1
|
Kabalı S, Ünlü Söğüt M, Öner N, Kara A. Protective Effects of Propolis Supplementation on Aflatoxin B1-Induced Oxidative Stress, Antioxidant Status, Intestinal Barrier Damage, and Gut Microbiota in Rats. Mol Nutr Food Res 2025:e70052. [PMID: 40159764 DOI: 10.1002/mnfr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Aflatoxin B1 (AFB1) is common in the diets of humans and animals and often leads to adverse health effects. Propolis, with its strong antioxidant activity, can reduce oxidative stress and modulate gut microbiota composition. However, the underlying mechanism by which propolis alleviates AFB1-induced intestinal barrier damage remains unclear. This study was designed to investigate the protective effects of oral propolis supplementation in AFB1-exposed rats. Thirty-two male Sprague-Dawley rats were divided into four groups: control, AFB1, propolis, and AFB1+propolis. After 4 weeks, serum oxidative stress markers were examined, and gut microbiota was analyzed by 16S rRNA sequencing. Intestinal sections were processed by Hematoxylin & Eosin staining, and the expression level of tight junction proteins was assessed by immunostaining. Propolis supplementation in AFB1-exposed rats tended to decrease oxidative stress, and it also restructured the gut microbiota by preventing a decrease in the relative abundances of Lactobacillus, Roseburia, and Phascolarctobacterium. Propolis restored intestinal permeability impaired by AFB1 by ameliorating intestinal morphological damage and increasing the expression levels of tight junction proteins. Propolis supplementation may contribute to the modulation of gut microbiota by alleviating oxidative stress and improving intestinal barrier damage in AFB1-exposed rats.
Collapse
Affiliation(s)
- Sevtap Kabalı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Mehtap Ünlü Söğüt
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Neslihan Öner
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Türkiye
| | - Ayça Kara
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Niu YJ, Wu J, Ren W, Liu G, Wu G, Peng Y, Zheng D, Jin K, Zuo Q, Li G, Han W, Cui XS, Chen G, Li B. Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117727. [PMID: 39818136 DOI: 10.1016/j.ecoenv.2025.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model. We observed a significant reduction in PGC numbers and an increase in apoptosis levels with AFB1 treatment. Further analysis revealed that AFB1 induced mitochondrial structural and functional abnormalities. Additionally, AFB1 treatment led to increased oxidative stress, lipid peroxidation, ferroptosis, and autophagy in chicken PGCs, ultimately affecting their biological characteristics. Interestingly, we found that the NRF2-mediated antioxidant pathway was activated in AFB1-treated PGCs. Inhibiting NRF2 exacerbated oxidative stress and cell death in PGCs, suggesting NRF2 upregulation plays a protective role under AFB1 regulation. This study illuminates AFB1's toxic effects on chicken PGCs and provides insights into potential mechanisms, establishing a basis for strategies to prevent and treat AFB1's adverse effects on poultry genetic transmission.
Collapse
Affiliation(s)
- Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Jun Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenjie Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dan Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Yousif MA. Aflatoxins in liver disease. TREATMENT AND MANAGEMENT OF TROPICAL LIVER DISEASE 2025:176-181. [DOI: 10.1016/b978-0-323-87031-3.00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
5
|
Kibugu J, Munga L, Mburu D, Maloba F, Auma JE, Grace D, Lindahl JF. Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals. Toxins (Basel) 2024; 16:483. [PMID: 39591238 PMCID: PMC11598113 DOI: 10.3390/toxins16110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches.
Collapse
Affiliation(s)
- James Kibugu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Leonard Munga
- Department of Animal Science, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - David Mburu
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Fredrick Maloba
- Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Joanna E. Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya;
- Natural Resources Institute, University of Greenwich, UK, Central Avenue, Chatham ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 75189 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
6
|
Wang Y, Long L, Luo Q, Huang X, Zhang Y, Meng X, Chen D. Aflatoxin B1 induces ROS-dependent mitophagy by modulating the PINK1/Parkin pathway in HepG2 cells. Basic Clin Pharmacol Toxicol 2024; 135:195-209. [PMID: 38804152 DOI: 10.1111/bcpt.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to both humans and animals. Mitophagy is a selective process of self-elimination and has an important role in controlling mitochondrial quality. The present study aimed to investigate the effect of reactive oxygen species (ROS) accumulation on AFB1-induced mitophagy in HepG2 cells to provide a new perspective from which to design novel therapeutic strategies to treat AFB1 poisoning. ROS release was induced in HepG2 cells with AFB1 (10 μmol/L). Cell autophagy activity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, Parkin translocation and both the transcription and expression of mitophagy-related proteins were measured when N-acetyl-L-cysteine (NAC) partially decreased the ROS level, while the knockdown of nuclear factor erythroid 2-related factor 2 (Nrf2) resulted in a large accumulation of ROS. The results reveal that NAC pretreatment ameliorated the decline in both the MMP and the ATP levels while also activating phosphoglycerate mutase 5 (PGAM5)-PTEN-induced kinase 1 (PINK1)/Parkin, while the Nrf2 knockdown group exhibited the opposite trend. These results suggest that AFB1-induced mitophagy in HepG2 cells depends on ROS, and proper ROS activates mitophagy to play a protective role.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Long
- Deyang Center for Disease Control and Prevention, Deyang, China
| | - Qian Luo
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Huang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Yang L, Gao YL, Jiang S, Qian B, Che L, Wu JS, Du ZB, Wang MZ, Yang Y, Lin YC, Liu G, Lin ZN. Aflatoxin B 1-exposed hepatocyte-derived extracellular vesicles: Initiating hepatic stellate cell-mediated liver fibrosis through a p53-Parkin-dependent mitophagy pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116363. [PMID: 38663190 DOI: 10.1016/j.ecoenv.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yun-Lu Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lin Che
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Shen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ming-Zhu Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yun Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Zhang L, Liu Y, Zhang Q, Yao W, Zhao Z, Wang X, Bao Y, Shi W. Salvia miltiorrhiza polysaccharide mitigates AFB1-induced liver injury in rabbits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116344. [PMID: 38636259 DOI: 10.1016/j.ecoenv.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 μg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qiongyi Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Weiyu Yao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zenghui Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
9
|
Adegboro AG, Afolabi IS. Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions. Front Cell Dev Biol 2024; 12:1374735. [PMID: 38660623 PMCID: PMC11039840 DOI: 10.3389/fcell.2024.1374735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation, and the build-up of lipotoxic reactive species. Ferroptosis-targeted induction is a promising therapeutic approach for addressing antimalarial drug resistance. In addition to being the primary source of intracellular energy supply and reactive oxygen species (ROS) generation, mitochondria actively participate in diverse forms of regulated cell death, including ferroptosis. Altered mitochondrial morphology and functionality are attributed to ferroptosis. Diverse mitochondria-related proteins and metabolic activities have been implicated in fine-tuning the action of ferroptosis inducers. Herein, we review recent progress in this evolving field, elucidating the numerous mechanisms by which mitochondria regulate ferroptosis and giving an insight into the role of the organelle in ferroptosis. Additionally, we present an overview of how mitochondria contribute to ferroptosis in malaria. Furthermore, we attempt to shed light on an inclusive perspective on how targeting malaria parasites' mitochondrion and attacking redox homeostasis is anticipated to induce ferroptosis-mediated antiparasitic effects.
