1
|
Wang L, Geng Y, Liu L, Wang J, Chen J, Li Y, Wang J, Song L, Sun K, Yan Y, Zhou S, Tian D, Lin R, Yao H. Synthesis, anti-allergic rhinitis evaluation and mechanism investigation of novel 1,2,4-triazole-enamides as CB1 R antagonist. Eur J Med Chem 2025; 289:117461. [PMID: 40048796 DOI: 10.1016/j.ejmech.2025.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Allergic rhinitis (AR) is a non-infectious inflammatory disease and affects nearly half of the world's population currently, thus becoming a global health problem. In our study, a series of 1,2,4-triazole enamides were designed and used to evaluate the anti-inflammatory activity of AR. We found that compound 11g could significantly reduce the increased expression of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in Raw264.7 cells induced by lipopolysaccharides (LPS), and inhibit the expression of inflammation through MAPK pathway and NF-κB pathway by influencing the expression of cannabinoid-1 receptor (CB1 R). In the AR mice model, 11g can significantly reduce the number of inflammatory cells in Nasal lavage fluids (NLF), showing a good effect on the treatment of AR. This study provides a new and effective candidate for treatment of AR.
Collapse
Affiliation(s)
- Lu Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lifang Liu
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yunying Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Jingbo Wang
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kexin Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yajie Yan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Shiqing Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Yuexiu District, Dade Road111, Guangzhou, Guangdong, China
| | - Dan Tian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ran Lin
- Department of Biopharmaceutical Sciences, College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Piazzetta GL, Lobello N, Pelaia C, Preianò M, Lombardo N, Chiarella E. Modulating nasal barrier function and tissue remodeling in inflammatory diseases: the role of ginseng and its bioactive compounds. Tissue Barriers 2025:2470477. [PMID: 39988791 DOI: 10.1080/21688370.2025.2470477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Ginseng, a well-known herbal supplement, is widely recognized for its pharmacological properties, including anti-inflammatory, antioxidant, and immune-modulatory effects. This review explores the potential therapeutic benefits of ginseng, particularly its active compounds, ginsenosides, in promoting nasal mucosa health. The nasal mucosa plays a crucial role in respiratory defense, acting as a barrier to pathogens and particulate matter, while also orchestrating immune responses. Ginseng's bioactive compounds have shown promise in modulating inflammation, reducing oxidative stress, and enhancing immune functions, which could be beneficial in conditions such as allergic rhinitis, chronic rhinosinusitis, and viral infections. Histological studies highlight the impact of ginseng on nasal mucosal cells, particularly in regulating immune responses and promoting tissue resilience. Research demonstrates that ginseng can reduce inflammation in the nasal passages by inhibiting pro-inflammatory cytokines and pathways like NF-κB, while enhancing the activity of immune cells such as natural killer cells and macrophages. Furthermore, ginseng's antioxidant properties help protect nasal tissue from oxidative damage, which is common in chronic nasal conditions. Although promising, the evidence base is still developing, with many studies limited by small sample sizes and variations in ginseng preparations. Further clinical trials are needed to substantiate ginseng's efficacy, optimal dosage, and delivery methods for treating nasal conditions. This review provides insights into the potential of ginseng as a complementary therapeutic approach for enhancing nasal mucosa health and improving respiratory outcomes.
Collapse
Affiliation(s)
| | - Nadia Lobello
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | | | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
3
|
Xin Y, Jin Y, Qian C, Blackshaw S, Qian J. MetaLigand: A database for predicting non-peptide ligand mediated cell-cell communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633094. [PMID: 39868215 PMCID: PMC11761624 DOI: 10.1101/2025.01.14.633094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Non-peptide ligands (NPLs), including lipids, amino acids, carbohydrates, and non-peptide neurotransmitters and hormones, play a critical role in ligand-receptor-mediated cell-cell communication, driving diverse physiological and pathological processes. To facilitate the study of NPL-dependent intercellular interactions, we introduce MetaLigand, an R-based and web-accessible tool designed to infer NPL production and predict NPL-receptor interactions using transcriptomic data. MetaLigand compiles data for 233 NPLs, including their biosynthetic enzymes, transporter genes, and receptor genes, through a combination of automated pipelines and manual curation from comprehensive databases. The tool integrates both de novo and salvage synthesis pathways, incorporating multiple biosynthetic steps and transport mechanisms to improve prediction accuracy. Comparisons with existing tools demonstrate MetaLigand's superior ability to account for complex biogenesis pathways and model NPL abundance across diverse tissues and cell types. Furthermore, analysis of single-nucleus RNA-seq datasets from age-related macular degeneration samples revealed that distinct retinal cell types exhibit unique NPL profiles and participate in specific NPL-mediated pathological cell-cell interactions. Finally, MetaLigand supports single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data, enabling the visualization of predicted NPL production levels and heterogeneity at single-cell resolution.
Collapse
|
4
|
Yang W, Pan Z, Zhang J, Wang L, Lai J, Fan K, Zhu J, Liu Q, Dai Y, Zhou J, Wu S, Gao Z, Yu S. Administration Strategy-Dependent Mechanisms and Effects of Human Adipose Tissue Stem Cell Extracellular Vesicles in Mouse Allergic Rhinitis Treatment. Cell Transplant 2025; 34:9636897251325673. [PMID: 40179013 PMCID: PMC11970061 DOI: 10.1177/09636897251325673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
We previously found that intravenous injection of extracellular vesicles (EVs) from human adipose tissue-derived stem cells (hADSC) could ameliorate allergic rhinitis (AR) in mice through immunomodulatory effects. In clinical trials, nasal delivery has been an attractive treatment for AR. We sought to determine whether there are differences in the therapeutic effects between caudal injection and their combination. We treated AR mice with ADSC-EVs via caudal vein, nasal cavity, or both. After treatment, the mice were re-sensitized and the indices of behavior, nasal mucosa morphology, and cytokine secretion of the mice under different modes of administration were calculated. The resultes show that tail vein, nasal, and combined administration could effectively relieve the inflammatory infiltration of the nasal mucosa of mice, reduce the secretion of IgE, IL-4, and other inflammatory factors, and alleviate the Th1/Th2 imbalance. Injection and nasal delivery, as well as their combination, effectively alleviated the symptoms of rhinitis in mice. Nasal administration has a better therapeutic effect when the inflammatory response is mild. It could be speculated that ADSC-EVs have excellent properties in the treatment of AR, and modes of administration can be selected for different stages of treatment in clinical therapy.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Zhiyu Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lian Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ju Lai
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai, China
| | - Kai Fan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjing Zhu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Yalei Dai
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieyu Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuhui Wu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengliang Gao
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- China-Japan Friendship Medical Research Institute, Shanghai University, Shanghai, China
| | - Shaoqing Yu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai, China
- Department of Allergy, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Costanzo G, Marchetti M, Ledda AG, Sambugaro G, Bullita M, Paoletti G, Heffler E, Firinu D, Costanzo GAML. Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. Int J Mol Sci 2024; 25:12615. [PMID: 39684326 DOI: 10.3390/ijms252312615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Mast cells are immune system cells with the most disparate functions, but are also among the least understood. Mast cells are implicated in several known pathological processes, tissue homeostasis, and wound repair. However, they owe their notoriety to allergic diseases, of which they represent the effector cell par excellence. In both allergic and not upper airway pathologies, mast cells play a key role. Exploring the mechanisms through which these cells carry out their physiological and pathological function may help us give a new perspective on existing therapies and identify new ones. A focus will be placed on non-allergic rhinitis, a poorly recognized and often neglected condition with complex management, where the role of the mast cell is crucial in the pathogenetic, clinical, and prognostic aspects.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Marta Marchetti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giada Sambugaro
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Martina Bullita
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | | |
Collapse
|
6
|
Siti Sarah CO, Mohd Ashari NS. Exploration of Allergic Rhinitis: Epidemiology, Predisposing Factors, Clinical Manifestations, Laboratory Characteristics, and Emerging Pathogenic Mechanisms. Cureus 2024; 16:e71409. [PMID: 39539885 PMCID: PMC11558229 DOI: 10.7759/cureus.71409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Allergic rhinitis (AR) is a widespread allergic condition, with its prevalence continuing to rise globally. This disease has a significant impact on patients' quality of life. Understanding the underlying pathophysiology is important to develop better-targeted therapies. For decades, the primary assumption has been that an allergy is caused by unbalanced and overactive immunological responses against allergens, driven mainly by activated T helper 2 (Th2) cells and due to aberrant T-regulatory cells. The more recent hypothesis that is gaining attention relies on the dysregulation of the epithelial barrier, which might result in allergen uptake as a primary defect in the pathogenesis of allergic reactions. The nasal epithelial barrier is considered a crucial first line of defense in the upper airway, as it protects the host's immune system from exposure to allergens. Thus, this review will discuss AR's epidemiology, predisposing factors, clinical manifestations, laboratory characteristics, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Che Othman Siti Sarah
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
7
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
8
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
9
|
Ellis AK, Casale TB, Kaliner M, Oppenheimer J, Spergel JM, Fleischer DM, Bernstein D, Camargo CA, Lowenthal R, Tanimoto S. Development of neffy, an Epinephrine Nasal Spray, for Severe Allergic Reactions. Pharmaceutics 2024; 16:811. [PMID: 38931932 PMCID: PMC11207568 DOI: 10.3390/pharmaceutics16060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Epinephrine autoinjectors (EAIs) are used for the treatment of severe allergic reactions in a community setting; however, their utility is limited by low prescription fulfillment rates, failure to carry, and failure to use due to fear of needles. Given that delayed administration of epinephrine is associated with increased morbidity/mortality, there has been a growing interest in developing needle-free, easy-to-use delivery devices. neffy (epinephrine nasal spray) consists of three Food and Drug Administration (FDA)-approved components: epinephrine, Intravail A3 (absorption enhancer), and a Unit Dose Spray (UDS). neffy's development pathway was established in conjunction with the FDA and the European Medicines Agency and included multiple clinical trials to evaluate pharmacokinetic and pharmacodynamic responses under a variety of conditions, such as self-administration and allergic and infectious rhinitis, as well as an animal anaphylaxis model of severe hypotension, where neffy demonstrated a pharmacokinetic profile that is within the range of approved injection products and a pharmacodynamic response that is as good or better than injections. The increased pulse rate (PR) and blood pressure (BP) observed even one minute following the administration of neffy confirm the activation of α and β adrenergic receptors, which are the key components of epinephrine's mechanism of action. The results suggest that neffy will provide a safe and effective needle-free option for the treatment of severe allergic reactions, including anaphylaxis.
