1
|
Martin H, Choi JE, Rodrigues AR, Eshel N. Review: Dopamine, Serotonin, and the Translational Neuroscience of Aggression in Autism Spectrum Disorder. JAACAP OPEN 2025; 3:29-41. [PMID: 40109493 PMCID: PMC11914923 DOI: 10.1016/j.jaacop.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/22/2025]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a 1% to 2% prevalence in children. In addition to social communication deficits and restricted or repetitive behavior, ASD is often characterized by a heightened propensity for aggression. In fact, aggressive behavior is the primary reason for hospitalization in children with ASD, and current treatment options, despite some efficacy, are often associated with prominent side effects. Despite such high clinical toll, the neurobiology of aggression in ASD remains poorly understood. Method The neural circuits linked to both ASD and aggression were reviewed, with the goal of identifying overlapping components to help guide future treatment development. In discussing the clinical phenotype of aggression in ASD, some of the triggers and risk factors were noted to differ from those that cause aggression in neurotypical children. Preclinical and clinical studies on the neurobiology of aggression and ASD were synthesized to combine evidence from genetics, neuroimaging, pharmacology, and circuit manipulations. Dopamine and serotonin, 2 neuromodulators that contribute to development and behavioral control, were specifically studied. Results The literature indicates that the intricate interplay of the dopamine and serotonin systems has a pivotal role in shaping behavior, including the expression of aggression. Conclusion Understanding the balance between dopamine as an accelerator and serotonin as a brake may provide insights into the mechanisms of aggression in children with ASD. Although much work remains to be done, new perspectives promise to bridge the gap between human and animal studies and pinpoint the neurobiology of aggression in ASD. Diversity & Inclusion Statement One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. We actively worked to promote sex and gender balance in our author group.
Collapse
Affiliation(s)
| | | | | | - Neir Eshel
- Stanford University, Stanford, California
| |
Collapse
|
2
|
Maples-Keller JL, Watkins L, Hellman N, Phillips NL, Rothbaum BO. Treatment Approaches for Posttraumatic Stress Disorder Derived From Basic Research on Fear Extinction. Biol Psychiatry 2025; 97:382-391. [PMID: 39032727 DOI: 10.1016/j.biopsych.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
This brief review article will describe treatment approaches for posttraumatic stress disorder (PTSD) based on findings from basic research. The focus of this review will be fear conditioning and extinction models, which provide a translational model of PTSD that can help translate basic research in nonhuman animals through well-controlled trials confirming the efficacy of treatment approaches in humans with PTSD such as prolonged exposure therapy. Specific cognitive aspects of fear extinction processes, including consolidation and reconsolidation, are reviewed along with behavioral and pharmacological treatment strategies based on basic research in these areas including attempts to prevent the development of PTSD as well as the treatment of chronic PTSD. Pharmacological, behavioral, and device-based augmentation strategies of PTSD treatment based in basic science findings are reviewed, including those that disrupt noradrenergic receptor processes, medications that act on NMDA receptors, physical exercise, cannabinoids, estradiol, dexamethasone, yohimbine, losartan, dopamine, and MDMA, along with the evidence for their efficacy in human clinical samples. While fear extinction provides an exciting translational opportunity to improve PTSD based on basic science findings, we review limitations and challenges of the extant literature as well as future directions.
Collapse
Affiliation(s)
- Jessica L Maples-Keller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Laura Watkins
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Natalie Hellman
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Papp C, Mikaczo A, Szabo J, More CE, Viczjan G, Gesztelyi R, Zsuga J. Mesocorticolimbic and Cardiometabolic Diseases-Two Faces of the Same Coin? Int J Mol Sci 2024; 25:9682. [PMID: 39273628 PMCID: PMC11395462 DOI: 10.3390/ijms25179682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The risk behaviors underlying the most prevalent chronic noncommunicable diseases (NCDs) encompass alcohol misuse, unhealthy diets, smoking and sedentary lifestyle behaviors. These are all linked to the altered function of the mesocorticolimbic (MCL) system. As the mesocorticolimbic circuit is central to the reward pathway and is involved in risk behaviors and mental disorders, we set out to test the hypothesis that these pathologies may be approached therapeutically as a group. To address these questions, the identification of novel targets by exploiting knowledge-based, network-based and disease similarity algorithms in two major Thomson Reuters databases (MetaBase™, a database of manually annotated protein interactions and biological pathways, and IntegritySM, a unique knowledge solution integrating biological, chemical and pharmacological data) was performed. Each approach scored proteins from a particular approach-specific standpoint, followed by integration of the scores by machine learning techniques yielding an integrated score for final target prioritization. Machine learning identified characteristic patterns of the already known targets (control targets) with high accuracy (area under curve of the receiver operator curve was ~93%). The analysis resulted in a prioritized list of 250 targets for MCL disorders, many of which are well established targets for the mesocorticolimbic circuit e.g., dopamine receptors, monoamino oxidases and serotonin receptors, whereas emerging targets included DPP4, PPARG, NOS1, ACE, ARB1, CREB1, POMC and diverse voltage-gated Ca2+ channels. Our findings support the hypothesis that disorders involving the mesocorticolimbic circuit may share key molecular pathology aspects and may be causally linked to NCDs, yielding novel targets for drug repurposing and personalized medicine.