Collapse
Affiliation(s)
- Adegbolagun Grace Adegboro
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
10
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
11
|
Ezzat GM, Meki ARMA, Meligy FY, Omar H, Nassar AY. Antiapoptotic and chemotaxis-stimulating effects of poly (D, L-lactide-co-glycolide)-chitosan and whey proteins against aflatoxicosis-induced splenic and thymic atrophy. Mol Biol Rep 2023; 50:9805-9824. [PMID: 37840065 PMCID: PMC10676322 DOI: 10.1007/s11033-023-08902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Aflatoxin B (AFB) induces toxicological effects on the liver and immune organs. The whey proteins can modulate the immune response during aflatoxicosis. Our work evaluates the novel polylactic acid-glycolic acid-chitosan-encapsulated bovine and camel whey proteins against AFB-induced thymic and splenic atrophy in rats. METHODS AND RESULTS Seventy adult male Wister albino rats were divided into a control healthy group (G1) and six AFB1-intoxicated groups (G2-G7). One of the following supplements: distilled water, camel whey proteins (CWP), bovine whey proteins, poly (D, L-lactide-co-glycolide) (PLGA)- chitosan-loaded with camel whey protein microparticles (CMP), PLGA-chitosan loaded with bovine whey protein microparticles (BMP), and PLGA-chitosan nanoparticles were administered as prophylactic supplements to AFB1-intoxicated groups. The AFB-treated group showed significantly higher hepatic levels of oxidative stress and lower levels of antioxidants. In the aflatoxicated group, atrophy of the splenic lymphatic nodules and disfigurement in the organisation with an apparent decrease in the thickness of the cortex in the thymus were observed, as well as a decrease in splenic and thymic CD4+T and CD8+T lymphocytes. Moreover, CXCL12 levels were downregulated, whereas tumour necrosis factor-alpha, nuclear factor kappa B, and cleaved caspase-3 levels were upregulated. CWP, BMP, and CMP supplements markedly decreased oxidative stress, inflammation, and apoptosis, as well as significantly raised CXCL12, CD4+T, and CD8+T cells. CONCLUSIONS The CWP, BMP, and CMP supplements rescue the liver and immune tissues from the toxic effects of AFB through their antioxidant, antiapoptotic, anti-inflammatory, and chemotaxis-enhancing roles.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Biochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, 11196, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hend Omar
- Animal Health Research Institute, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
12
|
Nasef MA, Yousef MI, Ghareeb DA, Augustyniak M, Aboul-Soud MAM, El Wakil A. Hepatoprotective effects of a chemically-characterized extract from artichoke ( Cynara scolymus L.) against AFB 1-induced toxicity in rats. Drug Chem Toxicol 2023; 46:1070-1082. [PMID: 36196508 DOI: 10.1080/01480545.2022.2129672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
This study was conducted to investigate the protective potential of a pharmaceutically formulated capsule of artichoke leaf powder (ArLP) against aflatoxin B1 (AFB1)-induced hepatotoxicity in male albino rats. In the 42-day experiment, rats were divided into five equal groups: (i) control, treated with sterile water, (ii) treated with 4% DMSO as AFB1 vehicle, (iii) ArLP of 100 mg kg-1 bw, (iv) AFB1 of 72 µg kg-1 bw, and (v) AFB1 plus ArLP. Exposure of rats to AFB1 resulted in hepatotoxicity as manifested by the intensification of oxidative stress, production of free radicals and significant increase in the activity levels of liver function enzymes relative to the control. Significant reductions in both the enzymatic and non-enzymatic antioxidant markers as well as histopathological abnormalities in liver tissues were also observed. Notably, the combined administration of ArLP with AFB1 clearly reduced AFB1-mediated adverse effects leading to the normalization of most of these parameters back to control levels. These findings clearly highlight the potential benefits of artichoke dietary supplements as a safe and natural solution in counteracting the adverse hepatotoxic effects conferred by AFB1 exposure. Further research is warranted to fully dissect the biochemical and molecular mechanism of action of the observed artichoke-mediated hepatoprotection.