Collapse
Affiliation(s)
- Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Thomas B. Casale
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Michael Kaliner
- Institute for Asthma and Allergy, Chevy Chase, MD 20815, USA
| | - John Oppenheimer
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jonathan M. Spergel
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Fleischer
- Section of Allergy and Immunology, Department of Pediatrics, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - David Bernstein
- Bernstein Clinical Research Center, Division of Immunology, Allergy and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH 45236, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
10
|
Peng G, Cai J, Wang Z, Zhang W, Xu J, Zhang D, Gong D. Facile fabrication of diatomite biosilica-based nasal drug delivery vehicle for enhanced treatment of allergic rhinitis. Colloids Surf B Biointerfaces 2024; 234:113715. [PMID: 38134821 DOI: 10.1016/j.colsurfb.2023.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Nanostructured silica-based materials have great potential as drug delivery vehicles for precise and personalized medical applications. As natural nanostructured silica, diatomite biosilica (DB) is recognized as a novel carrier to construct oral/parenteral smart drug delivery systems due to high surface area, biocompatibility, and applicability at low cost, yet the related studies on its use in local delivery routes are still scarce. Herein, we proposed a novel strategy to develop multifunctional nasal drug delivery vehicles based on DB, and demonstrated their versatile performance for enhanced treatment of allergic rhinitis (AR). As a proof of concept, the purified DB microparticles were loaded with budesonide as an anti-inflammatory model drug, and further processed via surface modification to graft polydopamine and carboxymethyl chitosan layers. The synthesized microcapsules exhibited remarkable mucin binding capacity and antibacterial activity against Staphylococcus aureus. Besides, toxicity evaluation with human skin fibroblast cells and hemolysis tests indicated their high biocompatibility. Moreover, in vitro drug release results demonstrated pH-responsive release performance of the microcapsules under simulated AR environment (pH 5.0, 35 °C). Hence, this study provides a facile and reliable approach to construct DB-based mucoadhesive nasal drug delivery vehicles, showing great potential for treatment of allergic airway inflammatory diseases.
Collapse
Affiliation(s)
- Guanya Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Zhenhu Wang
- Beijing Institute of Radio Measurement, Beijing 100854, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
| |
Collapse
|
11
|
Zaręba Ł, Piszczatowska K, Dżaman K, Soroczynska K, Motamedi P, Szczepański MJ, Ludwig N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J Pers Med 2024; 14:98. [PMID: 38248800 PMCID: PMC10817350 DOI: 10.3390/jpm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
PM2.5 is one of the most harmful components of airborne pollution and includes particles with diameters of less than 2.5 μm. Almost 90% of the world's population lives in areas with poor air quality exceeding the norms established by the WHO. PM2.5 exposure affects various organs and systems of the human body including the upper respiratory tract which is one of the most prone to its adverse effects. PM2.5 can disrupt nasal epithelial cell metabolism, decrease the integrity of the epithelial barrier, affect mucociliary clearance, and alter the inflammatory process in the nasal mucosa. Those effects may increase the chance of developing upper respiratory tract diseases in areas with high PM2.5 pollution. PM2.5's contribution to allergic rhinitis (AR) and rhinosinusitis was recently thoroughly investigated. Numerous studies demonstrated various mechanisms that occur when subjects with AR or rhinosinusitis are exposed to PM2.5. Various immunological changes and alterations in the nasal and sinonasal epithelia were reported. These changes may contribute to the observations that exposure to higher PM2.5 concentrations may increase AR and rhinosinusitis symptoms in patients and the number of clinical visits. Thus, studying novel strategies against PM2.5 has recently become the focus of researchers' attention. In this review, we summarize the current knowledge on the effects of PM2.5 on healthy upper respiratory tract mucosa and PM2.5's contribution to AR and rhinosinusitis. Finally, we summarize the current advances in developing strategies against PM2.5 particles' effects on the upper respiratory tract.
Collapse
Affiliation(s)
- Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 03-242 Warsaw, Poland;
| | - Karolina Soroczynska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Parham Motamedi
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Briskey D, Ebelt P, Rao A. The Effect of Levagen+ (Palmitoylethanolamide) Supplementation on Symptoms of Allergic Rhinitis-A Double-Blind Placebo-Controlled Trial. Nutrients 2023; 15:4940. [PMID: 38068797 PMCID: PMC10707829 DOI: 10.3390/nu15234940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is an inflammatory, symptomatic disorder stimulated by antigen-specific immunoglobulin E inflammation in response to allergens. Current treatments include the use of corticosteroids and antihistamines to reduce inflammation by preventing histamine release. Palmitoylethanolamide (PEA) is reported to be an alternative treatment, shown to downregulate mast cell activation and increase the synthesis of endocannabinoid 2-Arachidonoylglycerol to reduce histamine and the symptoms of AR. METHOD A double-blind, randomised, placebo-controlled clinical trial in which 108 participants presenting with seasonal AR were supplemented with either 350 mg of PEA (Levagen+) or a placebo daily for two weeks. Symptom scores were recorded using the reflective total nasal symptom score (rTNSS) twice a day (morning and evening) for the two weeks, and blood was taken at baseline and week 2. RESULTS 101 participants completed the study with no baseline group differences. No significant difference was seen between groups for allergy symptoms scores (rTNSS) throughout the 14 days of treatment. A sub-group analysis of participants scoring over four (mild-to-moderate) on the total rTNSS at baseline showed that Levagen+ significantly reduced scores compared to the placebo group. Only 36 participants had full sets of blood taken due to COVID-19. The pathology results showed a significant difference in change from baseline between groups. The Levagen+ group had a significant decrease from baseline in histamine, IL-4, IL-8, IL-10, and TNF-α. The placebo group only had a reduction in IL-4. CONCLUSION The results of this study show that Levagen+ can alleviate AR symptoms, resulting in a reduction in histamine and inflammatory markers.
Collapse
Affiliation(s)
- David Briskey
- RDC Clinical, Brisbane, QLD 4006, Australia; (D.B.)
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Amanda Rao
- RDC Clinical, Brisbane, QLD 4006, Australia; (D.B.)
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Trybus E, Trybus W, Król T. Cytological Study of Topical Effect of Azelastine Hydrochloride on the Nasal Mucous Membrane Cells in Various Nasal Rhinitis Types. Cells 2023; 12:2697. [PMID: 38067125 PMCID: PMC10706206 DOI: 10.3390/cells12232697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Previous reports on the benefits of using local therapy with azelastine in rhinitis focus on the assessment of clinical symptoms and the analysis of nasal lavage for the presence of inflammatory cells and the expression of adhesion molecules. Little attention has been paid to studies assessing the effect of azelastine on individual cytotypes of the nasal mucosa, especially epithelial cells, also in the context of inducing morphological changes. The aim of this study was the cytological analysis of swabs taken from the surface of the nasal mucosa of patients with allergic rhinitis (AR) and nonallergic/vasomotor rhinitis (NAR/VMR) who were subjected to 4 weeks of therapy with azelastine and then comparing the obtained results with the pre-treatment condition. The technique of obtaining materials for cytoanalysis included sampling, staining of smears, microscopic analysis, and preparation of cytograms. Our studies confirmed the therapeutic benefits of azelastine in both study groups. Significant changes were demonstrated, confirming the regeneration of ciliated cells and the induction of autophagy and apoptosis in epithelial cells. Such changes indicate new mechanisms of action of azelastine, which play a significant role in restoring homeostasis in the nasal mucosa. The presented research also results in a detailed description of cytological changes in both studied rhinitis types, which complements the knowledge regarding prognostic indicators.
Collapse
Affiliation(s)
- Ewa Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Wojciech Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | | |
Collapse
|
14
|
Sparapani S, Authier S, Lowenthal R, Tanimoto S. The impact of anaphylaxis on the absorption of intranasal epinephrine in anaesthetized non-naive beagle dogs. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100165. [PMID: 38024850 PMCID: PMC10679764 DOI: 10.1016/j.jacig.2023.100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023]
Abstract
Background Epinephrine delivery via an intranasal spray (neffy) is being evaluated as an additional option to treat severe allergic reaction and may provide clinical benefit by reducing the time to dosing in community settings by avoiding needles. Given that hypotension is a hallmark symptom of severe allergic reactions, a preclinical study was conducted to evaluate the impact of this factor on epinephrine absorption via neffy. Objective The objective of this study was to evaluate the absorption of epinephrine via neffy in a dog model of anaphylaxis with severe hypotension. Methods Epinephrine absorption via neffy was evaluated in anesthetized beagle dogs under both normal conditions and hypotension associated with anaphylaxis. A total of 14 dogs (10 males and 4 females) were dosed with neffy, 1.0 mg, under normal conditions, followed by neffy, 1.0 mg, under conditions of anaphylaxis. Results The mean maximum concentration of epinephrine was higher during anaphylaxis than under normal conditions (2,670 ± 2,150 pg/mL and 1,330 ± 739 pg/mL [P < .05]). Relative to normal conditions, anaphylaxis resulted in higher overall epinephrine exposure (area under the curve from 0 to 45 minutes = 54,400 ± 18,100 min × pg/mL and 34,300 ± 21,500 minutes × pg/mL [P < .05]), which is likely due to the increase in vascular permeability commonly observed during severe allergic reactions. Conclusion Taken together with real-world evidence from nasal naloxone treatment for opioid overdose demonstrating that the reduced blood flow or hypotension associated with overdose does not appear to suppress naloxone's efficacy, the current findings demonstrate that epinephrine is well absorbed following neffy delivery during the hypotension associated with severe anaphylaxis reactions.
Collapse
|
15
|
Bauer RN, Xie Y, Beaudin S, Wiltshire L, Wattie J, Muñoz C, Alsaji N, Oliveria JP, Ju X, MacLean J, Sommer DD, Keith PK, Satia I, Cusack RP, O'Byrne PM, Sperinde G, Hokom M, Li O, Banerjee P, Chen C, Staton T, Sehmi R, Gauvreau GM. Evaluation of the reproducibility of responses to nasal allergen challenge and effects of inhaled nasal corticosteroids. Clin Exp Allergy 2023; 53:1187-1197. [PMID: 37794659 DOI: 10.1111/cea.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Similar immune responses in the nasal and bronchial mucosa implies that nasal allergen challenge (NAC) is a suitable early phase experimental model for drug development targeting allergic rhinitis (AR) and asthma. We assessed NAC reproducibility and the effects of intranasal corticosteroids (INCS) on symptoms, physiology, and inflammatory mediators. METHODS 20 participants with mild atopic asthma and AR underwent three single blinded nasal challenges each separated by three weeks (NCT03431961). Cohort A (n = 10) underwent a control saline challenge, followed by two allergen challenges. Cohort B (n = 10) underwent a NAC with no treatment intervention, followed by NAC with 14 days pre-treatment with saline nasal spray (placebo), then NAC with 14 days pre-treatment with INCS (220 μg triamcinolone acetonide twice daily). Nasosorption, nasal lavage, blood samples, forced expiratory volume 1 (FEV1), total nasal symptom score (TNSS), peak nasal inspiratory flow (PNIF) were collected up to 24 h after NAC. Total and active tryptase were measured as early-phase allergy biomarkers (≤30 min) and IL-13 and eosinophil cell counts as late-phase allergy biomarkers (3-7 h) in serum and nasal samples. Period-period reproducibility was assessed by intraclass correlation coefficients (ICC), and sample size estimates were performed using effect sizes measured after INCS. RESULTS NAC significantly induced acute increases in nasosorption tryptase and TNSS and reduced PNIF, and induced late increases in nasosorption IL-13 with sustained reductions in PNIF. Reproducibility across NACs varied for symptoms and biomarkers, with total tryptase 5 min post NAC having the highest reproducibility (ICC = 0.91). Treatment with INCS inhibited NAC-induced IL-13 while blunting changes in TNSS and PNIF. For a similar crossover study, 7 participants per treatment arm are needed to detect treatment effects comparable to INCS for TNSS. CONCLUSION NAC-induced biomarkers and symptoms are reproducible and responsive to INCS. NAC is suitable for assessing pharmacodynamic activity and proof of mechanism for drugs targeting allergic inflammation.