Collapse
Affiliation(s)
- Csaba Papp
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Janos Szabo
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Csaba E More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Nieto-Quero A, Infantes-López MI, Zambrana-Infantes E, Chaves-Peña P, Gavito AL, Munoz-Martin J, Tabbai S, Márquez J, Rodríguez de Fonseca F, García-Fernández MI, Santín LJ, Pedraza C, Pérez-Martín M. Unveiling the Secrets of the Stressed Hippocampus: Exploring Proteomic Changes and Neurobiology of Posttraumatic Stress Disorder. Cells 2023; 12:2290. [PMID: 37759512 PMCID: PMC10527244 DOI: 10.3390/cells12182290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Intense stress, especially traumatic stress, can trigger disabling responses and in some cases even lead to the development of posttraumatic stress disorder (PTSD). PTSD is heterogeneous, accompanied by a range of distress symptoms and treatment-resistant disorders that may be associated with a number of other psychopathologies. PTSD is a very heterogeneous disorder with different subtypes that depend on, among other factors, the type of stressor that provokes it. However, the neurobiological mechanisms are poorly understood. The study of early stress responses may hint at the way PTSD develops and improve the understanding of the neurobiological mechanisms involved in its onset, opening the opportunity for possible preventive treatments. Proteomics is a promising strategy for characterizing these early mechanisms underlying the development of PTSD. The aim of the work was to understand how exposure to acute and intense stress using water immersion restraint stress (WIRS), which could be reminiscent of natural disaster, may induce several PTSD-associated symptoms and changes in the hippocampal proteomic profile. The results showed that exposure to WIRS induced behavioural symptoms and corticosterone levels reminiscent of PTSD. Moreover, the expression profiles of hippocampal proteins at 1 h and 24 h after stress were deregulated in favour of increased inflammation and reduced neuroplasticity, which was validated by histological studies and cytokine determination. Taken together, these results suggest that neuroplastic and inflammatory dysregulation may be a therapeutic target for the treatment of post-traumatic stress disorders.
Collapse
Affiliation(s)
- Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada Infantes-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Patricia Chaves-Peña
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Ana L. Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Jose Munoz-Martin
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Sara Tabbai
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Javier Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, 29010 Malaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada García-Fernández
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Universidad de Málaga, 29010 Malaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Margarita Pérez-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| |
Collapse
|
5
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
8
|
Gut microbiota alterations promote traumatic stress susceptibility associated with p-cresol-induced dopaminergic dysfunctions. Brain Behav Immun 2023; 107:385-396. [PMID: 36400332 DOI: 10.1016/j.bbi.2022.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.
Collapse
|
9
|
Phosphorylation Signals Downstream of Dopamine Receptors in Emotional Behaviors: Association with Preference and Avoidance. Int J Mol Sci 2022; 23:ijms231911643. [PMID: 36232945 PMCID: PMC9570387 DOI: 10.3390/ijms231911643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine regulates emotional behaviors, including rewarding and aversive behaviors, through the mesolimbic dopaminergic pathway, which projects dopamine neurons from the ventral tegmental area to the nucleus accumbens (NAc). Protein phosphorylation is critical for intracellular signaling pathways and physiological functions, which are regulated by neurotransmitters in the brain. Previous studies have demonstrated that dopamine stimulated the phosphorylation of intracellular substrates, such as receptors, ion channels, and transcription factors, to regulate neuronal excitability and synaptic plasticity through dopamine receptors. We also established a novel database called KANPHOS that provides information on phosphorylation signals downstream of monoamines identified by our kinase substrate screening methods, including dopamine, in addition to those reported in the literature. Recent advances in proteomics techniques have enabled us to clarify the mechanisms through which dopamine controls rewarding and aversive behaviors through signal pathways in the NAc. In this review, we discuss the intracellular phosphorylation signals regulated by dopamine in these two emotional behaviors.
