF, Zhu XT, Hu ZP. Decreased plasma lipoxin A4, resolvin D1, protectin D1 are correlated with the complexity and prognosis of coronary heart disease: A retrospective cohort study. Prostaglandins Other Lipid Mediat 2025; 178:106990. [PMID: 40164347 DOI: 10.1016/j.prostaglandins.2025.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to assess the predictive capacity of specialized pro-resolving mediators (SPMs) regarding the complexity and prognosis of coronary heart disease (CHD). Total of 602 CHD patients were included in this study and categorized into low-risk, medium-risk, and high-risk groups based on the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score. Follow-up was conducted for two years, during which patients were dichotomized into poor and good prognosis groups. Additionally, twenty healthy controls were incorporated. Plasma concentrations of lipoxin A4 (LXA4), resolvin D1 (RvD1), protectin D1 (PD1), C-reactive protein (CRP), interleukin-6 (IL-6), and IL-10 were quantified. Plasma LXA4, RvD1, PD1, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 exhibited a gradual decrease across control, low-risk, medium-risk, and high-risk groups and exhibited a negative correlation with the SYNTAX score. Spearman's correlation analysis revealed negative correlations between plasma LXA4, RvD1, PD1, and both CRP and IL-6, and positive correlations with IL-10. Multiple linear regression models demonstrated negative associations between plasma LXA4, RvD1, PD1, and SYNTAX score. Moreover, both univariate and multivariate binary logistic regression analyses identified plasma LXA4, RvD1, and PD1 as protective factors against medium/high-risk SYNTAX score categorization. In the poor prognosis group, plasma PD1 was reduced at short-term follow-up, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were reduced at long-term follow-up. Plasma LXA4, RvD1, and PD1 demonstrated negative correlations with CHD complexity and potentially served as protective factors against CHD. Plasma PD1 provided predictive value for short-term prognosis, while the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were indicative for long-term prognosis.
Collapse
Affiliation(s)
- Yun-Fei Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xue-Tao Zhu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ze-Ping Hu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
2
|
Kittelson KS, Junior AG, Fillmore N, da Silva Gomes R. Cardiovascular-kidney-metabolic syndrome - An integrative review. Prog Cardiovasc Dis 2024; 87:26-36. [PMID: 39486671 PMCID: PMC11619311 DOI: 10.1016/j.pcad.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The American Heart Association recently defined the complex interactions among the cardiovascular, renal, and metabolic systems as CKM syndrome. To promote better patient outcomes, having a more profound understanding of CKM pathophysiology and pursuing holistic preventative and therapy strategies is critical. Despite many gaps in understanding CKM syndrome, this study attempts to elucidate two of these gaps: the new emerging biomarkers for screening and the role of inflammation in its pathophysiology. For this review, an extensive search for specific terms was conducted in the following databases: PubMed, Scopus, Web of Science, and Google Scholar. Studies were first assessed by title, abstract, keywords, and selected for portfolio according to eligibility criteria, which led to 38 studies. They provided background information about CKM syndrome; data suggested that serum uric acid, leptin, aldosterone, bilirubin, soluble neprilysin, lipocalin-type-prostaglandin-D-synthase, and endocan could be valuable biomarkers for CKM screening; and finally, the inflammation role in CKM.