Collapse
Affiliation(s)
- Rebecca N Bauer
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Yanqing Xie
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suzanne Beaudin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lesley Wiltshire
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Wattie
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Caroline Muñoz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nadia Alsaji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John Paul Oliveria
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Xiaotian Ju
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan MacLean
- Department of Surgery, Otolaryngology-Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Doron D Sommer
- Department of Surgery, Otolaryngology-Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Paul K Keith
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Imran Satia
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ruth P Cusack
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gizette Sperinde
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Martha Hokom
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Olga Li
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Prajna Banerjee
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Chen Chen
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Tracy Staton
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Yang M, Sun L, Zhu D, Meng C, Sha J. Recent advances in understanding the effects of T lymphocytes on mucosal barrier function in allergic rhinitis. Front Immunol 2023; 14:1224129. [PMID: 37771581 PMCID: PMC10523012 DOI: 10.3389/fimmu.2023.1224129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
Allergic rhinitis is a non-infectious chronic inflammatory disease of the nasal mucosa that affects T cells and their cytokines. T cells play significant roles in the development of allergic inflammatory diseases by orchestrating mechanisms underlying innate and adaptive immunity. Although many studies on allergic rhinitis have focused on helper T cells, molecular makeup, and pathogenesis-related transduction pathways, pathological mechanisms have not yet been completely explored. Recent studies have suggested that T cell status may play an important role in the interaction between T cells and the nasal mucosal barrier in allergic rhinitis. This study aimed to explore the interactions between T cells and nasal mucosal barriers in allergic rhinitis and to review the therapeutic modalities of pertinent biological agents involving T cells.
Collapse
Affiliation(s)
- Maolin Yang
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| |
Collapse
|
17
|
Li Q, Zhang X, Feng Q, Zhou H, Ma C, Lin C, Wang D, Yin J. Common Allergens and Immune Responses Associated with Allergic Rhinitis in China. J Asthma Allergy 2023; 16:851-861. [PMID: 37609376 PMCID: PMC10441643 DOI: 10.2147/jaa.s420328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic allergic disease of the upper respiratory system that affects approximately 10-40% of the global population. Due to the large number of plant pollen allergens with obvious seasonal variations, AR is common in China. AR is primarily caused by the abnormal regulation of the immune system. Its pathophysiological mechanism involves a series of immune cells and immune mediators, including cytokines. The present review summarizes the common allergens in China and the complex pathophysiological mechanism of AR. Additionally, host allergen contact, signal transduction, immune cell activation, cytokine release, and a series of inflammatory reactions are described according to their sequence of occurrence.
Collapse
Affiliation(s)
- Qirong Li
- Department of Otolaryngology-Head and Neck Surgery, the First Hospital of Jilin University, Changchun, People’s Republic of China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Chaoyang Ma
- Hepatology Hospital of Jilin Province, Changchun, People’s Republic of China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, People’s Republic of China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Jianmei Yin
- Department of Otolaryngology-Head and Neck Surgery, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
18
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
19
|
Klussmann JP, Grosheva M, Meiser P, Lehmann C, Nagy E, Szijártó V, Nagy G, Konrat R, Flegel M, Holzer F, Groß D, Steinmetz C, Scherer B, Gruell H, Schlotz M, Klein F, de Aragão PA, Morr H, Al Saleh H, Bilstein A, Russo B, Müller-Scholtz S, Acikel C, Sahin H, Werkhäuser N, Allekotte S, Mösges R. Early intervention with azelastine nasal spray may reduce viral load in SARS-CoV-2 infected patients. Sci Rep 2023; 13:6839. [PMID: 37100830 PMCID: PMC10132439 DOI: 10.1038/s41598-023-32546-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
With the changing epidemiology of COVID-19 and its impact on our daily lives, there is still an unmet need of COVID-19 therapies treating early infections to prevent progression. The current study was a randomized, parallel, double-blind, placebo-controlled trial. Ninety SARS-CoV-2 positive patients were randomized into 3 groups receiving placebo, 0.02% or 0.1% azelastine nasal spray for 11 days, during which viral loads were assessed by quantitative PCR. Investigators assessed patients' status throughout the trial including safety follow-ups (days 16 and 60). Symptoms were documented in patient diaries. Initial viral loads were log10 6.85 ± 1.31 (mean ± SD) copies/mL (ORF 1a/b gene). After treatment, virus load was reduced in all groups (p < 0.0001) but was greater in the 0.1% group compared to placebo (p = 0.007). In a subset of patients (initial Ct < 25) viral load was strongly reduced on day 4 in the 0.1% group compared to placebo (p = 0.005). Negative PCR results appeared earlier and more frequently in the azelastine treated groups: being 18.52% and 21.43% in the 0.1% and 0.02% groups, respectively, compared to 0% for placebo on day 8. Comparable numbers of adverse events occurred in all treatment groups with no safety concerns. The shown effects of azelastine nasal spray may thus be suggestive of azelastine's potential as an antiviral treatment.Trial registration: The study was registered in the German Clinical Trial Register (DRKS-ID: DRKS00024520; Date of Registration in DRKS: 12/02/2021). EudraCT number: 2020-005544-34.
Collapse
Affiliation(s)
- Jens Peter Klussmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maria Grosheva
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Peter Meiser
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Clara Lehmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- German Center for Infection Research (DZIF) Location Bonn-Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Eszter Nagy
- CEBINA GmbH, Karl-Farkas-Gasse 22, 1030, Vienna, Austria
| | | | - Gábor Nagy
- CEBINA GmbH, Karl-Farkas-Gasse 22, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Michael Flegel
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Frank Holzer
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Dorothea Groß
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Charlotte Steinmetz
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Barbara Scherer
- URSAPHARM Arzneimittel GmbH, Industriestraße 35, 66129, Saarbruecken, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Florian Klein
- German Center for Infection Research (DZIF) Location Bonn-Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Paula Aguiar de Aragão
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Henning Morr
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Helal Al Saleh
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | | | - Belisa Russo
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany
| | | | - Cengizhan Acikel
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany
| | - Hacer Sahin
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany
| | - Nina Werkhäuser
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany
| | - Silke Allekotte
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany
| | - Ralph Mösges
- ClinCompetence Cologne GmbH, Theodor-Heuss-Ring 14, 50668, Cologne, Germany.
- Institute of Medical Statistics and Computational Biology (IMSB), Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
20
|
Hamour AF, Lee JJ, Wasilewski E, Monteiro E, Lee JM, Vescan A, Kotra LP. Murine model for chronic rhinosinusitis: an interventional study. J Otolaryngol Head Neck Surg 2023; 52:32. [PMID: 37098626 PMCID: PMC10131485 DOI: 10.1186/s40463-023-00637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a complex inflammatory disease of the sinonasal tract. To understand this disease entity and develop targeted treatments, a reproducible animal model is paramount. AIMS/OBJECTIVES To optimize a murine model of eosinophilic CRS by establishing benchmark histological markers and validate its fidelity in evaluating intranasal treatments. MATERIAL AND METHODS Forty-five Balb/c mice were included in the 7-week protocol. Experimental animals (n = 20) were induced a CRS disease state upon receiving intraperitoneal sensitization with ovalbumin (OVA), followed by intranasal OVA with Aspergillus oryzae protease. Analysis of complete blood count with differential, peripheral blood smear, and histological markers from the nasal cavity mucosa were performed. CRS mice were additionally treated with intranasal saline (n = 5) or mometasone (n = 10) and compared with control groups of untreated CRS (n = 5) and healthy (n = 5) mice after week 7. RESULTS Histological analysis of experimental animal nasal mucosa revealed significantly higher levels of eosinophilic tissue infiltration/degranulation, hyaline droplets, Charcot-Leyden crystals, and respiratory epithelial thickness compared to healthy controls. Treatment with mometasone significantly reversed the histopathological changes observed in CRS mice. CONCLUSION AND SIGNIFICANCE This murine model induced substantial local eosinophilic inflammation within sinonasal mucosa, that was reversible with mometasone. This model may be used to evaluate the efficacy of therapeutics designed to target CRS.
Collapse
Affiliation(s)
- Amr F Hamour
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John Jw Lee
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Ewa Wasilewski
- Centre for Cannabinoid Therapeutics and Centre for Molecular Design and Preformulations, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric Monteiro
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, Sinai Health System, Toronto, ON, Canada
| | - John M Lee
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Allan Vescan
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, Sinai Health System, Toronto, ON, Canada
| | - Lakshmi P Kotra
- Centre for Cannabinoid Therapeutics and Centre for Molecular Design and Preformulations, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Pang JC, Vasudev M, Du AT, Nottoli MM, Dang K, Kuan EC. Intranasal Anticholinergics for Treatment of Chronic Rhinitis: Systematic Review and Meta-Analysis. Laryngoscope 2023; 133:722-731. [PMID: 35838014 DOI: 10.1002/lary.30306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Topical intranasal anticholinergics are commonly prescribed for the relief of chronic rhinitis and associated symptoms, warranting thorough assessment of the supporting evidence. The present study aimed to evaluate the safety and efficacy of anticholinergic nasal sprays in the management of allergic and non-allergic rhinitis symptom severity and duration. METHODS A search encompassing the Cochrane Library, PubMed/MEDLINE, and Scopus databases was conducted. Primary studies describing rhinorrhea, nasal congestion, and/or postnasal drip outcomes in rhinitis patients treated with an anticholinergic spray were included for review. RESULTS The search yielded 1,029 unique abstracts, of which 12 studies (n = 2,024) met inclusion criteria for qualitative synthesis and 9 (n = 1,920) for meta-analysis. Median follow-up was 4 weeks and ipratropium bromide was the most extensively trialed anticholinergic. Compared to placebo, anticholinergic treatment was demonstrated to significantly reduce rhinorrhea severity scores (standardized mean difference [95% CI] = -0.77 [-1.20, -0.35]; -0.43 [-0.72, -0.13]) and duration (-0.62 [-0.95, -0.30]; -0.29 [-0.47, -0.10]) in allergic and non-allergic rhinitis patients respectively. Benefit was less consistent for nasal congestion, postnasal drip, and sneezing symptoms. Reported adverse effects included nasal mucosa dryness or irritation, epistaxis, headaches, and pharyngitis, though comparison to placebo found significantly greater risk for epistaxis only (risk ratio [95% CI] = 2.19 [1.22, 3.93]). CONCLUSION Albeit treating other symptoms with less benefit, anticholinergic nasal sprays appear to be safe and efficacious in reducing rhinorrhea severity and duration in both rhinitis etiologies. This evidence supports their continued use in the treatment of rhinitis-associated rhinorrhea. LEVEL OF EVIDENCE 1 Laryngoscope, 133:722-731, 2023.