Collapse
|
10
|
D'Iorio A, Baiano C, Maraucci G, Vitale C, Amboni M, Santangelo G. A longitudinal study on the effects of COVID-19 pandemic on non-motor symptoms in Parkinson’s disease. Neurol Sci 2022; 43:4605-4609. [PMID: 35538300 PMCID: PMC9088717 DOI: 10.1007/s10072-022-06112-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Introduction The COVID-19 pandemic led to psychological consequences on people’s mental health, representing a condition of increased vulnerability for the weakest sections of population, including elderly patients with Parkinson’s disease (PD). This longitudinal study aimed at exploring the impact of the most frequent non-motor symptoms and their contribute on health-related quality of life of PD patients after the COVID-19 outbreak, in comparison with the pre-pandemic status. Methods Forty-two non-demented PD patients underwent a first assessment between December 2018 and January 2020 (T0). Then, between March and May 2021 (T1), they were contacted again and asked to complete the second assessment. Levels of global functioning, several non-motor symptoms (i.e. depression, apathy, anxiety, anhedonia) and health-related quality of life were investigated. Results Results of the the paired Wilcoxon signed-rank test showed that at T1, PD patients scored lower on the emotional subscale of the DAS, Z = − 2.49; p = 0.013; Cohen dz = 0.691. Higher scores of the TEPS total score, Z = − 2.38; p = 0.025; Cohen dz = 0.621, and LEDD, Z = − 2.63; p = 0.008; Cohen dz = 0.731, were also reported at T1. Conclusion The present study suggested that self-isolation at home might lead to a reduction of apathy and anhedonia in PD patients due to the increase in social support provided by families during COVID-19 restrictions. This evidence brings out the need of a consistent and persistent social support which might be represented by caregivers or/and social assistive robotics.
Collapse
Affiliation(s)
- Alfonsina D'Iorio
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Chiara Baiano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giovanna Maraucci
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Carmine Vitale
- Department of Motor Sciences and Wellness, University "Parthenope", Naples, Italy
- Institute of Diagnosis and Care (IDC), Hermitage-Capodimonte, Naples, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Care (IDC), Hermitage-Capodimonte, Naples, Italy
- Department of Medicine, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
11
|
Dopamine Function and Hypothalamic-Pituitary-Thyroid Axis Activity in Major Depressed Patients with Suicidal Behavior. Brain Sci 2022; 12:brainsci12050621. [PMID: 35625008 PMCID: PMC9139537 DOI: 10.3390/brainsci12050621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Involvement of the dopaminergic (DA) and hypothalamic-pituitary-thyroid (HPT) systems in suicidal behavior is still poorly understood. We assessed multihormonal responses to apomorphine (APO; a short acting DA receptor agonist) and 8 AM and 11 PM protirelin (TRH) tests in 30 medication-free DSM-5 euthyroid major depressed inpatients with suicidal behavior disorder (SBD) (current, n = 14; in early remission, n = 16) and 18 healthy hospitalized control subjects (HCs). Compared to HCs, responses to APO and TRH tests were unaltered in SBDs in early remission. However, current SBDs exhibited increased APO-induced growth hormone (GH) and adrenocorticotropin (ACTH) stimulation, and reduced 11 PM thyrotropin (TSH) and ∆∆TSH values (difference between 11 PM and 8 AM TRH-TSH responses). In current SBDs, the association between high APO-GH concentrations and low ∆∆TSH values was more common in recent suicide attempters than in past suicide attempters. These preliminary results suggest that co-occurring alterations in the DA and HPT systems (i.e., DA receptor hyperresponsiveness associated with decreased hypothalamic TRH drive) may contribute to the pathophysiology of suicidal behavior. Conversely, normalization of DA and TRH functions might reflect a process of recovery from suicidality. Thus, our findings suggest that drugs targeting the DAergic and TRH systems could be relevant in suicide prevention.