Collapse
Affiliation(s)
- Mostafa A Nasef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Bioscreening and Preclinical Trial Lab, Alexandria University, Alexandria, Egypt
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Mourad A M Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Hassaneen NH, Hemeda SA, El Nahas AF, Fadl SE, El-Diasty EM. Ameliorative effects of camel milk and silymarin upon aflatoxin B1 induced hepatic injury in rats. Sci Rep 2023; 13:15092. [PMID: 37699912 PMCID: PMC10497557 DOI: 10.1038/s41598-023-41586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Aflatoxin B1 (AFB1) poses a major risk to both human and animal health because it contaminates food, feed, and grains. These dangerous effects can be mitigated using natural components. The purpose of this study was to examine the ameliorative effects of camel milk and silymarin supplementation upon aflatoxin B1 induced hepatic injury in rats. This improvement was assessed by measuring leukocytic and deferential counts, serum biochemical parameters, and gene expression of Tumor Necrosis Factor (TNF-α), antioxidant gene (NAD(P)H quinone oxidoreductase 1 (NQO1)), and base excision repair genes (APE1 and OGG1) in the liver tissue, in addition to liver histopathology. Sixty mature males Wister white rats were used to perform the present study; the rats were distributed in six groups (ten rats/group). The control group (without any treatment) received saline by gavage. The camel milk group received 1 ml of camel milk/kg body weight. The silymarin group received 1 ml of silymarin suspension solution at a dose of 20 mg of silymarin/kg of b.wt. The aflatoxin group received an aflatoxin-contaminated diet at a dose of 1.4 mg of aflatoxin /kg of diet and received saline. The camel milk + aflatoxin group received the same previous oral doses of camel milk and an aflatoxin-contaminated diet at the same time. The silymarin + aflatoxin group received the same previous doses of silymarin orally and an aflatoxin-contaminated diet at the same time. The obtained data indicated the deleterious effect of aflatoxin B1 on the leukocytic count, activity of AST and ALT, serum proteins, ferritin, alpha-fetoprotein, carcinoembryonic antigen, liver pathology, and the expression of the studied genes. However, these deleterious effects were mitigated by camel milk and silymarin supplementation. Thus, we could conclude that the ingestion of camel milk and silymarin mitigated the negative effects of AFB1 on the hematology, activity of AST and ALT, serum proteins, ferritin, alpha-fetoprotein, carcinoembryonic antigen, liver pathology, and gene expression in the rat model.
Collapse
Affiliation(s)
- Nahla H Hassaneen
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Shabaan A Hemeda
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer F El Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Eman M El-Diasty
- Mycology and Mycotoxins Department, Animal Health Research Institute (ARC), Giza, Egypt
| |
Collapse
|
14
|
Boutefaha Z, Diab KA, Gheraibia S, El-Nekeety AA, Belattar N, Hassan ME, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Screening of the phytochemical constituents of Teucrium polium extract and evaluation of their prophylactic role against the oxidative damage and cytotoxicity of Aflatoxin B 1 in rats. Toxicon 2023; 233:107252. [PMID: 37597789 DOI: 10.1016/j.toxicon.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Aflatoxin B1 (AFB1) is common carcinogen causing acute and chronic hepatocyte injuries. This study aimed to determine the bioactive components of Teucrium polium methanolic extract (TPE) and to evaluate their protective role against AFB1-induced oxidative damage, cytotoxicity, and genotoxicity in rats. Six groups of male albino rats were treated orally for 4 weeks including the control group, the ِAFB1-treated group (80 μg/kg b.w.), the groups treated with low (LD) or high (HD) dose TPE (50 or 100 mg/kg b.w.), and the groups treated with AFB1 plus TEP (LD) or TPE (HD). Blood and serum samples were collected for different assays. The GC-MS identified 34 compounds, the major compounds were pinene, germacrene D, α-cadinol, α-thujene, epi-bicyclosesquiphellandrene, and limonene. Animals that received AFB1 showed significant changes in all indicators of oxidative stress, biochemistry, cytokines, MNPCEs, comet tail formation in bone marrow, mRNA expression of inflammatory-related genes, Nrf2, and iNOS beside histological changes in the liver. TPE at the two doses tested showed insignificant changes in all tested parameters. The extract could normalize most of these parameters and the hepatic structure in AFB1-treated animals in a dose-dependent fashion. therefore, we concluded that TPE supplementation is effective for protection against AFB1 in endemic areas.
Collapse
Affiliation(s)
- Zineddine Boutefaha
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
15
|
Jaćević V, Dumanović J, Alomar SY, Resanović R, Milovanović Z, Nepovimova E, Wu Q, Franca TCC, Wu W, Kuča K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023; 492:153549. [PMID: 37209941 DOI: 10.1016/j.tox.2023.153549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Pharmacology and Toxicology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Suliman Y Alomar
- King Saud University, College of Science, Zoology Department, Riyadh, 11451, Saudi Arabia
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023 Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
16
|
Building a Human Physiologically Based Pharmacokinetic Model for Aflatoxin B1 to Simulate Interactions with Drugs. Pharmaceutics 2023; 15:pharmaceutics15030894. [PMID: 36986755 PMCID: PMC10053806 DOI: 10.3390/pharmaceutics15030894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Mycotoxins such as aflatoxin B1 (AFB1) are secondary fungal metabolites present in food commodities and part of one’s daily exposure, especially in certain regions, e.g., sub-Saharan Africa. AFB1 is mostly metabolised by cytochrome P450 (CYP) enzymes, namely, CYP1A2 and CYP3A4. As a consequence of chronic exposure, it is interesting to check for interactions with drugs taken concomitantly. A physiologically based pharmacokinetic (PBPK) model was developed based on the literature and in-house-generated in vitro data to characterise the pharmacokinetics (PK) of AFB1. The substrate file was used in different populations (Chinese, North European Caucasian and Black South African), provided by SimCYP® software (v21), to evaluate the impact of populations on AFB1 PK. The model’s performance was verified against published human in vivo PK parameters, with AUC ratios and Cmax ratios being within the 0.5–2.0-fold range. Effects on AFB1 PK were observed with commonly prescribed drugs in South Africa, leading to clearance ratios of 0.54 to 4.13. The simulations revealed that CYP3A4/CYP1A2 inducer/inhibitor drugs might have an impact on AFB1 metabolism, altering exposure to carcinogenic metabolites. AFB1 did not have effects on the PK of drugs at representative exposure concentrations. Therefore, chronic AFB1 exposure is unlikely to impact the PK of drugs taken concomitantly.