Collapse
Affiliation(s)
- Jonathan C Pang
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| | - Milind Vasudev
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| | - Amy T Du
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| | - Madeline M Nottoli
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| | - Katherine Dang
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| | - Edward C Kuan
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, California, USA
| |
Collapse
|
22
|
Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon 2023; 9:e13343. [PMID: 36816283 PMCID: PMC9932742 DOI: 10.1016/j.heliyon.2023.e13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Background The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 μg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 μg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.
Collapse
Affiliation(s)
- Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
23
|
Gurov AV, Muzhichkova AV, Yushkina MA. [Pathogenetic approach in the treatment of inflammatory diseases of the nose and paranasal sinuses]. Vestn Otorinolaringol 2023; 88:91-96. [PMID: 37970776 DOI: 10.17116/otorino20238805191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In recent years, inflammatory diseases of the nose and paranasal sinuses have been on the rise. In addition to infectious diseases, in the modern world a large percentage of the population suffers from allergic diseases. The approach to therapy and the choice of a drug should take into account the pathogenesis of the inflammatory reaction in the nasal cavity and paranasal sinuses. By exerting its effect, the drug should reduce hyperemia and swelling of the nasal mucosa, reduce the level of mucus secretion, improve the drainage of the paranasal sinuses, i.e. possess vasoconstrictive and anti-allergic properties. As such a drug, you can use the combined intranasal spray Frinozol, which basically contains cetirizine and phenylephrine. The use of Frinozol in the complex treatment of inflammation of the mucous membrane of the nasal cavity and paranasal sinuses contributes to the rapid and pronounced weakening of the symptoms of the disease, and is also the key to successful therapy.
Collapse
Affiliation(s)
- A V Gurov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Muzhichkova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Yushkina
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
24
|
Pyun BJ, Jo K, Lee JY, Lee A, Jung MA, Hwang YH, Jung DH, Ji KY, Choi S, Kim YH, Kim T. Caesalpinia sappan Linn. Ameliorates Allergic Nasal Inflammation by Upregulating the Keap1/Nrf2/HO-1 Pathway in an Allergic Rhinitis Mouse Model and Nasal Epithelial Cells. Antioxidants (Basel) 2022; 11:2256. [PMID: 36421442 PMCID: PMC9686907 DOI: 10.3390/antiox11112256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 08/15/2023] Open
Abstract
Allergic rhinitis (AR) is a common upper-airway inflammatory disease of the nasal mucosa caused by immunoglobulin (IgE)-mediated inflammation. AR causes various painful clinical symptoms of the nasal mucosa that worsen the quality of daily life, necessitating the urgent development of therapeutic agents. Herein, we investigated the effects of Caesalpinia sappan Linn. heartwood water extract (CSLW), which has anti-inflammatory and antioxidant properties, on AR-related inflammatory responses. We examined the anti-inflammatory and anti-allergic effects of CSLW in ovalbumin (OVA)-induced AR mice and in primary human nasal epithelial cells (HNEpCs). Administration of CSLW mitigated allergic nasal symptoms in AR mice, decreased total immune cell and eosinophil counts in nasal lavage fluid, and significantly reduced serum levels of OVA-specific IgE, histamine, and Th2 inflammation-related cytokines. CSLW also inhibited the infiltration of several inflammatory and goblet cells, thereby ameliorating OVA-induced thickening of the nasal mucosa tissue. We found that CSLW treatment significantly reduced infiltration of eosinophils and production of periostin, MUC5AC, and intracellular reactive oxygen species through the Keap1/Nrf2/HO-1 pathway in HNEpCs. Thus, our findings strongly indicate that CSLW is a potent therapeutic agent for AR and can improve the daily life of patients by controlling the allergic inflammatory reaction of the nasal epithelium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
25
|
Zettl I, Ivanova T, Zghaebi M, Rutovskaya MV, Ellinger I, Goryainova O, Kollárová J, Villazala-Merino S, Lupinek C, Weichwald C, Drescher A, Eckl-Dorna J, Tillib SV, Flicker S. Generation of high affinity ICAM-1-specific nanobodies and evaluation of their suitability for allergy treatment. Front Immunol 2022; 13:1022418. [DOI: 10.3389/fimmu.2022.1022418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The nasal cavity is an important site of allergen entry. Hence, it represents an organ where trans-epithelial allergen penetration and subsequent IgE-mediated allergic inflammation can potentially be inhibited. Intercellular adhesion molecule 1 (ICAM-1) is highly expressed on the surface of respiratory epithelial cells in allergic patients. It was identified as a promising target to immobilize antibody conjugates bispecific for ICAM-1 and allergens and thereby block allergen entry. We have previously characterized a nanobody specific for the major birch pollen allergen Bet v 1 and here we report the generation and characterization of ICAM-1-specific nanobodies. Nanobodies were obtained from a camel immunized with ICAM-1 and a high affinity binder was selected after phage display (Nb44). Nb44 was expressed as recombinant protein containing HA- and His-tags in Escherichia coli (E.coli) and purified via affinity chromatography. SDS-PAGE and Western blot revealed a single band at approximately 20 kDa. Nb44 bound to recombinant ICAM-1 in ELISA, and to ICAM-1 expressed on the human bronchial epithelial cell line 16HBE14o- as determined by flow cytometry. Experiments conducted at 4°C and at 37°C, to mimic physiological conditions, yielded similar percentages (97.2 ± 1.2% and 96.7 ± 1.5% out of total live cells). To confirm and visualize binding, we performed immunofluorescence microscopy. While Texas Red Dextran was rapidly internalized Nb44 remained localized on the cell surface. Additionally, we determined the strength of Nb44 and ICAM-1 interaction using surface plasmon resonance (SPR). Nb44 bound ICAM-1 with high affinity (10-10 M) and had slow off-rates (10-4 s-1). In conclusion, our results showed that the selected ICAM-1-specific nanobody bound ICAM-1 with high affinity and was not internalized. Thus, it could be further used to engineer heterodimers with allergen-specific nanobodies in order to develop topical treatments of pollen allergy.
Collapse
|
26
|
Zoabi Y, Levi-Schaffer F, Eliashar R. Allergic Rhinitis: Pathophysiology and Treatment Focusing on Mast Cells. Biomedicines 2022; 10:biomedicines10102486. [PMID: 36289748 PMCID: PMC9599528 DOI: 10.3390/biomedicines10102486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Allergic rhinitis (AR) is a common rhinopathy that affects up to 30% of the adult population. It is defined as an inflammation of the nasal mucosa, develops in allergic individuals, and is detected mostly by a positive skin-prick test. AR is characterized by a triad of nasal congestion, rhinorrhea, and sneezing. Mast cells (MCs) are innate immune system effector cells that play a pivotal role in innate immunity and modulating adaptive immunity, rendering them as key cells of allergic inflammation and thus of allergic diseases. MCs are typically located in body surfaces exposed to the external environment such as the nasal mucosa. Due to their location in the nasal mucosa, they are in the first line of defense against inhaled substances such as allergens. IgE-dependent activation of MCs in the nasal mucosa following exposure to allergens in a sensitized individual is a cardinal mechanism in the pathophysiology of AR. This review is a comprehensive summary of MCs' involvement in the development of AR symptoms and how classical AR medications, as well as emerging AR therapies, modulate MCs and MC-derived mediators involved in the development of AR.
Collapse
Affiliation(s)
- Yara Zoabi
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem 9112002, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem 9112002, Israel
| | - Ron Eliashar
- Department of Otolaryngology/HNS, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-6776469; Fax: +972-2-6435090
| |
Collapse
|
27
|
Pratama YA, Dinina F, Nurhan AD, Sari WF, Ardianto C, Khotib J. Effectiveness of Indonesian house dust mite allergenic extract in triggering allergic rhinitis sensitivity in a mouse model: A preliminary study. Vet World 2022; 15:2333-2341. [PMID: 36341054 PMCID: PMC9631360 DOI: 10.14202/vetworld.2022.2333-2341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Perennial allergic rhinitis (AR) is a chronic upper respiratory disease, with inflammation mediated by immunoglobulin E in the nasal mucosa caused by house dust mites. Recently, allergen immunotherapy showed promising allergic healing in patients with a definite history of sensitization. Based on this finding, a product was developed using Indonesian house dust mite (IHDM). This study aimed to optimize the allergenic rhinitis mouse model that was generated using IHDM to test the in vivo sensitivity and safety of this product. Materials and Methods: Seven groups of mice were used for effectiveness testing – normal, negative control with IHDM challenge, positive control with 0.1% histamine challenge, and AR group by both IHDM-induced sensitization at 12.5, 50, 250, or 500 μg and IHDM challenge. Mice were sensitized by intraperitoneal administration of IHDM once a week for 3 consecutive weeks. Thereafter, the challenge was given intranasally 5 times on alternate days. The number of nose rubbing and sneezing was noted. Eosinophil infiltration was assessed histologically using hematoxylin and eosin staining. The expression of interleukin-5 (IL-5) mRNA in the nasal mucosa was determined using semi-quantitative reverse transcription-polymerase chain reaction. Results: The induction of AR with IHDM significantly increased the number of nose rubbing and sneezing in the mouse model. Eosinophil infiltration was observed in the nasal mucosa; however, no significant change occurred in the expression of IL-5 mRNA. Conclusion: Overall, these data indicate that IHDM allergenic extract could be an effective sensitizing agent in a mouse model of AR. Although the use of IHDM is a limitation of this study because other sources of house dust mites might have different effects, this study provides a proper model for immunotherapy effectivity testing for in vivo pre-clinical studies.