Collapse
Affiliation(s)
- Katiana Simões Kittelson
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil; Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Natasha Fillmore
- Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
3
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Zhang S, Zhu X, Chen Y, Wen Z, Shi P, Ni Q. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Front Immunol 2024; 15:1393392. [PMID: 38774880 PMCID: PMC11106398 DOI: 10.3389/fimmu.2024.1393392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhige Wen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyu Shi
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Walker ME, De Matteis R, Perretti M, Dalli J. Resolvin T4 enhances macrophage cholesterol efflux to reduce vascular disease. Nat Commun 2024; 15:975. [PMID: 38316794 PMCID: PMC10844649 DOI: 10.1038/s41467-024-44868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Guo Y, Li L, Hu S. Circulating Galectin-3 levels and Diabetic Nephropathy: a systematic review and meta-analysis. BMC Nephrol 2023; 24:163. [PMID: 37291488 PMCID: PMC10249253 DOI: 10.1186/s12882-023-03226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
AIMS Changes of serum galectin-3 (Gal-3) is associated with the pathogenesis of diabetic nephropathy (DN). However, current literature indicates that the given results remain debatable and inconsistent. Hence, the aim of this present meta-analysis was to focus on the predictive role of serum Gal-3 in patients with DN. METHODS The PubMed, Embase, Cochrane Library and Web of Science databases were systematically searched for studies that reported the relationship between Gal-3 levels and DN risk, from the inception of each database to March, 2023. The literature we selected for inclusion based on inclusion and exclusion criteria. The standard mean difference (SMD) with corresponding 95% confidence intervals (95% CI) were used to investigate the association. When I2 value exceeding 50%, we will consider it has the presence of a higher level of heterogeneity. A sensitivity analysis and subgroup analysis were performed to seek the potential sources of heterogeneity. The quality assessment was performed using according to the Newcastle-Ottawa Quality Assessment Scale (NOS). The data analysis was conducted using STATA version 13.0 software. RESULTS We ultimately enrolled 9 studies enrolling a total of 3137 patients in the final analysis. The SMD of serum Gal-3 was higher in patients with DN group (SMD 1.10 ng/mL [0.63, 1.57]; I2: 96.1%). Upon removal of a study in sensitivity analysis, patients with DN had higher serum Gal-3 levels compared to control patients (SMD 1.03 ng/mL [0.52, 1.54], I2: 94.4%). Further subgroup analysis was performed based on the region. No matter in Asia, Europe or Africa, the serum Gal-3 level of DN patients is significantly higher than that of the control population (SMD: 0.73; 95% CI: 0.58 to 0.87 for Asian; SMD: 0.79; 95% CI: 0.48 to 1.10 for Europe; SMD: 3.15; 95% CI: 2.73 to 3.56 for Africa). CONCLUSION In conclusion, these results suggested that higher serum Gal-3 may increase the risk of DN. More fundamental studies are necessary to clarify the exact physiopathological basis mechanisms of Gal-3 effects. In addition, further research, especially emphasis on the cut-off value should be given, and is best to predict their actual importance as well as the diagnostic accuracy.
Collapse
Affiliation(s)
- Yong Guo
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
- Department of Organ Procurement Organization, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanbiao Hu
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
7
|
González-Herrera F, Anfossi R, Catalán M, Gutiérrez-Figueroa R, Maya JD, Díaz-Araya G, Vivar R. Lipoxin A4 prevents high glucose-induced inflammatory response in cardiac fibroblast through FOXO1 inhibition. Cell Signal 2023; 106:110657. [PMID: 36933776 DOI: 10.1016/j.cellsig.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renata Gutiérrez-Figueroa
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Guillermo Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
8
|
Millar B, de Gaetano M. Posing the rationale for synthetic lipoxin mimetics as an adjuvant treatment to gold standard atherosclerosis therapies. Front Pharmacol 2023; 14:1125858. [PMID: 36865918 PMCID: PMC9971729 DOI: 10.3389/fphar.2023.1125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Atherosclerosis is a progressive, multifactorial inflammatory, and dyslipidaemic disease, responsible for the majority of cardiovascular diseases globally. The chronic inflammation is the main driver of the initiation and progression of such disease, as a result of an imbalanced lipid metabolism and an ineffective immune response to attenuate the inflammatory component. The importance of inflammation resolution is being increasingly recognised in atherosclerosis and cardiovascular disease. It has a complex mechanism consisting of multiple stages, including restoring an effective removal of apoptotic bodies (efferocytosis) and their degradation (effero-metabolism), a macrophage phenotype switching towards resolving phenotypes, and the promotion of tissue healing and regeneration. The low-grade inflammation associated with atherosclerosis development is a driving force in disease exacerbation, and hence inflammation resolution is a key area of research. In this review, we explore the complex disease pathogenesis and its many contributing factors to gain a greater understanding of the disease and identify the current and potential therapeutic targets. First-line treatments and their efficacy will also be discussed in detail, to highlight the emerging field of resolution pharmacology. Despite the great efforts made by current gold-standard treatments, such as lipid-lowering and glucose-lowering drugs, they remain ineffective at tackling residual inflammatory risk and residual cholesterol risk. Resolution pharmacology represents a new era of atherosclerosis therapy, as endogenous ligands associated with inflammation resolution are exploited for their pharmacological benefits in a more potent and longer-acting manner. Novel FPR2-agonists, such as synthetic lipoxin analogues, provide an exciting new approach to enhance the pro-resolving response of the immune system and subsequently end the pro-inflammatory response to allow for an anti-inflammatory and pro-resolving environment for tissue healing, regeneration, and return to homeostasis.