Collapse
|
17
|
Rotimi OA, De Campos OC, Adelani IB, Olawole TD, Rotimi SO. Early-life AFB1 exposure: DNA methylation and hormone alterations. VITAMINS AND HORMONES 2023; 122:237-252. [PMID: 36863796 DOI: 10.1016/bs.vh.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aflatoxins are secondary metabolites of mold that contaminate food and feedstuff. They are found in various food including grains, nuts, milk and eggs. Aflatoxin B1 (AFB1) is the most poisonous and commonly found of the various types of aflatoxins. Exposures to AFB1 start early in life viz. in utero, during breastfeeding, and during weaning through the waning foods which are mainly grain based. Several studies have shown that early-life exposures to various contaminants may have various biological effects. In this chapter, we reviewed the effects of early-life AFB1 exposures on changes in hormone and DNA methylation. In utero AFB1 exposure results in alterations in steroid and growth hormones. Specifically, the exposure results in a reduction in testosterone levels later in life. The exposure also affects the methylation of various genes that are significant in growth, immune, inflammation, and signaling pathways.
Collapse
|
18
|
Sang R, Ge B, Li H, Zhou H, Yan K, Wang W, Cui Q, Zhang X. Taraxasterol alleviates aflatoxin B 1-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114546. [PMID: 36646010 DOI: 10.1016/j.ecoenv.2023.114546] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is the most dangerous and abundant mycotoxin, which is toxic to almost all animals, and poultry is more sensitive to AFB1 toxicity. Ingesting AFB1-contaminated feed can cause significant liver damage and brings serious harm to poultry, which greatly restricts the development of the poultry industry. The present research was implemented to explore the intervention effect and its mechanism of taraxasterol on liver damage induced by AFB1 in broiler chickens. The liver damage model in broiler chickens was established by feeding 0.5 mg/kg AFB1 feed, and taraxasterol (25, 50 and 100 mg/kg BW, respectively) was given in the drinking water for 21 days. The growth performance, liver function, oxidative stress, apoptosis and autophagy were evaluated. The results showed that taraxasterol increased BW and reduced feed-to-gain ratio of broiler chickens induced by AFB1. Taraxasterol improved the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin (TBIL) and alkaline phosphatase (ALP), and attenuated hepatic histopathological changes induced by AFB1. Meantime, taraxasterol down-regulated cytochrome P450 (CYP450) enzyme system CYP1A1 and CYP2A6 mRNA expression, inhibited the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and enhanced the activities of antioxidant enzymes glutathione (GSH) and catalase (CAT) and the content of antioxidant superoxide dismutase (SOD) of the liver in broiler chickens induced by AFB1. Furthermore, taraxasterol up-regulated the mRNA and protein expression of hepatic nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and down-regulated the expression of hepatic kelch like ECH associated protein 1 (Keap1) induced by AFB1 in Keap1/Nrf2 signaling pathway. The ultrastructural observation and RT-qPCR results found that taraxasterol inhibited apoptosis of hepatocytes, up-regulated the expression of B-cell lymphoma-2 (Bcl-2) mRNA and down-regulated the expression of Bax and caspase3 mRNA. Further, taraxasterol restored the autophagy of hepatocytes and down-regulated the mRNA expression of phosphatidylinositol 3-kinase K (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in AFB1-induced liver of broiler chickens. The above results indicate that taraxasterol alleviates liver damage induced by AFB1 in broiler chickens through regulation of Keap1/Nrf2 signaling pathway to exert its antioxidant effect, mitochondrial apoptosis pathway to improve anti-apoptotic ability and PI3K/AKT/mTOR pathway to restore autophagy.
Collapse
Affiliation(s)
- Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Bingjie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Haifeng Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Hongyuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Kexin Yan
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Qichao Cui
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
19
|
Abo-Hiemad HM, Nassar AY, Shatat AR, Mohamed MA, Soliman M, Abdelrady YA, Sayed AM. Protective effect of copper II-albumin complex against aflatoxin B1- induced hepatocellular toxicity: The impact of Nrf2, PPAR-γ, and NF-kB in these protective effects. J Food Biochem 2022; 46:e14160. [PMID: 35338511 DOI: 10.1111/jfbc.14160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Copper II-Albumin complex (Cu-II-Albumin complex) is a novel therapeutic target that has been used as anti-inflammatory, antioxidant, and anti-gastrointestinal toxicity. In this study, 40 rats were divided into four groups, normal control (NC), aflatoxicosed group (AF) that received Aflatoxin B1 (AFB1) (50 μg/kg of the AFB1 daily for 3 weeks), AFB1-Cu-II-Albumin prophylactic group (AF/CUC-P) that subjected to intermittent treatment between AFB1 and Cu-II-Albumin complex (0.05 g/kg Cu-II-Albumin complex) day after day for 3 weeks and AFB1-Cu-II-albumin treatment group (AF/CUC-T) that received AFB1 for 3 weeks and Cu-II-albumin complex for another 3 weeks. The hepatocellular protective effect of the Cu-II-albumin complex was assessed by evaluating the liver functions markers, hepatic histopathology, reactive oxygen species (ROS) levels (Nitric Oxide (NO) and malondialdehyde (MDA)), apoptotic genes (caspase-3 and tumor necrosis factor receptor 1 [TNF-R1]) expressions, and serological and molecular biomarkers of hepatocellular carcinoma (histamine and Glucose-Regulated Protein 78 [GRP78], respectively). Our finding showed that Cu-II-Albumin Complex administration had restored liver function, oxidative stress levels, enhanced liver tissue recovery, and reduced the expression of the apoptotic genes of the aflatoxicosed rats. In conclusion, the current study results demonstrated the protective effect of Cu-II-albumin complex against AFB1-induced hepatocellular toxicity. PRACTICAL APPLICATIONS: The protective effect of Cu-II-Albumin Complex against AFB1-induced hepatocellular toxicity by assessing oxidative stress, liver biomarkers, inflammation, and histological changes of liver tissues. The protective mechanism of the Cu-II-albumin complex was also investigated. More clinical studies are required to evaluate the potential of using the Cu-II-albumin complex as a therapeutic agent against hepatocellular toxicity.