Collapse
Affiliation(s)
- Yusuf Alif Pratama
- Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fakhriyah Dinina
- Bachelor Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ahmad Dzulfikri Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Winda Fatma Sari
- Bachelor Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
28
|
Rollema C, van Roon EN, Ekhart C, van Hunsel FPAM, de Vries TW. Adverse Drug Reactions of Intranasal Corticosteroids in the Netherlands: An Analysis from the Netherlands Pharmacovigilance Center. Drugs Real World Outcomes 2022; 9:321-331. [PMID: 35661117 PMCID: PMC9392821 DOI: 10.1007/s40801-022-00301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Intranasal corticosteroids are one of the cornerstone treatment options for allergic rhinitis and chronic sinusitis complaints. Safety information in the summary of product characteristics may not be representative for observations in daily clinical practice. The Netherlands Pharmacovigilance Center (Lareb) collects post-marketing safety information, using spontaneous reporting systems. OBJECTIVE Our objective was to analyse reports of adverse drug reactions associated with intranasal corticosteroids reported in the Dutch spontaneous reporting database of the Netherlands Pharmacovigilance Center Lareb to obtain insight into real-world safety data. METHODS We retrospectively examined all adverse drug reactions of intranasal corticosteroids reported to the Netherlands Pharmacovigilance Center Lareb, entered into the database from 1991 until 1 July, 2020. RESULTS In total, 2263 adverse drug reactions after intranasal corticosteroid use were reported in 1258 individuals. Headache (n = 143), epistaxis (n = 124) and anosmia (n = 57) were reported most frequently. Nasal septum perforation (reporting odds ratio 463.2; 95% confidence interval: 186.7-1149.7) had the highest reporting odds ratio, followed by nasal mucosal disorder (reporting odds ratio 104.5; 95% confidence interval 36.3-301.3) and hyposmia (reporting odds ratio 90.8; 95% confidence interval 45.1-182.7). Moreover, 101 (4.5%) reports were classified as serious by Lareb, including reports of Cushing's syndrome, adrenal cortical hypofunction and growth retardation. CONCLUSIONS Many side effects are consistent with the safety information in the summary of product characteristics of intranasal corticosteroids. Several serious (systemic) side effects are reported and it is important to realise that intranasal corticosteroids may contribute to the development. Healthcare providers and patients should be aware of the potential (individual) adverse drug reactions of intranasal corticosteroids. This information could help in discussing treatment options.
Collapse
Affiliation(s)
- Corine Rollema
- Department of Clinical Pharmacy and Pharmacology, Medical Centre Leeuwarden, Henri Dunantweg 2, P.O. Box 888, 8901 BR, Leeuwarden, The Netherlands.
| | - Eric N van Roon
- Department of Clinical Pharmacy and Pharmacology, Medical Centre Leeuwarden, Henri Dunantweg 2, P.O. Box 888, 8901 BR, Leeuwarden, The Netherlands
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Corine Ekhart
- Netherlands Pharmacovigilance Center Lareb, 's-Hertogenbosch, The Netherlands
| | | | - Tjalling W de Vries
- Department of Paediatrics, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| |
Collapse
|
29
|
Konrat R, Papp H, Kimpel J, Rössler A, Szijártó V, Nagy G, Madai M, Zeghbib S, Kuczmog A, Lanszki Z, Gesell T, Helyes Z, Kemenesi G, Jakab F, Nagy E. The Anti-Histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits Infection by Major Variants of SARS-CoV-2 in Cell Cultures and Reconstituted Human Nasal Tissue. Front Pharmacol 2022; 13:861295. [PMID: 35846988 PMCID: PMC9280057 DOI: 10.3389/fphar.2022.861295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022] Open
Abstract
Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern; B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2–6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.
Collapse
Affiliation(s)
- Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Calyxha Biotechnologies GmbH, Vienna, Austria
- *Correspondence: Robert Konrat, ; Eszter Nagy,
| | - Henrietta Papp
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Valéria Szijártó
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
| | - Gábor Nagy
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tanja Gesell
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Calyxha Biotechnologies GmbH, Vienna, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institue of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Eszter Nagy
- Calyxha Biotechnologies GmbH, Vienna, Austria
- CEBINA (Central European Biotech Incubator and Accelerator) GmbH, Vienna, Austria
- *Correspondence: Robert Konrat, ; Eszter Nagy,
| |
Collapse
|
30
|
Trybus E, Król T, Trybus W. The Multidirectional Effect of Azelastine Hydrochloride on Cervical Cancer Cells. Int J Mol Sci 2022; 23:5890. [PMID: 35682572 PMCID: PMC9180047 DOI: 10.3390/ijms23115890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
A major cause of cancer cell resistance to chemotherapeutics is the blocking of apoptosis and induction of autophagy in the context of cell adaptation and survival. Therefore, new compounds are being sought, also among drugs that are commonly used in other therapies. Due to the involvement of histamine in the regulation of processes occurring during the development of many types of cancer, antihistamines are now receiving special attention. Our study concerned the identification of new mechanisms of action of azelastine hydrochloride, used in antiallergic treatment. The study was performed on HeLa cells treated with different concentrations of azelastine (15-90 µM). Cell cycle, level of autophagy (LC3 protein activity) and apoptosis (annexin V assay), activity of caspase 3/7, anti-apoptotic protein of Bcl-2 family, ROS concentration, measurement of mitochondrial membrane potential (Δψm), and level of phosphorylated H2A.X in response to DSB were evaluated by cytometric method. Cellular changes were also demonstrated at the level of transmission electron microscopy and optical and fluorescence microscopy. Lysosomal enzyme activities-cathepsin D and L and cell viability (MTT assay) were assessed spectrophotometrically. Results: Azelastine in concentrations of 15-25 µM induced degradation processes, vacuolization, increase in cathepsin D and L activity, and LC3 protein activation. By increasing ROS, it also caused DNA damage and blocked cells in the S phase of the cell cycle. At the concentrations of 45-90 µM, azelastine clearly promoted apoptosis by activation of caspase 3/7 and inactivation of Bcl-2 protein. Fragmentation of cell nucleus was confirmed by DAPI staining. Changes were also found in the endoplasmic reticulum and mitochondria, whose damage was confirmed by staining with rhodamine 123 and in the MTT test. Azelastine decreased the mitotic index and induced mitotic catastrophe. Studies demonstrated the multidirectional effects of azelastine on HeLa cells, including anti-proliferative, cytotoxic, autophagic, and apoptotic properties, which were the predominant mechanism of death. The revealed novel properties of azelastine may be practically used in anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Ewa Trybus
- Department of Medical Biology, The Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Teodora Król
- Department of Medical Biology, The Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | | |
Collapse
|
31
|
Th17-Dependent Nasal Hyperresponsiveness Is Mitigated by Steroid Treatment. Biomolecules 2022; 12:biom12050674. [PMID: 35625602 PMCID: PMC9138412 DOI: 10.3390/biom12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Th17 cells are implicated in allergic inflammatory diseases, including allergic rhinitis (AR), though the effect of steroids on Th17 cell-dependent nasal responses is unclear. Herein, we investigated a nasal inflammation model elicited by allergen provocation in mice infused with Th17 cells and its responsiveness against steroid treatment. We transferred BALB/c mice with Th17 cells, which were differentiated in vitro and showed a specific reaction to ovalbumin (OVA). We challenged the transferred mice by intranasal injection of OVA and to some of them, administered dexamethasone (Dex) subcutaneously in advance. Then, we assessed immediate nasal response (INR), nasal hyperresponsiveness (NHR), and inflammatory cell infiltration into the nasal mucosa. The significant nasal inflammatory responses with massive neutrophil accumulation, INR, and NHR were induced upon allergen challenge. Allergen-induced INR and NHR were significantly suppressed by Dex treatment. This study suggested the effectiveness of steroids on Th17 cell-mediated nasal responses in AR.
Collapse
|
32
|
Caruso C, Giancaspro R, Guida G, Macchi A, Landi M, Heffler E, Gelardi M. Nasal Cytology: A Easy Diagnostic Tool in Precision Medicine for Inflammation in Epithelial Barrier Damage in the Nose. A Perspective Mini Review. FRONTIERS IN ALLERGY 2022; 3:768408. [PMID: 35966227 PMCID: PMC9365292 DOI: 10.3389/falgy.2022.768408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nasal cytology is a diagnostic tool that can be used in precision rhinology medicine. Particularly in non-allergic rhinitis and chronic rhinosinusitis forms it can be useful to evaluate biomarkers of both surgical or biological therapy and especially in the follow-up it must be used to predict the prognostic index of recurrence of nasal polyposis. All inflammatory cytokines are also linked to the presence of cells such as eosinophils and mastcells and nasal cytology is a non-invasive and repeatable method to assess the situation in real life.
Collapse
Affiliation(s)
- Cristiano Caruso
- Unit of Internal Medicine and Gastroenterology, Department of Medical and Surgical Sciences, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
- Allergy Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- *Correspondence: Cristiano Caruso
| | - Rossana Giancaspro
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Guida
- Allergy and Pneumology Unit, A.O. S.Croce e Carle, Cuneo, Italy
- Giuseppe Guida
| | - Alberto Macchi
- Italian Academy of Rhinology Asst Settelaghi-University of Insubriae, Varese, Italy
| | - Massimo Landi
- Paediatric National Healthcare System, Torino, Italy
| | - Enrico Heffler
- Personalized Medicine Center: Asthma and Allergology, Humanitas Research Hospital, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Matteo Gelardi
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
33
|
“Anosmia” the mysterious collateral damage of COVID-19. J Neurovirol 2022; 28:189-200. [PMID: 35249186 PMCID: PMC8898086 DOI: 10.1007/s13365-022-01060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 pandemic spreads worldwide, with more than 100 million positive cases and more than 2 million deaths. From the beginning of the COVID-19 pandemic, several otolaryngologists described many cases of a sudden loss of smell (anosmia) associated with the disease with or without additional symptoms. Anosmia is often the first and sometimes the only sign in the asymptomatic carriers of COVID-19. Still, this disorder is underestimated, and it is not life-threatening. However, it significantly decreases the quality of life. This olfactory dysfunction continues in several cases even after the nasopharyngeal swab was negative. The occurrence of anosmia can be used as a screening tool for COVID-19 patients and can be used to identify these patients to accomplish the isolation and tracking procedures. In this review, we highlighted the possible mechanisms of anosmia in COVID-19 patients, major pathologies and features of anosmia, implications of anosmia in early diagnosis of COVID-19, evaluation of the smell function during COVID-19, and management and treatment options of COVID-19 anosmia.
Collapse
|
34
|
Watts AM, West NP, Smith PK, Zhang P, Cripps AW, Cox AJ. Nasal immune gene expression in response to azelastine and fluticasone propionate combination or monotherapy. Immun Inflamm Dis 2022; 10:e571. [PMID: 34813682 PMCID: PMC8926499 DOI: 10.1002/iid3.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The combination of the antihistamine azelastine (AZE) with the corticosteroid fluticasone propionate (FP) in a single spray, has been reported to be significantly more effective at reducing allergic rhinitis (AR) symptoms than treatment with either corticosteroid or antihistamine monotherapy. However, the biological basis for enhanced symptom relief is not known. This study aimed to compare gene expression profiles (760 immune genes, performed with the NanoString nCounter) from peripheral blood and nasal brushing/lavage lysate samples in response to nasal spray treatment. METHODS Moderate/severe persistent dust mite AR sufferers received either AZE (125 μg/spray) nasal spray (n = 16), FP (50 μg/spray) nasal spray (n = 14) or combination spray AZE/FP (125 μg AZE and 50 μg FP/spray) (n = 14) for 7 days, twice daily. Self-reported symptom questionnaires were completed daily for the study duration. Gene expression analysis (760 immune genes) was performed with the NanoString nCounter on purified RNA from peripheral blood and nasal brushing/lavage lysate samples. RESULTS In nasal samples, 206 genes were significantly differentially expressed following FP treatment; 182 genes downregulated (-2.57 to -0.45 Log2 fold change [FC]), 24 genes upregulated (0.49-1.40 Log2 FC). In response to AZE/FP, only 16 genes were significantly differentially expressed; 10 genes downregulated (-1.53 to -0.58 Log2 FC), six genes upregulated (1.07-1.62 Log2 FC). Following AZE treatment only five genes were significantly differentially expressed; one gene downregulated (-1.68 Log2 FC), four genes upregulated (0.59-1.19 Log2 FC). Immune gene changes in peripheral blood samples following treatment were minimal. AR symptoms improved under all treatments, but improvements were less pronounced following AZE treatment. CONCLUSION AZE/FP, FP, and AZE had diverse effects on immune gene expression profiles in nasal mucosa samples. The moderate number of genes modulated by AZE/FP indicates alternative pathways in reducing AR symptoms whilst avoiding extensive local immune suppression.