Collapse
Affiliation(s)
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063133. [PMID: 35328553 PMCID: PMC8955102 DOI: 10.3390/ijms23063133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
Collapse
|
11
|
Dalli J, Gomez EA, Jouvene CC. Utility of the Specialized Pro-Resolving Mediators as Diagnostic and Prognostic Biomarkers in Disease. Biomolecules 2022; 12:biom12030353. [PMID: 35327544 PMCID: PMC8945731 DOI: 10.3390/biom12030353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Esteban Alberto Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| | - Charlotte Camille Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| |
Collapse
|
12
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
13
|
de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J, Newson J, Cacace A, Marai M, Gaffney A, Brennan E, Kantharidis P, Cooper ME, Leroy X, Perretti M, Gilroy D, Godson C, Guiry PJ. Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A 4 Mimetics (QNX-sLXms). J Med Chem 2021; 64:9193-9216. [PMID: 34138563 PMCID: PMC8279484 DOI: 10.1021/acs.jmedchem.1c00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Failure to resolve
inflammation underlies many prevalent pathologies.
Recent insights have identified lipid mediators, typified by lipoxins
(LXs), as drivers of inflammation resolution, suggesting potential
therapeutic benefit. We report the asymmetric preparation of novel
quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms).
Eight novel compounds were screened for their impact on inflammatory
responses. Structure–activity relationship (SAR) studies showed
that (R)-6 (also referred to as AT-02-CT)
was the most efficacious and potent anti-inflammatory compound of
those tested. (R)-6 significantly attenuated
lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced
NF-κB activity in monocytes and vascular smooth muscle cells.
The molecular target of (R)-6 was investigated.
(R)-6 activated the endogenous LX receptor
formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties
of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent
with in vitro observations, (R)-6 attenuated inflammatory responses. These results support
the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Catherine Tighe
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Kevin Gahan
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrea Zanetti
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Justine Newson
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Antonino Cacace
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Mariam Marai
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrew Gaffney
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Eoin Brennan
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Xavier Leroy
- Domain Therapeutics SA, 67400 Strasbourg, Illkirch, France
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Derek Gilroy
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Catherine Godson
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
14
|
Bruno AS, Lopes PDD, de Oliveira KCM, de Oliveira AK, de Assis Cau SB. Vascular Inflammation in Hypertension: Targeting Lipid Mediators Unbalance and Nitrosative Stress. Curr Hypertens Rev 2021; 17:35-46. [PMID: 31858899 DOI: 10.2174/1573402116666191220122332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
Arterial hypertension is a worldwide public health threat. High Blood Pressure (BP) is commonly associated with endothelial dysfunction, nitric oxide synthases (NOS) unbalance and high peripheral vascular resistance. In addition to those, inflammation has also been designated as one of the major components of BP increase and organ damage in hypertension. This minireview discusses vascular inflammatory triggers of high BP and aims to fill the existing gaps of antiinflammatory therapy of hypertension. Among the reasons discussed, enhanced prostaglandins rather than resolvins lipid mediators, immune cell infiltration and oxidative/nitrosative stress are pivotal players of BP increase within the inflammatory hypothesis. To address these inflammatory targets, this review also proposes new concepts in hypertension treatment with non-steroidal antiinflammatory drugs (NSAIDs), nitric oxide-releasing NSAIDs (NO-NSAIDs) and specialized proresolving mediators (SPM). In this context, the failure of NSAIDs in hypertension treatment seems to be associated with the reduction of endogenous NO bioavailability, which is not necessarily an effect of all drug members of this pharmacological class. For this reason, NO-releasing NSAIDs seem to be safer and more specific therapy to treat vascular inflammation in hypertension than regular NSAIDs.