Collapse
|
12
|
Bhargavi S, Madhan Shankar SR, Jemmy CH. In silico and in vitro studies on inhibitors for SARS-CoV-2 non-structural proteins with dual herbal combination of Withania somnifera with five rasayana herbs. J Biomol Struct Dyn 2022; 41:3265-3280. [PMID: 35257637 DOI: 10.1080/07391102.2022.2046642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Being highly transmissible, severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected millions of people causing devastating global impact and has also not slowed down even after vaccination. The emerges of new strains has made more concerns than the original one. We need a new therapeutic approach against the disease. Our comprehensive in silico study investigates dual herbal combinatorial methanolic extracts of W. somnifera (W) alone and with P. emblica (P) (W:P/1:4) , T. sinensis (T) (W:T/1:4), B. monnieri (B) (W:B/1:1), O. basilicum (O) (W:O/1:4), A. racemosus (A) (W:A/4:1) for potential four phytochemicals as ligands docked with eight COVID-19 Nonstructural proteins (nsp)-main protease (PDB ID:6LU7), papain-like protease (6WUU), helicase ADP (2XZL), N7-methyltransferase (5C8S), endoribonuclease (6WLC), 2'O-methyltransferase (6WVN), RNA dependent RNA polymerase (6M71), and 3Cprotease (6YNQ) along with Remdesivir and Hydroxychloroquine. Ligands from W:P/1:4 showed remarkable docking score (-9.01 kcal/mol) 6M71-(8E,11E,14E)-eicosa-8,11,14-trienoicacidmethylester (EIS) and (-9.99 kcal/mol) 6YNQ-N-[(E)-[4-[(2-methoxydibenzofuran-3-yl)amino]-4-oxobutan-2-ylidene]amino] 4nitrobenzamide (MET). Further, MD simulations were studied for 100 ns and showed the complexes were flexible, stable in the binding pockets of the receptors, and MM-PBSA analysis determined high binding energy of -129.673 ± 15.284 and -134.594 ± 7.085 for 6M71-EIS (Asn496, Lys577, Arg569) and 6YNQ-MET (Cys145, His41). Finally, in vitro JURKAT E6.1 cell lines treated with W:P/1:4 and W:O/1:4 methanolic extracts yielded 44.06 and 31.53 ng/mL levels for interferon alpha to counteract an external stimulus by establishing an antiviral state. Thus, nsp is targeted to design effective antiviral drugs for developing an effective therapeutic approach to combat viral RNA synthesis, processing, and suppression of host immunity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Srinivasan Bhargavi
- Department of Biotechnology, Kongunadu Arts and Science college, Coimbatore, Tamilnadu, India
| | - S. R. Madhan Shankar
- Department of Biotechnology, Kongunadu Arts and Science college, Coimbatore, Tamilnadu, India
| | - Christy H. Jemmy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| |
Collapse
|
13
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
14
|
Torrisi SA, Geraci F, Contarini G, Salomone S, Drago F, Leggio GM. Dopamine D3 Receptor, Cognition and Cognitive Dysfunctions in Neuropsychiatric Disorders: From the Bench to the Bedside. Curr Top Behav Neurosci 2022; 60:133-156. [PMID: 35435642 DOI: 10.1007/7854_2022_326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dopamine D3 receptor (D3R) plays a prominent role in the modulation of cognition in healthy individuals, as well as in the pathophysiological mechanism underlying the cognitive deficits affecting patients suffering from neuropsychiatric disorders. At a therapeutic level, a growing body of evidence suggests that the D3R blockade enhances cognitive and thus it may be an optimal therapeutic strategy against cognitive dysfunctions. However, this is not always the case because other ligands targeting the D3R, and behaving as partial agonists or biased agonists, may exert their pro-cognitive effect by maintaining adequate level of dopamine in key brain areas tuning cognitive performances. In this chapter, we review and discuss preclinical and clinical findings with the aim to remark the crucial role of the D3R in cognition and to strengthen the message that drugs targeting D3R may be excellent cognitive enhancers for the treatment of several neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salomone Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
15
|
Sottile RJ, Vida T. A proposed mechanism for the MDMA-mediated extinction of traumatic memories in PTSD patients treated with MDMA-assisted therapy. Front Psychiatry 2022; 13:991753. [PMID: 36311515 PMCID: PMC9596814 DOI: 10.3389/fpsyt.2022.991753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating psychiatric disorder afflicting millions of people around the world. Characterized by severe anxiety, intrusive thoughts, pervasive nightmares, an assortment of somatic symptoms, associations with severe long-term health problems, and an elevated risk of suicide, as much as 40-70% of patients suffer from refractory disease. 3,4-Methylenedioxy-methamphetamine (MDMA), like classic psychedelics such as psilocybin, have been used to enhance the efficacy of psychotherapy almost since their discovery, but due to their perceived potential for abuse and inclusion on USFDA (United States Food and Drug Administration) schedule 1, research into the mechanism by which they produce improvements in PTSD symptomology has been limited. Nevertheless, several compelling rationales have been explored, with the pro-social effects of MDMA thought to enhance therapeutic alliance and thus facilitate therapist-assisted trauma processing. This may be insufficient to fully explain the efficacy of MDMA in the treatment of psychiatric illness. Molecular mechanisms such as the MDMA mediated increase of brain-derived neurotrophic factor (BDNF) availability in the fear memory learning pathways combined with MDMA's pro-social effects may provide a more nuanced explanation for the therapeutic actions of MDMA.