Collapse
Affiliation(s)
- Hend M Abo-Hiemad
- Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed Y Nassar
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed R Shatat
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mona A Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Ahmed M Sayed
- Biochemistry Laboratory, Faculty of Science, Chemistry Department, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Ahmed N, El-Rayes SM, Khalil WF, Abdeen A, Abdelkader A, Youssef M, Maher ZM, Ibrahim AN, Abdelrahman SM, Ibrahim SF, Abdelrahaman D, Alsieni M, Elserafy OS, Ghamry HI, Emam HT, Shanab O. Arabic Gum Could Alleviate the Aflatoxin B1-provoked Hepatic Injury in Rat: The Involvement of Oxidative Stress, Inflammatory, and Apoptotic Pathways. Toxins (Basel) 2022; 14:toxins14090605. [PMID: 36136543 PMCID: PMC9500620 DOI: 10.3390/toxins14090605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2–related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.
Collapse
Affiliation(s)
- Noha Ahmed
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Samir M. El-Rayes
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed F. Khalil
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Center of Excellence in Screening of Environmental Contaminants (CESEC), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Correspondence: (A.A.); (O.S.)
| | - Afaf Abdelkader
- Center of Excellence in Screening of Environmental Contaminants (CESEC), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Zainab M. Maher
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Amany N. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Shaymaa M. Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Osama S. Elserafy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
- Department of Criminal Justice and Forensics, King Fahad Security College, Riyadh 13232, Saudi Arabia
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Hanan T. Emam
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt
- Department of Pharmacology, Faculty of Medicine, 6th of October University, Giza 12511, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (A.A.); (O.S.)
| |
Collapse
|
21
|
Lootens O, De Boevre M, Gasthuys E, Van Bocxlaer J, Vermeulen A, De Saeger S. Unravelling the pharmacokinetics of aflatoxin B1: In vitro determination of Michaelis–Menten constants, intrinsic clearance and the metabolic contribution of CYP1A2 and CYP3A4 in pooled human liver microsomes. Front Microbiol 2022; 13:988083. [PMID: 36110298 PMCID: PMC9469084 DOI: 10.3389/fmicb.2022.988083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mycotoxins, fungal secondary metabolites, are ubiquitously present in food commodities. Acute exposure to high levels or chronic exposure to low levels has an impact on the human body. The phase I metabolism in the human liver, performed by cytochrome P450 (CYP450) enzymes, is accountable for more than 80% of the overall metabolism of exogenous and endogenous compounds. Mycotoxins are (partially) metabolized by CYP450 enzymes. In this study, in vitro research was performed on CYP450 probes and aflatoxin B1 (AFB1), a carcinogenic mycotoxin, to obtain pharmacokinetic data on AFB1, required for further experimental work. The CYP450 probes of choice were a CYP3A4 substrate, midazolam (MDZ) and a CYP1A2 substrate, phenacetin (PH) since these are the main metabolizing phase I enzymes of AFB1. Linearity experiments were performed on the three substrates indicating that linear conditions were achieved at a microsomal protein concentration and incubation time of 0.25 mg/ml and 5 min, 0.50 mg/ml and 20 min and 0.25 mg/ml and 5 min for MDZ, PH and AFB1, respectively. The Km was determined in human liver microsomes and was estimated at 2.15 μM for MDZ, 40.0 μM for PH and 40.9 μM for AFB1. The associated Vmax values were 956 pmol/(mg.min) (MDZ), 856 pmol/(mg.min) (PH) and 11,536 pmol/(mg.min) (AFB1). Recombinant CYP systems were used to determine CYP450-specific Michaelis–Menten values for AFB1, leading to a CYP3A4 Km of 49.6 μM and an intersystem extrapolation factor (ISEF) corrected Vmax of 43.6 pmol/min/pmol P450 and a CYP1A2 Km of 58.2 μM and an ISEF corrected Vmax of 283 pmol/min/pmol P450. An activity adjustment factor (AAF) was calculated to account for differences between microsome batches and was used as a correction factor in the determination of the human in vivo hepatic clearance for MDZ, PH and AFB1. The hepatic blood clearance corrected for the AAF CLH,B,MDZ,AAF, CLH,B,PH,AAF CLH,B,AFB1,AAF(CYP3A4) and CLH,B,AFB1,AAF(CYP1A2) were determined in HLM at 44.1 L/h, 21.7 L/h, 40.0 L/h and 38.5 L/h. Finally, inhibition assays in HLM showed that 45% of the AFB1 metabolism was performed by CYP3A4/3A5 enzymes and 49% by CYP1A2 enzymes.