Collapse
Affiliation(s)
- Alexandre S Bruno
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Patricia das Dores Lopes
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Karla C M de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anizia K de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany B de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| |
Collapse
|
15
|
Almeida L, Everts B. Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. Eur J Immunol 2021; 51:1628-1640. [PMID: 33788250 PMCID: PMC8359938 DOI: 10.1002/eji.202048944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
In recent years there have been major advances in our understanding of the role of free fatty acids (FAs) and their metabolism in shaping the functional properties of macrophages and DCs. This review presents the most recent insights into how cell intrinsic FA metabolism controls DC and macrophage function, as well as the current evidence of the importance of various exogenous FAs (such as polyunsaturated FAs and their oxidation products—prostaglandins, leukotrienes, and proresolving lipid mediators) in affecting DC and macrophage biology, by modulating their metabolic properties. Finally, we explore whether targeted modulation of FA metabolism of myeloid cells to steer their function could hold promise in therapeutic settings.
Collapse
Affiliation(s)
- Luís Almeida
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
16
|
Li YY, Zhang S, Wang H, Zhang SX, Xu T, Chen SW, Zhang Y, Chen Y. Identification of Crucial Genes and Pathways Associated with Atherosclerotic Plaque in Diabetic Patients. Pharmgenomics Pers Med 2021; 14:211-220. [PMID: 33568933 PMCID: PMC7869704 DOI: 10.2147/pgpm.s281705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/26/2020] [Indexed: 01/20/2023] Open
Abstract
Background Patients with diabetes have more calcification in atherosclerotic plaque and a higher occurrence of secondary cardiovascular events than patients without diabetes. The objective of this study was to identify crucial genes involved in the development of diabetic atherosclerotic plaque using a bioinformatics approach. Methods Microarray dataset GSE118481 was downloaded from the Gene Expression Omnibus (GEO) database; the dataset included 6 patients with diabetic atherosclerotic plaque (DBT) and 6 nondiabetic patients with atherosclerotic plaque (Ctrl). Differentially expressed genes (DEG) between the DBT and Ctrl groups were identified and then subjected to functional enrichment analysis. Based on the enriched pathways of DEGs, diabetic atherosclerotic plaque-related pathways were screened using the comparative toxicogenomics database (CTD). We then constructed a protein–protein interaction (PPI) network and transcription factor (TF)–miRNA–mRNA network. Results A total of 243 DEGs were obtained in the DBT group compared with the Ctrl group, including 85 up-regulated and 158 down-regulated DEGs. Functional enrichment analysis showed that up-regulated DEGs were mainly enriched in isoprenoid metabolic process, DNA-binding TF activity, and response to virus. Additionally, DEGs participating in the toll-like receptor signaling pathway were closely related to diabetes, carotid stenosis, and insulin resistance. The TF–miRNA–mRNA network showed that toll-like receptor 4 (TLR4), BCL2-like 11 (BCL2L11), and glutamate-cysteine ligase catalytic subunit (GCLC) were hub genes. Furthermore, TLR4 was regulated by TF signal transducer and activator of transcription 6 (STAT6); BCL2L11 was targeted by hsa-miR-24-3p; and GCLC was regulated by nuclear factor, erythroid 2 like 2 (NFE2L2). Conclusion Identification of hub genes and pathways increased our understanding of the molecular mechanisms underlying the atherosclerotic plaque in patients with or without diabetes. These crucial genes (TLR4, BC2L11, and GCLC) might function as molecular biomarkers for diabetic atherosclerotic plaque.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Sheng Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Hua Wang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Shun-Xiao Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Ting Xu
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Shu-Wen Chen
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Yan Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| | - Yue Chen