Collapse
Affiliation(s)
- Robert J Sottile
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Thomas Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
16
|
Crombie KM, Sartin-Tarm A, Sellnow K, Ahrenholtz R, Lee S, Matalamaki M, Almassi NE, Hillard CJ, Koltyn KF, Adams TG, Cisler JM. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology 2021; 132:105355. [PMID: 34280820 PMCID: PMC8487992 DOI: 10.1016/j.psyneuen.2021.105355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We recently demonstrated that moderate-intensity aerobic exercise delivered during the consolidation of fear extinction learning reduced threat expectancy during a test of extinction recall among women with posttraumatic stress disorder (PTSD). These findings suggest that exercise may be a potential candidate for improving the efficacy of exposure-based therapies, which are hypothesized to work via the mechanisms of fear extinction learning. The purpose of this secondary analysis was to examine whether exercise-induced increases in circulating concentrations of candidate biomarkers: endocannabinoids (anandamide [AEA]; 2-arachidonoylglycerol [2-AG], brain-derived neurotrophic factor (BDNF), and homovanillic acid (HVA), mediate the effects of exercise on extinction recall. METHODS Participants (N = 35) completed a 3-day fear acquisition (day 1), extinction (day 2), and extinction recall (day 3) protocol, in which participants were randomly assigned to complete either moderate-intensity aerobic exercise (EX) or a light-intensity control (CON) condition following extinction training (day 2). Blood was obtained prior to and following EX or CON. Threat expectancy ratings during tests of extinction recall (i.e., initial fear recall and fear recall following reinstatement) were obtained 24 h following EX or CON. Mediation was tested using linear-mixed effects models and bootstrapping of the indirect effect. RESULTS Circulating concentrations of AEA and BDNF (but not 2-AG and HVA) were found to mediate the relationship between moderate-intensity aerobic exercise and reduced threat expectancy ratings following reinstatement (AEA 95% CI: -0.623 to -0.005; BDNF 95% CI: -0.941 to -0.005). CONCLUSIONS Exercise-induced increases in peripheral AEA and BDNF appear to play a role in enhancing consolidation of fear extinction learning, thereby leading to reduced threat expectancies following reinstatement among women with PTSD. Future mechanistic research examining these and other biomarkers (e.g., brain-based biomarkers) is warranted.
Collapse
Affiliation(s)
- Kevin M. Crombie
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Anneliis Sartin-Tarm
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Kyrie Sellnow
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Rachel Ahrenholtz
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Sierra Lee
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Megan Matalamaki
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Neda E. Almassi
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Cecilia J. Hillard
- Medical College of Wisconsin, Neuroscience Research Center,
Department of Pharmacology and, Toxicology, 8701 Watertown Plank Rd., Milwaukee, WI
53226
| | - Kelli F. Koltyn
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Tom G. Adams
- University of Kentucky, Department of Psychology, 105
Kastle Hill, Lexington, Kentucky, United States of America, 40506-0044,Yale School of Medicine, Department of Psychiatry, 300
George St., New Haven, CT, United States of America, 06511,National Center for PTSD, Clinical Neurosciences Division,
VA CT Healthcare System, 950 Campbell Avenue, West Haven, CT, United States of
America, 06516
| | - Josh M. Cisler
- University of Texas at Austin, Department of Psychiatry and
Behavioral Sciences, 1601 Trinity St, Bldg B, Austin, TX, United States of America,
78712
| |
Collapse
|
17
|
Working memory, cortical dopamine tone, and frontoparietal brain recruitment in post-traumatic stress disorder: a randomized controlled trial. Transl Psychiatry 2021; 11:389. [PMID: 34253715 PMCID: PMC8275779 DOI: 10.1038/s41398-021-01512-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) leads to impairments in both cognitive and affective functioning. Animal work suggests that chronic stress reduces dopamine tone, and both animal and human studies argue that changes in dopamine tone influence working memory, a core executive function. These findings give rise to the hypothesis that increasing cortical dopamine tone in individuals with greater PTSD symptomatology should improve working memory performance. In this pharmacological functional magnetic resonance imaging (fMRI) study, 30 US military veterans exhibiting a range of PTSD severity completed an emotional working memory task. Each subject received both placebo and the catechol-O-methyl transferase inhibitor tolcapone, which increases cortical dopamine tone, in randomized, double-blind, counterbalanced fashion. Mnemonic discriminability (calculated with d', an index of the detectability of working memory signals) and response bias were evaluated in the context of task-related brain activations. Subjects with more severe PTSD showed both greater tolcapone-mediated improvements in d' and larger tolcapone-mediated reductions in liberally-biased responding for fearful stimuli. FMRI revealed that tolcapone augmented activity within bilateral frontoparietal control regions during the decision phase of the task. Specifically, tolcapone increased cortical responses to fearful relative to neutral stimuli in higher severity PTSD subjects, and reduced cortical responses to fearful stimuli for lower severity PTSD subjects. Moreover, tolcapone modulated prefrontal connectivity with areas overlapping the default mode network. These findings suggest that enhancing cortical dopamine tone may represent an approach to remediating cognitive and affective dysfunction in individuals with more severe PTSD symptoms.