Collapse
Affiliation(s)
- Orphélie Lootens
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- Department of Bioanalysis, Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent, Belgium
- *Correspondence: Orphélie Lootens,
| | - Marthe De Boevre
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent, Belgium
- Marthe De Boevre,
| | - Elke Gasthuys
- Department of Bioanalysis, Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent, Belgium
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, Gauteng, South Africa
| |
Collapse
|
22
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Wang X, Yang F, Na L, Jia M, Ishfaq M, Zhang Y, Liu M, Wu C. Ferulic acid alleviates AFB1-induced duodenal barrier damage in rats via up-regulating tight junction proteins, down-regulating ROCK, competing CYP450 enzyme and activating GST. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113805. [PMID: 35772360 DOI: 10.1016/j.ecoenv.2022.113805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Previous studies reported that Aflatoxin B1 (AFB1) causes cell damage through its metabolite aflatoxin B1-8, 9-epoxide (AFBO), which is catalyzed by CYP450 enzymes. AFBO can be detoxified by glutathione S transferase (GST). Ferulic acid (FA) is known for its antioxidant capacity and intestinal protective function. However, the mechanism of AFB1 causing duodenal injury and the role of FA in AFB1-induced intestinal damage remains unclear. In this study, rats were exposed to AFB1 and treated with FA for 30 days. The results showed that I) FA alleviated the histopathological changes of duodenum and the ultrastructural changes of tight junctions between duodenal epithelial cells induced by AFB1. II) FA reduced the content of AFB1-ALB adduct in blood. III) The low expression of tight junction proteins (Claudin-1 and ZO-1) and the high expression of ROCK1 and ROCK2 induced by AFB1 were significantly reversed by FA. IV) The high expression of CYP2A6 and CYP3A4 were significantly down-regulated by FA, and the activity of GST was promoted by FA. V) The binding affinity of FA to CYP2A6 is very similar to the binding affinity of AFB1 to CYP2A6, which meaning that there is a competitive relationship between FA and AFB1 when conjugating to CYP2A6. These results suggested that FA proved effective in alleviating AFB1-induced duodenal barrier damage via up-regulating tight junction proteins, down-regulating ROCK, competing CYP450 enzyme, and activating GST in duodenal epithelial cells of rats.
Collapse
Affiliation(s)
- Xinghe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Fengyan Yang
- Shenyang Modern Agriculture Research and Development Service Center (Shenyang Academy of Agricultural Sciences), China.
| | - Lingfang Na
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Meng Jia
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.
| | - Yanfang Zhang
- Collage of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Mingchun Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Changde Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
24
|
Zhang Z, Zhang Q, Li M, Xu J, Wang J, Li M, Wei L, Lv Q, Chen X, Wang Y, Liu Y. SeMet attenuates AFB1-induced intestinal injury in rabbits by activating the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113640. [PMID: 35597141 DOI: 10.1016/j.ecoenv.2022.113640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the role of selenomethionine (SeMet) in alleviating AFB1 induced intestinal injury by inhibiting intestinal oxidative stress. Forty 35-day-old rabbits were divided randomly into 4 groups (control group, AFB1 group, 0.2 mg/kg Se + AFB1 group, 0.4 mg/kg Se + AFB1 group). From the first day of the experiment, the two treatment groups were fed 0.2 mg/kg SeMet or 0.4 mg/kg SeMet daily for 21 days. On the 17th day, all rabbits in the model group and the two treatment groups were given intragastric AFB1 daily for 5 days. The ADG, ADFI and FCR of the rabbits were examined. Rabbit jejunum tissue was collected for hematoxylin- eosin staining (HE), PCNA detection, immunofluorescence and WB. Intestinal tissue IL-1β, IL-6 and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that the production performance was decreased, the levels of ROS and MDA were increased in intestinal tissues, the activity of antioxidant enzymes was decreased and the expression levels of Nrf2 and HO-1 were decreased in AFB1-exposed rabbits. In addition, AFB1 induces an inflammatory response in the jejunum and promotes the expression of TNF-α, IL-6 and IL-1β. SeMet pretreatment significantly improved the performance of the rabbits, alleviated intestinal oxidative stress and the inflammatory response. Therefore, we confirmed that SeMet protects against AFB1 induced oxidative damage and improves productivity in rabbits by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jingyi Xu
- College of Animal Science and Technology, China
| | | | - Mengyun Li
- College of Animal Science and Technology, China
| | - Lan Wei
- College of Animal Science and Technology, China
| | - Qiongxia Lv
- College of Animal Science and Technology, China
| | | | - Yuqin Wang
- College of Animal Science and Technology, China
| | - Yumei Liu
- College of Animal Science and Technology, China.
| |
Collapse
|
25
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
26
|
Liu F, Wang Y, Zhou X, Liu M, Jin S, Shan A, Feng X. Resveratrol Relieved Acute Liver Damage in Ducks ( Anas platyrhynchos) Induced by AFB1 via Modulation of Apoptosis and Nrf2 Signaling Pathways. Animals (Basel) 2021; 11:ani11123516. [PMID: 34944291 PMCID: PMC8698071 DOI: 10.3390/ani11123516] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Aflatoxin B1 is ubiquitous in food and feed, which not only poses a great threat to animals, but also affects human health. It is unclear whether resveratrol can resist aflatoxin B1 damage in ducks’ livers. Therefore, the effect of resveratrol supplementation in the diets on liver injury aflatoxin B1was investigated through the gavage of aflatoxin B1. It was found that a diet that includes resveratrol can effectively protect ducks’ livers from acute injury caused by aflatoxin B1. Our study suggests that resveratrol serves as a potential phytochemical feed additive for the treatment of acute aflatoxin B1 poisoning in ducks Abstract The presence of aflatoxin B1 (AFB1) in feed is a serious threat to livestock and poultry health and to human food safety. Resveratrol (Res) is a polyphenolic compound with antioxidant, anti-apoptotic and other biological activities; however, it is not clear whether it can improve AFB1 induced hepatotoxicity. Therefore, this study was conducted to investigate the effects of dietary Res on liver injury induced by AFB1 and its mechanisms. A total of 270 one-day-old male specific pathogen free (SPF) ducks, with no significant difference in weight, were randomly assigned to three groups: the control group, the AFB1 group and the AFB1 + Res group, which were fed a basic diet, a basic diet and a basic diet containing 500 mg/kg Res, respectively. On the 70th day, the ducks in theAFB1 group and the AFB1+ 500 mg/kg Res group were given 60 μg/kg AFB1 via gavage. When comparing the AFB1 group and the AFB1 + Res group and also with the control group, AFB1 significantly increased liver damage, cytochrome P450 (CYP450) and AFB1-DNA adduct content, increased oxidative stress levels and induced liver apoptosis, which was improved by Res supplementation. In sum, the addition of Res to feed can increase the activity of the II-phase enzyme, activate the nuclear factor E2-related factor 2 (Nrf2) signal pathway, and protect ducks’ livers from the toxicity, oxidative stress and inflammatory reaction induced by AFB1.