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, People's Republic of China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Nephrology lacks effective therapeutics for many of the presentations and diseases seen in clinical practice. In recent decades, we have come to understand the central place of inflammation in initiating and propagating kidney disease, and, research in more recent years has established that the resolution of inflammation is a highly regulated and active process. With this, has evolved an appreciation that this aspect of the host inflammatory response is defective in kidney disease and led to consideration of a therapeutic paradigm aiming to harness the activity of the molecular drivers of the resolution phase of inflammation. Fatty-acid-derived Specialized pro-resolving mediators (SPMs), partly responsible for resolution of inflammation have gained traction as potential therapeutics. RECENT FINDINGS We describe our current understanding of SPMs for this purpose in acute and chronic kidney disease. These studies cement the place of inflammation and its defective resolution in the pathogenesis of kidney disease, and highlight new avenues for therapy. SUMMARY Targeting resolution of inflammation is a viable approach to treating kidney disease. We optimistically look forward to translating these experimental advances into tractable therapeutics to treat kidney disease.
Collapse
|
18
|
Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur J Med Chem 2021; 213:113167. [PMID: 33486199 DOI: 10.1016/j.ejmech.2021.113167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Under physiological conditions the initiation, duration and amplitude of inflammatory responses are tightly regulated to ensure the restoration of homeostasis. The resolution of inflammation in these circumstances is dictated by responses to endogenously generated mediators. Mimicry of such mediators underpins the principle of promoting the resolution of inflammation in treating inflammatory pathologies. The formyl peptide receptor 2 (FPR2/ALX) is a G-protein coupled receptor known to play a crucial role in maintaining host defence and orchestrating the inflammatory process. FPR2/ALX can be activated by a wide range of distinct agonists, including lipids, proteins, peptides, and an array of synthetic small molecule agonists. The focus of this review is to provide a comprehensive overview of recent progress made in the development of FPR2/ALX agonists which promote resolution and tissue regeneration.
Collapse
|
19
|
Receptors for pro-resolving mediators as a therapeutic tool for smooth muscle remodeling-associated disorders. Pharmacol Res 2020; 164:105340. [PMID: 33276103 DOI: 10.1016/j.phrs.2020.105340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Respiratory airway, blood vessel and intestinal wall remodeling, in which smooth muscle remodeling plays a major role, is a key pathological event underlying the development of several associated diseases, including asthma, cardiovascular disorders (e.g., atherosclerosis, hypertension, and aneurism formation), and inflammatory bowel disease. However, the mechanisms underlying these remodeling processes remain poorly understood. We hypothesize that the creation of chronic inflammation-mediated networks that support and exacerbate the airway, as well as vascular and intestinal wall remodeling, is a crucial pathogenic mechanism governing the development of the associated diseases. The failed inflammation resolution might be one of the causal pathogenic mechanisms. Hence, it is reasonable to assume that applying specialized, pro-resolving mediators (SPMs), acting via cognate G-protein coupled receptors (GPCRs), could potentially be an effective pathway for treating these disorders. However, several obstacles, such as poor understanding of the SPM/receptor signaling pathways, SMP rapid inactivation as well as their complex and costly synthesis, limit their translational potential. In this connection, stable, small-molecule SPM mimetics and receptor agonists have emerged as new, potentially suitable drugs. It has been recently shown in preclinical studies that they can effectively attenuate the manifestations of asthma, atherosclerosis and Crohn's disease. Remarkably, some biased SPM receptor agonists, which cause a signaling response in the desired inflammation pro-resolving direction, revealed similar beneficial effects. These encouraging observations suggest that SPM mimetics and receptor agonists can be applied as a novel approach for the treatment of various chronic inflammation conditions, including airway, vascular and intestinal wall remodeling-associated disorders.