Collapse
|
18
|
Malikowska-Racia N, Salat K, Gdula-Argasinska J, Popik P. Sex, Pramipexole and Tiagabine Affect Behavioral and Hormonal Response to Traumatic Stress in a Mouse Model of PTSD. Front Pharmacol 2021; 12:691598. [PMID: 34276379 PMCID: PMC8277945 DOI: 10.3389/fphar.2021.691598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) has been associated with abnormal regulation of the hypothalamic-pituitary-adrenal gland axis (HPA). Women demonstrate a more robust HPA response and are twice as likely to develop PTSD than men. The role of sex hormones in PTSD remains unclear. We investigated whether post-trauma chronic treatment with the GABA-ergic agent tiagabine and dopamine-mimetic pramipexole affected the behavioral outcome and plasma levels of corticosterone, testosterone, or 17β-estradiol in female and male mice. These medications were investigated due to their potential capacity to restore GABA-ergic and dopaminergic deficits in PTSD. Animals were exposed to a single prolonged stress procedure (mSPS). Following 13 days treatment with tiagabine (10 mg/kg) or pramipexole (1 mg/kg) once daily, the PTSD-like phenotype was examined in the fear conditioning paradigm. Plasma hormones were measured almost immediately following the conditioned fear assessment. We report that the exposure to mSPS equally enhanced conditioned fear in both sexes. However, while males demonstrated decreased plasma corticosterone, its increase was observed in females. Trauma elevated plasma testosterone in both sexes, but it had no significant effects on 17β-estradiol. Behavioral manifestation of trauma was reduced by pramipexole in both sexes and by tiagabine in females only. While neither compound affected corticosterone in stressed animals, testosterone levels were further enhanced by tiagabine in females. This study shows sex-dependent efficacy of tiagabine but not pramipexole in a mouse model of PTSD-like symptoms and a failure of steroid hormones’ levels to predict PTSD treatment efficacy.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Salat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasinska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
19
|
Swart PC, van den Heuvel LL, Lewis CM, Seedat S, Hemmings SMJ. A Genome-Wide Association Study and Polygenic Risk Score Analysis of Posttraumatic Stress Disorder and Metabolic Syndrome in a South African Population. Front Neurosci 2021; 15:677800. [PMID: 34177453 PMCID: PMC8222611 DOI: 10.3389/fnins.2021.677800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-related disorder that frequently co-occurs with metabolic syndrome (MetS). MetS is characterized by obesity, dyslipidemia, and insulin resistance. To provide insight into these co-morbidities, we performed a genome-wide association study (GWAS) meta-analysis to identify genetic variants associated with PTSD, and determined if PTSD polygenic risk scores (PRS) could predict PTSD and MetS in a South African mixed-ancestry sample. The GWAS meta-analysis of PTSD participants (n = 260) and controls (n = 343) revealed no SNPs of genome-wide significance. However, several independent loci, as well as five SNPs in the PARK2 gene, were suggestively associated with PTSD (p < 5 × 10-6). PTSD-PRS was associated with PTSD diagnosis (Nagelkerke's pseudo R 2 = 0.0131, p = 0.00786), PTSD symptom severity [as measured by CAPS-5 total score (R 2 = 0.00856, p = 0.0367) and PCL-5 score (R 2 = 0.00737, p = 0.0353)], and MetS (Nagelkerke's pseudo R 2 = 0.00969, p = 0.0217). These findings suggest an association between PTSD and PARK2, corresponding with results from the largest PTSD-GWAS conducted to date. PRS analysis suggests that genetic variants associated with PTSD are also involved in the development of MetS. Overall, the results contribute to a broader goal of increasing diversity in psychiatric genetics.