Collapse
Affiliation(s)
- Annabelle M. Watts
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Nicholas P. West
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Peter K. Smith
- Queensland Allergy Services ClinicSouthportQueenslandAustralia
| | - Ping Zhang
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Allan W. Cripps
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
- School of MedicineGriffith UniversitySouthportQueenslandAustralia
| | - Amanda J. Cox
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| |
Collapse
|
35
|
Fujii T, Kitamura Y, Kamimura S, Ishitani K, Takeda N. Efficacy of dual sublingual immunotherapy with Japanese cedar pollen and house dust mite allergens in patients with allergic rhinitis sensitized to multiple allergens. Laryngoscope Investig Otolaryngol 2022; 7:36-42. [PMID: 35155781 PMCID: PMC8823165 DOI: 10.1002/lio2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 01/08/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In the present study, we examined the effects of dual sublingual immunotherapy (SLIT) with Japanese cedar pollen (JCP) and house dust mite (HDM) allergens on nasal symptoms during the peak pollen period (PPP) and in late fall (LF) in patients with allergic rhinitis (AR) sensitized to both JCP and HDM. We then compared the efficacy of dual-SLIT with JCP and HDM to that of mono-SLIT with JCP at PPP. METHODS Twenty-five bisensitized patients with AR who showed positive serum specific immunoglobulin E (IgE) against both JCP and HDM were enrolled. In dual-SLIT, 16 patients received JCP drops/tablets and HDM tablets concurrently. In mono-SLIT with JCP, nine patients received JCP drops/tablets. Nasal symptoms were scored on a 0-4 point scale. RESULTS The nasal scores at PPP and in LF in the bisensitized patients with AR who received dual-SLIT with JCP and HDM in 2019 were significantly lower than those in the same patients who received antihistamines only in 2018. The decrease in scores of nasal obstruction at PPP from 2018 to 2019 in patients who received dual-SLIT was significantly greater than those in patients who received mono-SLIT with JCP. Dual-SLIT was well tolerated and only had mild adverse effects. CONCLUSION These findings suggest that dual-SLIT suppressed both JCP-induced seasonal and HDM-induced perennial nasal symptoms in bisensitized patients with AR. Dual-SLIT was more effective in suppressing nasal obstruction at PPP than mono-SLIT with JCP with limitation of baseline characteristics not to be controlled between the two groups, suggesting that dual-SLIT suppressed HDM-induced priming effects, thus resulting in further suppression of nasal obstruction at PPP. LEVEL OF EVIDENCE 3b, a case-controlled study.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of OtolaryngologyJA Kochi HospitalNankokuKochiJapan
- Department of OtolaryngologyInstitute of Biomedical Sciences, Tokushima University Graduate SchoolKuramotoTokushimaJapan
| | - Yoshiaki Kitamura
- Department of OtolaryngologyInstitute of Biomedical Sciences, Tokushima University Graduate SchoolKuramotoTokushimaJapan
| | - Seiichiro Kamimura
- Department of OtolaryngologyInstitute of Biomedical Sciences, Tokushima University Graduate SchoolKuramotoTokushimaJapan
| | - Keisuke Ishitani
- Department of OtolaryngologyInstitute of Biomedical Sciences, Tokushima University Graduate SchoolKuramotoTokushimaJapan
| | - Noriaki Takeda
- Department of OtolaryngologyInstitute of Biomedical Sciences, Tokushima University Graduate SchoolKuramotoTokushimaJapan
| |
Collapse
|
36
|
Nakajima R, Morita N, Watanabe F, Kosuge Y. Association Between Inappropriate Use of Over-The-Counter Drugs for Allergic Rhinitis and Side Effects on the Central Nervous system-a Cross-Sectional Survey. Patient Prefer Adherence 2022; 16:3111-3118. [PMID: 36419583 PMCID: PMC9677884 DOI: 10.2147/ppa.s388226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Antihistamine over-the-counter (OTC) drugs for allergic rhinitis are widely used and cause central nervous system side effects. Most available data on anti-allergic drugs are on controlled usage. It is necessary to investigate the occurrence of side effects in the context of self-medication to avoid inappropriate use. We aimed to clarify the association between the usage of OTC anti-allergic drugs and central nervous system side effects. PATIENTS AND METHODS An online, anonymous, cross-sectional study was conducted using a structured questionnaire. People who had used OTC anti-allergic drugs in the year prior to the study were recruited. To assess the association between inappropriate drug use and the occurrence of side effects, a binary logistics regression analysis was performed according to three dosage forms (oral only, nasal only, and oral and nasal combined use). RESULTS Somnolence was experienced by 59.1% of the participants using the OTC drug for allergic rhinitis. Using logistic regression analysis, "drug use exceeding the upper limit" was seen to be associated with side effects in only oral (Somnolence: OR = 1.41, 95% CI = 1.17-1.70; Dull head: OR=1.41, 95% CI = 1.16-1.70; Loss of concentration: OR = 1.25, 95% CI = 1.04-1.49) and oral and nasal combined use groups (Somnolence: OR = 1.33, 95% CI = 1.04-1.71; Dull head: OR = 1.47, 95% CI = 1.15-1.89; Loss of concentration: OR = 1.51, 95% CI = 1.19-1.91). Furthermore, "expired drug use" was associated with side effects in the nasal spray-only group (Somnolence: OR = 1.31, 95% CI = 1.07-1.60; Dull head: OR =1.25, 95% CI = 1.02-1.53; Loss of concentration: OR = 1.24, 95% CI = 1.00-1.54). CONCLUSION Inappropriate use was common among users of OTC allergic rhinitis drugs. Differences in side effects depending on the dosage form used were observed.
Collapse
Affiliation(s)
- Rie Nakajima
- School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
- Correspondence: Rie Nakajima, School of Pharmacy, Nihon University, Tel +81 47 465 7389, Fax +81 47 465 7389, Email
| | - Nana Morita
- School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | | | - Yasuhiro Kosuge
- School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| |
Collapse
|
37
|
Lee KJ, Ratih K, Kim GJ, Lee YR, Shin JS, Chung KH, Choi EJ, Kim EK, An JH. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe 2O 3) nanoparticles in an atopic dermatitis model. Colloids Surf B Biointerfaces 2021; 210:112244. [PMID: 34896691 DOI: 10.1016/j.colsurfb.2021.112244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
We investigated the immunomodulatory and anti-inflammatory efficacy of hederagenin coating on maghemite (γ-Fe2O3) nanoparticles (HM) in atopic dermatitis (AD), as well as the physical and optical properties of maghemite nanoparticles (MP) using SEM, XRD spectroscopy, UV-vis spectra, Raman spectra, and FTIR spectroscopy. Dose-dependent treatment with HM (10, 50, 100, 200 μg/mL) inhibited the expression of Interleukin-2 (IL-2) and Tumor necrosis factor- α (TNF-α) in inflammatory induced HaCaT and Jurkat cells with inflammation caused by TNF/IFN-γ and PMA/A23187. AD model was induced by performing topical application of 2,4-dinitrochlorobenzene (DNCB) and dermatophagoides farinae extract (DFE) for a 31-day period on 8-week-old BALB/c mice. The HM treatments efficiently diminished the AD-like cutaneous lesion induced by DNCB-DFE sensitization in mice. Compared to the AD-only groups, HM treatment considerably attenuated mast cell infiltration and lowered epidermal, and dermal thickness of mice ears skin. In addition, HM treatment prominently alleviated the enlarged size and weight of lymph nodes. Furthermore, HM treatment resulted in a notable reduction in the mRNA expression of Th1 cytokines (TNF-α and IFN-γ), Th2 cytokines (IL-4 and IL-6), Th17 (IL-17), and TSLP. Our data showed that HM provides better AD attenuation compared to MP. Additionally, HM had synergistic effect and act as anti-inflammatory and immunomodulatory agent. Thus, HM shows great potential in AD medication and as a substitution of non-steroid-based medication.
Collapse
Affiliation(s)
- Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 34520, Republic of Korea
| | - Khoirunnisa Ratih
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yu-Rim Lee
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Jae-Soo Shin
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeung Hee An
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea.
| |
Collapse
|
38
|
Li X, Li Y, Xu B, Zhang P, Wang Y, Wang Z, Hou S. Pharmacokinetics and Bioequivalence of a Generic and a Branded Budesonide Nasal Spray in Healthy Chinese Subjects. Clin Pharmacol Drug Dev 2021; 11:516-522. [PMID: 34783456 DOI: 10.1002/cpdd.1036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/19/2021] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the pharmacokinetic bioequivalence of a generic budesonide nasal spray and a branded product in healthy Chinese subjects under fasting condition. A single-center, single-dose, randomized, open-label, crossover study was conducted in 32 healthy Chinese subjects under fasting condition. The subjects were administered 256 μg of generic budesonide nasal spray (test drug) or branded budesonide nasal spray (RHINOCORT AQUA, reference drug), respectively. For each period, the subjects were administered with 64 μg of budesonide per spray and 2 sprays for each nostril followed by a washout period of 7 days. Plasma concentration of budesonide was determined by a validated high-performance liquid chromatography-tandem mass spectrometry method. The pharmacokinetic (PK) parameters were calculated, and the bioequivalence was compared using the noncompartment model with the Phoenix WinNonlin 7.0 program. Results show that the 90% confidence intervals of the test/reference ratios of maximum concentration, area under the plasma concentration-time curve from time 0 to the last measurable concentration, and area under the plasma concentration-time curve from time 0 to infinity for the budesonide concentration were 84.8% to 102.7%, 84.6% to 94.4%, and 85.4% to 95.2%, respectively, all fall within the bioequivalent range of 80% to 125%. The test and reference budesonide nasal sprays were PK bioequivalents in healthy Chinese subjects with comparable PK parameters. No serious adverse events were reported, and the 2 products have a good and similar safety profile.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yuan Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Ping Zhang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yangyang Wang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhenyu Wang
- Sichuan Purity Pharmaceutical Co. LTD, Chengdu, Sichuan, China
| | - Shuguang Hou
- Sichuan Purity Pharmaceutical Co. LTD, Chengdu, Sichuan, China
| |
Collapse
|
39
|
In Vitro Ciliotoxicity and Cytotoxicity Testing of Repeated Chronic Exposure to Topical Nasal Formulations for Safety Studies. Pharmaceutics 2021; 13:pharmaceutics13111750. [PMID: 34834166 PMCID: PMC8618987 DOI: 10.3390/pharmaceutics13111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Certain active drugs and excipients of nasal formulations may impair ciliary function and mucociliary clearance. The ciliary beat frequency (CBF) is a key parameter for determining mucociliary clearance rate, and in vitro assessments of CBF have proven to be accurate and reproducible. Since topical nasal formulations are applied with repeated doses, it is essential to elucidate their chronic, as opposed to acute, effect on mucociliary clearance and nasal mucosa. The aim of this study was to assess for the first time the ciliotoxicity and cytotoxicity of nasal sprays intended for chronic treatment (with repeated doses) using a previously designed set-up for CBF measurements. For 2 weeks, the 3D nasal MucilAir™ in vitro models were treated daily with undiluted or clinically relevant doses of mometasone nasal spray, placebo nasal spray, culture medium, or they were untreated. We demonstrated a dose-dependent and time-dependent (cumulative) effect of the nasal sprays on ciliary activity and cytotoxicity using CBF measurements and ultrastructural analysis, respectively. Our results indicate that repeated administration of clinically relevant doses of mometasone nasal spray is safe for in vivo use, which is in good agreement with a previous clinical study. Overall, our study suggests that such in vitro assays have great potential for topical nasal drug screening.