Collapse
|
20
|
Perretti M, Godson C. Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br J Pharmacol 2020; 177:4595-4600. [PMID: 32954491 PMCID: PMC7520433 DOI: 10.1111/bph.15212] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
One way to develop innovative approaches for the treatment of chronic diseases is to exploit the biology of the resolution of inflammation. With this terminology, we identify the integrated and complex network of mediators and pathways that ensure a timely and spatially regulated inflammatory response. Pro-resolving mediators act on specific receptors. This provides an opportunity for developing a new arm of pharmacology we have termed "resolution pharmacology." Here we present the reasoning behind the need to develop new medicines based on resolution and use a prototype GPCR as an example. Understanding how the formyl peptide receptor type 2 (FPR2) operates in a cell-specific manner can guide the development of agonists as new therapeutics that could be of benefit as a therapy or co-therapy for several diseases that affect our society. FPR2 agonists would be among the first drugs to establish "resolution pharmacology" as the pharmacological approach for the third decade of the millennium.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of MedicineQueen Mary University of LondonLondonUK
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonUK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute & School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
21
|
Shen Y, Wang S, Liu Y, Ge L, Xia L, Zhang X, Miao Y, Shen J, Zhou Q. The Effects of Salvianolate Combined With Western Medicine on Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:851. [PMID: 32595500 PMCID: PMC7304251 DOI: 10.3389/fphar.2020.00851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/22/2020] [Indexed: 01/30/2023] Open
Abstract
Background Salvianolate, a compound mainly composed of salvia magnesium acetate, is extracted from the Chinese herb Salvia miltiorrhiza. Because of its biological activity, easy quality control and certain efficacy, salvianolate is widely used in treating ischemic cardiocerebral vascular disease, liver damage, renal injury, diabetes, and its complications. Particularly, it has potential protective effects on diabetic nephropathy (DN). Objective This meta-analysis aimed to evaluate the efficacy and safety of salvianolate when combined with western medicine in patients affected with DN. Methods We searched Pubmed, Web of Science, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data knowledge service platform (Wanfang Data), Chinese Scientific Journal Database (VIP), and China Biology Medicine Disc (SinoMed) for randomized controlled trials (RCTs) of salvianolate in combination with western medicine on DN, including results from the foundation of each database until November 30, 2019. Two reviewers independently performed literature screening, data extraction, and quality evaluation. This meta-analysis was carried out using RevMan5.3 software. Results From the 12 RCTs, 1,030 patients from China were involved. Compared with single-use western medicine, the combination of salvianolate and western medicine for the treatment of DN could reduce levels of serum creatinine (Scr) [MD=-16.53, 95% CI (-28.79, -4.27), P=0.008], blood urea nitrogen (BUN) [MD=-1.40, 95% CI (-2.17, -0.62), P=0.0004], urinary albumin excretion rate (UARE) [SMD=-1.84, 95% CI (-2.70, -0.98), P < 0.0001], 24-hour urinary protein (24h Upro) [MD=-0.37, 95% CI (-0.47, -0.26), P < 0.00001], albumin-to-creatinine ratio (ACR) [SMD=-1.43, 95% CI (-2.64, -0.23), P=0.02], hypersensitive C-reactive protein (hs-CRP) [MD=-5.69, 95% CI (-7.09, -4.29), P < 0.00001], interleukin-6 (IL-6) [MD=-12.53, 95% CI (-18.55, -6.52), P < 0.0001], malondialdehyde (MDA) [SMD=-2.05, 95% CI (-3.67, -0.43), P=0.01], as well as improve clinical efficacy [RR=1.21, 95% CI (1.12,1.31), P < 0.00001], and increase superoxide dismutase (SOD) levels [SMD=1.12, 95% CI (0.86,1.38), P < 0.00001]. No increase in the occurrence of serious adverse events were observed in the treatment group compared with the control group. Conclusion This study indicated that salvianolate combined with western medicine contributes to protecting renal function, inhibiting inflammation, and exhibiting anti-oxidative properties, thereby improving clinical efficacy. Thus, salvianolate can be considered as a potential complementary therapy for DN patients. However, due to the low quality of methodology and small sample sizes, more rigorous and larger trials are essential to validate our results.