Collapse
Affiliation(s)
- Patricia C. Swart
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L. van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sian M. J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
21
|
Early Adolescence Prefrontal Cortex Alterations in Female Rats Lacking Dopamine Transporter. Biomedicines 2021; 9:biomedicines9020157. [PMID: 33562738 PMCID: PMC7914429 DOI: 10.3390/biomedicines9020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Monoamine dysfunctions in the prefrontal cortex (PFC) can contribute to diverse neuropsychiatric disorders, including ADHD, bipolar disorder, PTSD and depression. Disrupted dopamine (DA) homeostasis, and more specifically dopamine transporter (DAT) alterations, have been reported in a variety of psychiatric and neurodegenerative disorders. Recent studies using female adult rats heterozygous (DAT+/-) and homozygous (DAT-/-) for DAT gene, showed the utility of those rats in the study of PTSD and ADHD. Currently, a gap in the knowledge of these disorders affecting adolescent females still represents a major limit for the development of appropriate treatments. The present work focuses on the characterization of the PFC function under conditions of heterozygous and homozygous ablation of DAT during early adolescence based on the known implication of DAT and PFC DA in psychopathology during adolescence. We report herein that genetic ablation of DAT in the early adolescent PFC of female rats leads to changes in neuronal and glial cell homeostasis. In brief, we observed a concurrent hyperactive phenotype, accompanied by PFC alterations in glutamatergic neurotransmission, signs of neurodegeneration and glial activation in DAT-ablated rats. The present study provides further understanding of underlying neuroinflammatory pathological processes that occur in DAT-ablated female rats, what can provide novel investigational approaches in human diseases.
Collapse
|
22
|
Abstract
Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.
Collapse
|
23
|
De Micco R, Siciliano M, Sant'Elia V, Giordano A, Russo A, Tedeschi G, Tessitore A. Correlates of Psychological Distress in Patients with Parkinson's Disease During the COVID-19 Outbreak. Mov Disord Clin Pract 2021; 8:60-68. [PMID: 33426160 PMCID: PMC7780948 DOI: 10.1002/mdc3.13108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Following the severe consequences of the COVID-19 outbreak, on March 9, 2020, the Italian government implemented extraordinary measures to limit viral transmission, including restrictive quarantine measures. This resulted in a rapid and profound change of people's daily lives. OBJECTIVE We assessed the psychological impact of the 40-day quarantine in a large cohort of patients with Parkinson's disease (PD) and caregivers. Moreover, we analyzed whether prelockdown clinical features may be associated with subjective response of patients with PD to this traumatic event. METHODS A total of 94 patients with PD were enrolled in the study. The Impact of Event Scale-Revised, the Kessler Psychological Distress Scale, and the 12-item Zarit Burden Inventory were obtained from patients and caregivers by email. A multivariate regression analysis was performed to determine whether prelockdown clinical motor and nonmotor features were associated with the psychological impact of lockdown. RESULTS Regression analyses showed that prelockdown levels of anxiety, treatment-related motor complications, patients' quality of life, and lockdown hours per day were significantly associated with psychological impact measures of the 40-day quarantine. In addition, we showed that caregiver burden was correlated with overall patient autonomy and attention/memory impairment. CONCLUSIONS We identified specific PD motor and nonmotor features potentially predisposing to higher psychological impact of stressful situations, such as quarantine. This may help guide postpandemic interventions and preventive strategies to avoid further impairment of psychological well-being in patients with PD.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Department of PsychologyUniversity of Campania “Luigi Vanvitelli”CasertaItaly
| | - Valeria Sant'Elia
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Department of PsychologyUniversity of Campania “Luigi Vanvitelli”CasertaItaly
| | - Alfonso Giordano
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Antonio Russo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
24
|
Torrisi SA, Lavanco G, Maurel OM, Gulisano W, Laudani S, Geraci F, Grasso M, Barbagallo C, Caraci F, Bucolo C, Ragusa M, Papaleo F, Campolongo P, Puzzo D, Drago F, Salomone S, Leggio GM. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol Stress 2020; 14:100286. [PMID: 33392367 PMCID: PMC7772817 DOI: 10.1016/j.ynstr.2020.100286] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic–pituitary–adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder. The AIS model includes highly requested features necessary to shape a translational PTSD animal model. Susceptible mice identified through the AIS model exhibited persistent PTSD-like phenotypes. Resilient mice identified through the AIS model adopted active coping strategies. The AIS model revealed molecular adaptations underlying trauma susceptibility/resilience. The AIS model meets the criterion of predictive validity by exclusively using susceptible mice.