Collapse
|
27
|
The Intervention and Mechanism of Action for Aloin against Subchronic Aflatoxin B1 Induced Hepatic Injury in Rats. Int J Mol Sci 2021; 22:ijms222111620. [PMID: 34769051 PMCID: PMC8584096 DOI: 10.3390/ijms222111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022] Open
Abstract
As a class of difurancoumarin compounds with similar structures, aflatoxins (AF) are commonly found in the environment, soil, and food crops. AF pose a serious threat to the health of humans, poultry, and livestock. This study aimed to investigate the neuroprotective effect and detailed mechanism of aloin on hepatic injury induced by subchronic AFB1 in rats. The result showed that aloin could significantly inhibit the decrease in food intake, body weight growth, immune organ index, and serum albumin content caused by long-term AFB1 exposure. Meanwhile, aloin reduced the level of serum liver function and improved renal swelling and pathological changes of liver tissue. Aloin could also inhibit liver lipid peroxidation and improve liver antioxidant capacity. Further investigation revealed that aloin inhibited the activity and expression of hepatic CYP1A2 and CYP3A4 and down-regulated IL-1β expression in subchronic AFB1-induced liver injury rats. The above study demonstrated that aloin played an important role in blocking or delaying the development process of subchronic AFB1-induced hepatotoxicity. Therefore, aloin is considered to have a potential role as a protective agent against AFB1.
Collapse
|
28
|
Karaca A, Yilmaz S, Kaya E, Altun S. The effect of lycopene on hepatotoxicity of aflatoxin B1 in rats. Arch Physiol Biochem 2021; 127:429-436. [PMID: 31378089 DOI: 10.1080/13813455.2019.1648516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Oxidative damage caused by aflatoxin (AF) in rat liver tissue and the inhibition effect of lycopene against this injury was investigated. Groups were formed as; control group (not treated), lycopene group (5 mg/kg/day, gavage for 15 days), AFB1 group (0.5 mg/kg/day, gavage for 7 days) and AFB1 + lycopene group. Lycopene administered simultaneously with AFB1. It was observed significant increase in malondialdehyde level, decrease in glutathione level, antioxidant enzyme activities in liver tissue of AFB1 group when compared with control group. It was determined to significantly increase in plasma aspartate transaminase, alanine transaminase, lactate dehydrogenase activities in AFB1 group when compared with control group. It was determined significant decrease in malondialdehyde level, plasma aspartate transaminase, alanine transaminase, lactate dehydrogenase activities and increase in glutathione level, antioxidant enzyme activities in AFB1 + lycopene group when compared with AFB1 group. This study suggests that lycopene which has antioxidant properties can be prevented from AFB1 induced hepatotoxicity.
Collapse
Affiliation(s)
- Aysegul Karaca
- Faculty of Pharmacy, Department of Biochemistry, Inonu University, Malatya, Turkey
| | - Seval Yilmaz
- Faculty of Veterinary Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| | - Emre Kaya
- Faculty of Veterinary Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| | - Serdar Altun
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Cao W, Gao J, Zhang Y, Li A, Yu P, Cao N, Liang J, Tang X. Autophagy up-regulated by MEK/ERK promotes the repair of DNA damage caused by aflatoxin B1. Toxicol Mech Methods 2021; 32:87-96. [PMID: 34396909 DOI: 10.1080/15376516.2021.1968985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, exerts its cytotoxicity by increasing the oxidative damage of target organs, especially the liver. In vivo and in vitro experiments were carried out to elucidate the toxic mechanism of AFB1. The results of MTT, cloning-formation, flow cytometry, immunocytochemistry, Reverse transcription PCR (RT-PCR) and western blot showed that AFB1 activated NOX2 gp91 phox, inhibited proliferation and migration, and blocked cell cycle at G0/G1 period of HHL-5 cells. Autophagy promoted the repair of NOX2-dependent DNA damage. NOX2/gp91 phox mainly activates MEK/ERK pathway and then up-regulates autophagy. In vivo experiments have shown that AFB1 (0.75 mg/kg daily orally, 4 weeks) had no significant changes in the size and shape of the liver in mice. However, these treatments lead to structural abnormalities of hepatocytes and DNA damage. In summary, AFB1 caused intracellular oxidative stress and DNA damage, NOX2/gp91-phox activates the MEK/ERK pathway, and upregulated autophagy to promote the repair of DNA damage. We concluded that by increasing the level of autophagy, the ability of anti-AFB1 toxicity of liver can be increased.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
30
|
Orphan Nuclear Receptor RORγ Modulates the Genome-Wide Binding of the Cholesterol Metabolic Genes during Mycotoxin-Induced Liver Injury. Nutrients 2021; 13:nu13082539. [PMID: 34444698 PMCID: PMC8397974 DOI: 10.3390/nu13082539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Maintaining lipid homeostasis is crucial to liver function, the key organ that governs the whole-body energy metabolism. In contrast, lipid dysregulation has been implicated in mycotoxin-induced liver injury, by which the pathophysiological regulation and the molecular components involved remain elusive. Here we focused on the potential roles of orphan nuclear receptor (NR) RORγ in lipid programming, and aimed to explore its action on cholesterol regulation in the liver of mycotoxin-exposed piglets. We found that liver tissues were damaged in the mycotoxin-exposed piglets compared to the healthy controls, revealed by histological analysis, elevated seral ALT, AST and ALP levels, and increased caspase 3/7 activities. Consistent with the transcriptomic finding of down-regulated cholesterol metabolism, we demonstrated that both cholesterol contents and cholesterol biosynthesis/transformation gene expressions in the mycotoxin-exposed livers were reduced, including HMGCS1, FDPS, SQLE, EBP, FDFT1 and VLDLR. Furthermore, we reported that RORγ binds to the cholesterol metabolic genes in porcine hepatocytes using a genome-wide ChIP-seq analysis, whereas mycotoxin decreased the RORγ binding occupancies genome-wide, especially at the cholesterol metabolic pathway. In addition, we revealed the enrichment of co-factors p300 and SRC, the histone marks H3K27ac and H3K4me2, together with RNA Polymerase II (Pol-II) at the locus of HMGCS1 in hepatocytes, which were reduced by mycotoxin-exposure. Our results provide a deep insight into the cholesterol metabolism regulation during mycotoxin-induced liver injury, and propose NRs as therapeutic targets for anti-mycotoxin treatments.