Collapse
Affiliation(s)
- Yuehong Shen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulin Wang
- Department of Orthopaedics, Zhenjiang City Hospital of Traditional Chinese Medicine, Zhenjiang, China
| | - Yuanyuan Liu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Ge
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Xia
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Yuying Miao
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
23
|
Maisto R, Trotta MC, Petrillo F, Izzo S, Cuomo G, Alfano R, Hermenean A, Barcia JM, Galdiero M, Platania CBM, Bucolo C, D'Amico M. Resolvin D1 Modulates the Intracellular VEGF-Related miRNAs of Retinal Photoreceptors Challenged With High Glucose. Front Pharmacol 2020; 11:235. [PMID: 32210819 PMCID: PMC7069219 DOI: 10.3389/fphar.2020.00235] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Stimulation of retinal photoreceptors with elevated glucose concentration (30 mM) for 96 h, served as diabetic retinopathy in vitro model to study Resolvin D1 (50 nM) effects on neovascularization. VEGF and anti-angiogenic miR-20a-3p, miR-20a-5p, miR-106a-5p, and miR-20b expression was assessed either in photoreceptors exposed to HG or in exosomes released by those cells. High glucose increased VEGF levels and concurrently decreased anti-angiogenic miRNAs content in photoreceptors and exosomes. RvD1 reverted the effects of glucose damage in photoreceptors and exosomal pro-angiogenic potential, tested with the HUVEC angiogenesis assay. By activating FPR2 receptor, RvD1 modulated both the expression of anti-angiogenic miRNA, which decrease VEGF, and the pro-angiogenic potential of exosomes released by primary retinal cells. HUVEC transfection with miR-20a-3p, miR-20a-5p, miR-106a-5p, and miR-20b antagomirs, followed by exposure to exosomes from photoreceptors, confirmed the VEGF-related miRNAs mechanism and the anti-angiogenic effects of RvD1.
Collapse
Affiliation(s)
- Rosa Maisto
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Consiglia Trotta
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Izzo
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Cuomo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Jorge Miquel Barcia
- School of Medicine, Catholic University of Valencia "Saint Vicente Martir", Valencia, Spain
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Michele D'Amico
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
24
|
Trotta MC, Pieretti G, Petrillo F, Alessio N, Hermenean A, Maisto R, D'Amico M. Resolvin D1 reduces mitochondrial damage to photoreceptors of primary retinal cells exposed to high glucose. J Cell Physiol 2019; 235:4256-4267. [PMID: 31612492 DOI: 10.1002/jcp.29303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
Abstract
No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Petrillo
- Department of Ophthalmology, School of Medicine, University of Catania, Catania, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Department of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Deora GS, Qin CX, Vecchio EA, Debono AJ, Priebbenow DL, Brady RM, Beveridge J, Teguh SC, Deo M, May LT, Krippner G, Ritchie RH, Baell JB. Substituted Pyridazin-3(2H)-ones as Highly Potent and Biased Formyl Peptide Receptor Agonists. J Med Chem 2019; 62:5242-5248. [DOI: 10.1021/acs.jmedchem.8b01912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Girdhar Singh Deora
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth A. Vecchio
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Aaron J. Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel L. Priebbenow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ryan M. Brady
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Julia Beveridge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Silvia C. Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria 3052, Australia
| | - Guy Krippner
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rebecca H. Ritchie
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
26
|
Novel n-3 Docosapentaneoic Acid-Derived Pro-resolving Mediators Are Vasculoprotective and Mediate the Actions of Statins in Controlling Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:65-75. [DOI: 10.1007/978-3-030-21735-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|