Collapse
Key Words
- 5-trial SM, 5-trial social memory
- AIS, arousal-based individual screening
- ASR, acoustic startle reactivity
- Amy, amygdala
- Animal model
- BDNF, brain derived neurotropic factor
- BST, basal synaptic transmission
- C, control
- CORT, corticosterone
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders
- EPM, elevated plus maze
- FDA, Food and Drug Administration
- FKBP5, FK506 binding protein 5
- FST, forced swim test
- Fear conditioning
- HIP, hippocampus
- HPA, hypothalamic–pituitary–adrenal
- HT, hypothalamus
- OF, open field
- PTSD, post-traumatic stress disorder
- Resilience
- SGK1, serum/glucocorticoid-regulated kinase 1
- SSRIs, selective serotonin reuptake inhibitors
- Stress
- Susceptibility
- TE, trauma-exposed
- Z-score
- fEPSPs, field excitatory post-synaptic potentials
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,INSERM, U1215 Neurocentre Magendie and University of Bordeaux, Bordeaux, France
| | - Oriana M Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals (Basel) 2020; 13:ph13110365. [PMID: 33167370 PMCID: PMC7694365 DOI: 10.3390/ph13110365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacological treatment of cognitive impairments associated with schizophrenia is still a major unmet clinical need. Indeed, treatments with available antipsychotics generate highly variable cognitive responses among patients with schizophrenia. This has led to the general assumption that antipsychotics are ineffective on cognitive impairment, although personalized medicine and drug repurposing approaches might scale down this clinical issue. In this scenario, evidence suggests that cognitive improvement exerted by old and new atypical antipsychotics depends on dopaminergic mechanisms. Moreover, the newer antipsychotics brexpiprazole and cariprazine, which might have superior clinical efficacy on cognitive deficits over older antipsychotics, mainly target dopamine receptors. It is thus reasonable to assume that despite more than 50 years of elusive efforts to develop novel non-dopaminergic antipsychotics, dopamine receptors remain the most attractive and promising pharmacological targets in this field. In the present review, we discuss preclinical and clinical findings showing dopaminergic mechanisms as key players in the cognitive improvement induced by both atypical antipsychotics and potential antipsychotics. We also emphasize the concept that these mechanistic advances, which help to understand the heterogeneity of cognitive responses to antipsychotics, may properly guide treatment decisions and address the unmet medical need for the management of cognitive impairment associated with schizophrenia.
Collapse
|
26
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
27
|
Malikowska-Racia N, Popik P, Sałat K. Behavioral effects of buspirone in a mouse model of posttraumatic stress disorder. Behav Brain Res 2019; 381:112380. [PMID: 31765726 DOI: 10.1016/j.bbr.2019.112380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Buspirone presents a unique profile of action, which involves activation of 5-HT1A receptors and complex effects on D2-like dopaminergic receptors. This medication is studied in terms of potential clinical repositioning to conditions that are associated with dopaminergic dysfunctions including schizophrenia and substance use disorder. Buspirone antagonizes D3 and D4 receptors, however, depending on the dose it differentially interacts with D2 receptors. Previously, we reported that some of D2/D3 dopaminergic agonists attenuate PTSD-like behavioral symptoms in mice. Here we investigated whether buspirone could also affect PTSD-like symptoms. We used the single prolonged stress (mSPS) protocol to induce PTSD-like behavior in adult male CD-1 mice. Buspirone (0.5, 2, or 10 mg/kg, i.p.) was injected for 15 consecutive days. The subjects were repeatedly examined in a variety of behavioral tests measuring conditioned freezing response, antidepressant-like effects, anxiety, and ultrasonic vocal response to the restraint stress. Mouse SPS resulted in prolonged immobility in the forced swim test and freezing in the fear-conditioning test, and produced symptoms of anxiety. Buspirone dose-dependently decreased the exaggerated freezing response in mice, but only at the dose of 2 mg/kg exhibited the anxiolytic-like effect in the elevated plus maze test. Buspirone reduced the number of ultrasonic calls in mSPS-exposed mice but revealed no antidepressant-like effect in the forced swim test. Present data suggest some positive effects of buspirone in the treatment of selected PTSD-like symptoms and prompt for its further clinical evaluation.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Department of Behavioral Neuroscience and Drug Development Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| |
Collapse
|