Collapse
|
40
|
Lim S, Jeong I, Cho J, Shin C, Kim KI, Shim BS, Ko SG, Kim B. The Natural Products Targeting on Allergic Rhinitis: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:1524. [PMID: 34679659 PMCID: PMC8532887 DOI: 10.3390/antiox10101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
More than 500 million people suffer from allergic rhinitis (AR) in the world. Current treatments include oral antihistamines and intranasal corticosteroids; however, they often cause side effects and are unsuitable for long-term exposure. Natural products could work as a feasible alternative, and this study aimed to review the efficacies and mechanisms of natural substances in AR therapies by examining previous literature. Fifty-seven studies were collected and classified into plants, fungi, and minerals decoction; clinical trials were organized separately. The majority of the natural products showed their efficacies by two mechanisms: anti-inflammation regulating diverse mediators and anti-oxidation controlling the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway stimulated by reactive oxygen species (ROS). The main AR factors modified by natural products included interleukin (IL)-4, IL-5, IL-13, interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), cyclooxygenase 2 (COX-2), and phospho-ERK1/2 (p-ERK1/2). Although further studies are required to verify their efficacies and safeties, natural products can significantly contribute to the treatment of AR.
Collapse
Affiliation(s)
- Suhyun Lim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Iwah Jeong
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Jonghyeok Cho
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Chaewon Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
41
|
Chen TL, Yip HT, Wang JH, Chang CH, Huang C, Hsu CY, Chang CH. Risk of chronic spontaneous urticaria in reproductive-aged women with abnormal uterine bleeding: A population-based cohort study. J Dermatol 2021; 48:1754-1762. [PMID: 34462945 DOI: 10.1111/1346-8138.16109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/20/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Women with abnormal uterine bleeding (AUB) have been reported to develop chronic spontaneous urticaria (CSU). Nevertheless, whether or not AUB women have an increased risk of CSU has not been examined in large-scale epidemiologic studies. This study aimed to investigate the risk of CSU among reproductive-aged women with AUB. A total of 79 595 patients and 79 107 propensity-score matched controls were recruited from Taiwan's National Health Insurance Research Database to conduct a nationwide cohort study. The Cox proportional-hazard regression model was applied to examine the adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for CSU in relation to AUB. We found that women with AUB had a higher risk for CSU (aHR = 1.83; 95% CI, 1.76-1.90) than women without AUB. Subgroup analyses revealed that AUB with an abnormal bleeding frequency (aHR = 1.70; 95% CI, 1.60-1.79), irregular bleeding (aHR = 1.80; 95% CI, 1.71-1.89), and intermenstrual bleeding (aHR = 1.65; 95% CI, 1.49-1.83) were associated with an increased risk of CSU compared with those without abnormalities. The Kaplan-Meier analysis revealed that the cumulative incidence of developing CSU was consistently higher in the AUB cohort than in the non-AUB cohort during the entire follow-up period (log-rank test, p < 0.001). In conclusion, reproductive-aged women with AUB were found to have a higher risk of developing CSU. This study emphasizes the importance of enquiring CSU patients about menstrual problems in clinical practice. Further consultation with obstetrician-gynecologists may be beneficial.
Collapse
Affiliation(s)
- Tai-Li Chen
- Department of Medical Education, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chi-Han Chang
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Ci Huang
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Chang
- Department of Dermatology, Skin Institute, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
42
|
Tiotiu A, Novakova P, Guillermo G, Correira de Sousa J, Braido F. Management of adult asthma and chronic rhinitis as one airway disease. Expert Rev Respir Med 2021; 15:1135-1147. [PMID: 34030569 DOI: 10.1080/17476348.2021.1932470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Chronic rhinitis is defined as nasal inflammation with the presence of minimum two symptoms such as nasal obstruction, rhinorrhea, sneezing and/or itching one hour daily for a minimum of 12 weeks/year. According their etiology, four groups of rhinitis are described: allergic, infectious, non-allergic non-infectious and mixed.Chronic rhinitis is frequently associated with asthma, shares similar mechanisms of the pathogenesis and has a negative impact of its outcomes sustaining the concept of unified airways disease.Areas covered: The present review summarizes the complex relationship between chronic rhinitis and asthma on the basis of recent epidemiological data, clinical characteristics, diagnosis and therapeutic management. All four groups are discussed with the impact of their specific treatment on asthma outcomes. Some medications are common for chronic rhinitis and asthma while others are more specific but able to treat the associated comorbidity.Expert opinion: The systematic assessment of chronic rhinitis in patients with asthma and its specific treatment improves both disease outcomes. Conversely, several therapies of asthma demonstrated beneficial effects on chronic rhinitis. Treating both diseases at the same time by only one medication is an interesting option to explore in the future in order to limit drugs administration, related costs and side effects.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, France; 9 Rue Du Morvan, Vandoeuvre-lès-Nancy, France.,Development, Adaptation and Disadvantage. Cardiorespiratory Regulations and Motor Control (EA 3450 DevAH), University of Lorraine, - Vandoeuvre-lès-Nancy, France
| | - Plamena Novakova
- ;department of Allergology, Medical University of Sofia, University Hospital "Alexandrovska"; 1, Sofia, Bulgaria
| | - Guidos Guillermo
- Department of Immunology, School of Medicine, Instituto Politecnico Nacional, Gustavo A. Madero, Ciudad De México, CDMX, Mexico
| | - Jaime Correira de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Campus De, Braga, Portugal
| | - Fulvio Braido
- Allergy and Respiratory Diseases Department, University of Genoa, Genova GE, Italy
| |
Collapse
|
43
|
Yu X, Wang M, Zhao H, Cao Z. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin (OVA)-induced allergic rhinitis (AR) in mice models. Inflamm Res 2021; 70:719-729. [PMID: 34028600 DOI: 10.1007/s00011-021-01472-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The circRNAs-miRNAs-mRNAs competing endogenous RNA (ceRNA) networks involve in regulating the development of various inflammation-associated diseases, including allergic rhinitis (AR), and the present study aimed to identify novel AR-associated ceRNA networks. METHODS The mRNA and protein levels of the associated genes were, respectively, examined by real-time qPCR and western blot analysis. The targeting sites in miR-556-5p and NLRP3 were validated by performing dual-luciferase reporter gene system assay. ELISA was used to measure inflammatory cytokines secretion, and CCK-8 assay was conducted to determine cell proliferation. RESULTS Here, we first identified a hsa_circ_0000520/miR-556-5p/NLRP3 signaling cascade triggered epithelium pyroptosis and inflammation to regulate the development of AR in cellular and mice models. Specifically, the pyroptosis-associated biomarkers (NLRP3, ASC, IL-1β and IL-18) and pro-inflammatory cytokines (OVA-specific IgE, TNF-α, IL-4 and IL-5) were upregulated in the nasal subjects collected from AR patients and ovalbumin (OVA)-induced AR mice models, compared to their normal counterparts. Next, using the ceRNA networks analysis software, we screened out a hsa_circ_0000520/miR-556-5p axis that potentially regulated NLRP3 in the human nasal epithelial cell line. Mechanistically, miR-556-5p targeted both hsa_circ_0000520 and 3' untranslated region (3'UTR) of NLRP3, and knock-down of hsa_circ_0000520 inactivated NLRP3-mediated epithelium pyroptosis through miR-556-5p in a ceRNA-dependent manner. Furthermore, we proved that both hsa_circ_0000520 ablation and miR-556-5p overexpression suppressed NLRP3-mediated cell pyroptosis to attenuate AR in mice models. CONCLUSIONS Taken together, we evidenced that targeting the hsa_circ_0000520/miR-556-5p/NLRP3 signaling pathway was a novel AQ1strategy to ameliorate AR progression; however, future clinical data are still required to validate our preliminary results.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China.
| |
Collapse
|
44
|
Song J. Effects of Yu-ping-feng granules combined with loratadine tablets on treatment efficacy and immune factor levels in allergic rhinitis patients. Am J Transl Res 2021; 13:5192-5199. [PMID: 34150108 PMCID: PMC8205798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study was designed to explore the treatment efficacy of Yu-ping-feng combined with loratadine in allergic rhinitis patients. METHODS A total of 88 patients with allergic rhinitis who were admitted to our hospital from July 2017 to September 2018 were collected as research subjects, 43 of whom were enrolled in group A and treated with loratadine, and another 45 cases were enrolled in group B and treated with Yu-ping-feng combined with loratadine. The immune factors and ventilation function of the two groups were observed, as well as the treatment efficacy, adverse reactions and quality of life of the two groups of patients. RESULTS After treatment, the immune factor level and ventilation function in group B were better than those in group A (P < 0.05). The total adverse reactions and recurrence rate in group B were lower than those in group A (P < 0.05). The total effective rate and quality of life in group B were higher than those in group A (P < 0.05). CONCLUSION Yu-ping-feng granules combined with loratadine tablets is effective in treating allergic rhinitis.
Collapse
Affiliation(s)
- Jinlan Song
- Department of Otolaryngology, Tianjin Nankai Hospital Tianjin 300100, China
| |
Collapse
|
45
|
Jiang M, Chen J, Ding Y, Gan C, Hou Y, Lei J, Wan M, Li X, Xiao Z. Efficacy and Safety of Sea Salt-Derived Physiological Saline Nasal Spray as Add-On Therapy in Patients with Acute Upper Respiratory Infection: A Multicenter Retrospective Cohort Study. Med Sci Monit 2021; 27:e929714. [PMID: 33974619 PMCID: PMC8122848 DOI: 10.12659/msm.929714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The purpose of this study was to assess the effects of seawater on nasal congestion and runny nose symptoms in adults with an acute upper respiratory infection (URI). Material/Methods This was a multicenter retrospective cohort trial of patients with acute URI and symptoms of nasal congestion and runny nose. The patients were assigned to 2 groups and were administered regular non-drug supportive treatment or supportive treatment with nasal irrigation with sea salt-derived physiological saline. The primary efficacy endpoint was the effective rate (percentage of patients with ≥30% symptom score reduction from baseline for nasal congestion and runny nose). Results In total, 144 patients were enrolled, including 72 in each group, and 143 patients completed the study. Both groups had similar demographics and vital signs. The effective rates for nasal congestion and runny nose were significantly increased in the seawater group compared with patients in the control group (87.3% vs 59.7% for nasal congestion; 85.9% vs 61.1% for runny nose; both P<0.001). In addition, the 2 groups showed markedly different degrees of patient symptom score improvement in sleep quality and appetite (both P<0.01), but not in cough and fatigue (both P>0.05). There were no adverse events in either group. Conclusions The sea salt-derived physiological saline nasal spray device satisfactorily improved nasal congestion, runny nose, sleep quality, and appetite in adults with URI, with no adverse effects.
Collapse
Affiliation(s)
- Min Jiang
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Junwen Chen
- Department of Respiratory and Critical Care Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China (mainland)
| | - Yuanhua Ding
- Department of Respiratory Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, China (mainland)
| | - Chenxi Gan
- Office of Drug Clinical Trial Management, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ya Hou
- Department of Biological Statistics, Jiangsu Famai Sheng Medical Science and Technology Co., Ltd., Zhenjiang, Jiangsu, China (mainland)
| | - Junge Lei
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Mengzhi Wan
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xing Li
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zuke Xiao
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
46
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
47
|
Tataurschikova NS. [Cycloferon in local immunotherapy in patients with virus-associated rhinitis]. Vestn Otorinolaringol 2021; 86:78-81. [PMID: 33720657 DOI: 10.17116/otorino20218601178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evaluation of the effectiveness of various schemes of local immunotherapy in immunocompromised patients with allergic rhinitis was carried out. MATERIALS AND METHODS A comparative analysis of the treatment of 72 patients with allergic rhinitis, divided into groups: I (main, n=21), which included immunocompromised patients who received sublingual allergen-specific immunotherapy with antipollin and inhaled immunotherapy with cycloferon (every other day, a course of 10 procedures, the total dose of Cycloferon per course is 1250 mg); II (comparison, n=22) - immunocompromised patients who received monotherapy with antipollinum and III (control, n=29) - patients with allergic rhinitis without signs of immunocompromise, who also received antipollinum. The effectiveness of therapy was assessed by the quality of life (RQLQ questionnaire), the severity of nasal symptoms (the patient's self-observation diary) and the need for drugs after a course of intranasal immunotherapy. RESULTS The inclusion of cycloferon in the treatment of immunocompromised patients with allergic rhinitis increased its effectiveness - the severity of nasal symptoms decreased: in terms of sneezing, a decrease of 53.5 times versus 1.82 - in the control, «nasal congestion» - 6.3 times versus 2.6 - in the control, «itching in the nose» - 4.9 and 4.2 times, respectively (p<0.05). The changes had a positive effect on the total indicator of the quality of life of patients - an increase of 6.2 times (by 83.7%) (p>0.05) and significantly reduced the need for cromones (18 times, versus 10.3 - in the group comparison), inhaled corticosteroids (10.4 times versus 8 times in the comparison group, and in decongestans - 8.1 times versus 6.1 - in the comparison group (p>0.05)). CONCLUSIONS The combined use of local immunotherapy with cycloferon and sublingual allergen-specific immunotherapy with antipollinum in immunocompromised patients with allergic rhinitis is the first-line method of choice that statistically significantly changes the quality of life of patients.
Collapse
|
48
|
Wang J, Yin J, Peng H, Liu A. MicroRNA-29 mediates anti-inflammatory effects and alleviation of allergic responses and symptoms in mice with allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:24. [PMID: 33676551 PMCID: PMC7936503 DOI: 10.1186/s13223-021-00527-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the role of microRNA-29 (miR-29) in mice with allergic rhinitis (AR) and its underlying mechanism. METHODS AR model was established in BALB/c mice by intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). miRNA expression was examined in the nasal mucosa tissues of mice and patients with AR, and miRNA-29 was found to be downregulated. To unveil the role of miRNA-29 in AR, it was overexpressed in the nasal mucosa of AR mice by intranasal administration of miRNA-29 agomir. The symptoms of nasal rubbing and sneezing were recorded and evaluated. miR-29 expression, OVA-specific immunoglobulin E (IgE) concentration, pro-inflammatory cytokines levels, eosinophils number, and cleaved caspase-3 and CD276 expression were examined in nasal mucosa tissues and nasal lavage fluid (NALF) by qRT-PCR, ELISA, hematoxylin and eosin staining, western blotting, or immunohistochemistry, respectively. TUNEL assay was used to analyze nasal mucosa cells apoptosis. RESULTS Decreased expression of miR-29 was observed in AR, the symptoms of which were alleviated by overexpressing miR-29. In addition, overexpression of miR-29 markedly reduced the concentration of OVA-specific IgE, the levels of IL-4, IL-6, IL-10, and IFN-γ, the pathological alterations and eosinophils infiltration in the nasal mucosa. Furthermore, restoration of miR-29 expression reduced nasal mucosa cell apoptosis. Moreover, overexpression of miR-29 significantly attenuated CD276 mRNA and protein levels in nasal mucosa cells. CONCLUSION MiR-29 mediated antiallergic effects in OVA-induced AR mice by decreasing inflammatory response, probably through targeting CD276. MiRNA-29 may serve as a potential novel therapeutic target for the treatment of AR.
Collapse
Affiliation(s)
- Jia Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Jinshu Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China.
| | - Hong Peng
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Aizhu Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| |
Collapse
|
49
|
Tiotiu A, Novakova P, Baiardini I, Bikov A, Chong-Neto H, de-Sousa JC, Emelyanov A, Heffler E, Fogelbach GG, Kowal K, Labor M, Mihaicuta S, Nedeva D, Novakova S, Steiropoulos P, Ansotegui IJ, Bernstein JA, Boulet LP, Canonica GW, Dubuske L, Nunes C, Ivancevich JC, Santus P, Rosario N, Perazzo T, Braido F. Manifesto on united airways diseases (UAD): an Interasma (global asthma association - GAA) document. J Asthma 2021; 59:639-654. [PMID: 33492196 DOI: 10.1080/02770903.2021.1879130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The large amount of evidence and the renewed interest in upper and lower airways involvement in infectious and inflammatory diseases has led Interasma (Global Asthma Association) to take a position on United Airways Diseases (UAD). METHODS Starting from an extensive literature review, Interasma executive committee discussed and approved this Manifesto developed by Interasma scientific network (INES) members. RESULTS The manifesto describes the evidence gathered to date and defines, states, advocates, and proposes issues on UAD (rhinitis, rhinosinusitis and nasal polyposis), and concomitant/comorbid lower airways disorders (asthma, chronic obstructive pulmonary disease, bronchiectasis, cystic fibrosis, obstructive sleep apnoea) with the aim of challenging assumptions, fostering commitment, and bringing about change. UAD refers to clinical pictures characterized by the coexistence of upper and lower airways involvement, driven by a common pathophysiological mechanism, leading to a greater burden on patient's health status and requiring an integrated diagnostic and therapeutic plan. The high prevalence of UAD must be taken into account. Upper and lower airways diseases influence disease control and patient's quality of life. CONCLUSIONS Patients with UAD need to have a timely and adequate diagnosis, treatment, and, when recommended, referral for management in a specialized center. Diagnostic testing including skin prick or serum specific IgE, lung function, fractional exhaled nitric oxide (FeNO), polysomnography, allergen-specific immunotherapies, biological therapies and home based continuous positive airway pressure (CPAP) whenever these are recommended, should be part of the management plan for UAD. Education of medical students, physicians, health professionals, patients and caregivers on the UAD is needed.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Nancy, France.,EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, University of Lorraine, Nancy, France
| | - Plamena Novakova
- Clinic of Clinical Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Ilaria Baiardini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andras Bikov
- Manchester University NHS Foundation Trust, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, Brazil
| | - Jaime Correia- de-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexander Emelyanov
- Department of Respiratory Medicine, North-Western Medical University named after I.I.Mechnikov, St-Petersburg, Russia
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma & Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Guillermo Guidos Fogelbach
- Clinic of Clinical Allergy, Medical University Sofia, Sofia, Bulgaria.,Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Bioquímica Estructural, Ciudad de México, México
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | | | - Stefan Mihaicuta
- Pulmonology Department, Cardio Prevent Foundation, University of Medicine and Pharmacy "Dr Victor Babes", Timisoara, Romania
| | - Denislava Nedeva
- Clinic of Clinical Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Sylvia Novakova
- Allergy Unit of Internal Consulting Department, University Hospital "St. George", Plovdiv, Bulgaria
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section University of Cincinnati, Cincinnati, OH, USA
| | | | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma & Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Lawrence Dubuske
- Division of Allergy and Immunology, Department of Internal Medicine, George Washington University School of Medicine and Health Sciences, George Washington University Medical Faculty Associates, Washington, DC, USA
| | - Carlos Nunes
- Centro de ImmunoAlergologia de Algarve, Porto, Portugal
| | - Juan Carlos Ivancevich
- Immunology Department, Faculty of Medicine, del Salvador University, Buenos Aires, Argentina
| | - Pierachille Santus
- Department of Biomedical and Clinical Sciences, University of Milan, Division of Respiratory Diseases "L. Sacco" Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Tommaso Perazzo
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Fulvio Braido
- Department of Internal Medicine, University of Genoa, Genova, Italy.,Respiratory Unit for Continuity of Care IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
50
|
Ba G, Tang R, Sun X, Li Z, Lin H, Zhang W. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Int J Immunopathol Pharmacol 2021; 35:20587384211015054. [PMID: 33983057 PMCID: PMC8127738 DOI: 10.1177/20587384211015054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION SKF-96365 is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. The current study aimed to explore the effects of SKF-96365 on murine allergic rhinitis (AR). METHODS Intranasal SKF-96365 administration was performed on OVA induced murine AR. Serum and nasal lavage fluid (NLF) from mice were harvested to assay IgE and inflammatory cytokines using ELISA method. Inflammatory cells were counted and analyzed in NLF. Nasal mucosa tissues were collected from mice and used for HE staining, immunohistochemistry (IHC) staining, and real-time PCR detection. RESULTS SKF-96365 had therapeutic effects on murine AR manifesting attenuation of sneezing, nasal rubbing, IgE, inflammatory cytokines, inflammatory cells, TRPC6 immunolabeling, and TRPC6, STIM1 and Orai1 mRNA levels in AR mice. CONCLUSION SKF-96365 could effectively alleviate the symptoms of murine AR. SKF-96365 could suppress TRPC6, STIM1, and Orai1 activities, leading to the downregulation of inflammatory cytokines and inflammatory cells in murine AR.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|