Collapse
|
31
|
Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtane A, Almeer R, Alhoshani NM, Al-Johani NS, Alkahtani S, Aleya L. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144781. [PMID: 33444861 DOI: 10.1016/j.scitotenv.2020.144781] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Aflatoxins are a common food contaminant of global concern. Aflatoxin B1 (AFB1) intoxication is associated with serious health hazards. Recently, fucoidan (FUC) has gained much attention from pharmaceutical industry due to its promising therapeutic effects. The impacts of FUC on AFB1-induced liver and kidney injures have not been sufficiently addressed. This research was conducted to evaluate the ameliorative effect of FUC in AFB1-induced hepatorenal toxicity model in rats over 14 days. Five groups were assigned; control, FUC (200 mg/kg/day, orally), AFB1 (50 μg/kg, i.p.), and AFB1 plus a low or high dose of FUC. AFB1 induced marked hepatorenal injury elucidated by substantial alterations in biochemical tests and histological pictures. The oxidative distress instigated by AFB1 enhanced production of malondialdehyde (MDA) and nitric oxide (NO) along with reduction in the reduced-glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. DNA damage in the liver and kidney tissues has been demonstrated by overexpression of proliferating cell nuclear antigen (PCNA). Unambiguously, FUC consumption alleviates the AFB1-induced mitochondrial dysfunction, oxidative harm, and apoptosis. These ameliorated effects are proposed to be attributed to fucoidan's antioxidant and anti-apoptotic activities. Our results recommend FUC supplementation to food because it exerts both preventive and therapeutic effects against AFB1-induced toxicity.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt
| | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Abdelkader
- Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ameer Megahed
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah M Alhoshani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France
| |
Collapse
|
32
|
Saleh AE, Ul-Hassan Z, Zeidan R, Al-Shamary N, Al-Yafei T, Alnaimi H, Higazy NS, Migheli Q, Jaoua S. Biocontrol Activity of Bacillus megaterium BM344-1 against Toxigenic Fungi. ACS OMEGA 2021; 6:10984-10990. [PMID: 34056251 PMCID: PMC8153935 DOI: 10.1021/acsomega.1c00816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Mycotoxins are secondary metabolites of some fungal species and represent important contaminants of food and feed. This study aimed to explore the biological control activity of Bacillus megaterium BM344-1 volatile organic compounds (VOCs) on the growth and mycotoxin production of single representatives of the toxigenic species Aspergillus flavus, Aspergillus carbonarius, Penicillium verrucosum, and Fusarium verticillioides. In vitro co-incubation experiments indicated the P. verrucosum isolate as the most sensitive one, with a growth inhibition ratio of 66.7%, followed by A. flavus (29.4%) and F. verticillioides (18.2%). Exposure of A. flavus, P. verrucosum, and F. verticillioides to BM344-1 VOCs resulted in complete inhibition of aflatoxins (AFB1, AFG1, and AFG2), ochratoxin A, and fumonisin B1 (FB1) synthesis on artificial media, respectively. In vivo experiments on maize kernels showed 51% inhibition of fungal growth on ears simultaneously infected with A. flavus spores and exposed to BM344-1 volatiles. Likewise, AF synthesis by A. flavus was significantly (p < 0.05) inhibited (25.34 ± 6.72 μg/kg) by bacterial volatiles as compared to that in control maize ears (91.81 ± 29.10 μg/kg). Gas chromatography-tandem mass spectrometry-based analysis of headspace volatiles revealed hexadecanoic acid methyl ester (palmitic acid) and tetracosane as bioactive compounds in the BM344-1 volatilome. Bacterial volatiles have promising potential to control the growth and mycotoxin synthesis of toxigenic fungi and may present valuable aid in the efforts to warrant food and feed safety.
Collapse
Affiliation(s)
- Aya Ehab Saleh
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Zahoor Ul-Hassan
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Randa Zeidan
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Noora Al-Shamary
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Thoraya Al-Yafei
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Hajer Alnaimi
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Nayla Salah Higazy
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Quirico Migheli
- Dipartimento
di Agraria and Desertification Research Centre (NRD), Università degli Studi di Sassari, Viale Italia 39, Sassari I-07100, Italy
| | - Samir Jaoua
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| |
Collapse
|
33
|
Xu F, Li Y, Cao Z, Zhang J, Huang W. AFB 1-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112213. [PMID: 33838459 DOI: 10.1016/j.ecoenv.2021.112213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1 (AFB1) pollutes foodstuffs and feeds, causing a food safety problem and seriously endangering human and animal health. Liver is the principal organ for AFB1 accumulation and biotransformation, during which AFB1 can cause acute and chronic liver damage, however, the specific mechanism is not completely clear. Mitochondria are the primary organelle of cellular bio-oxidation, providing 95% energy for liver to execute its multiple functions. Therefore, we speculated that mitochondrial dysfunction is involved in AFB1-induced liver injury. To verify the hypothesis, a total of eighty healthy male mice were randomly divided into four groups on average, and exposed with 0, 0.375, 0.75 and 1.5 mg/kg body weight AFB1 by intragastric administration for 30 d. The results displayed that AFB1 triggered liver injury accompanied by oxidative stress. AFB1 exposure also damaged mitochondria structure, decreased mitochondrial membrane potential (MMP), as well as increased cytoplasmic cytochrome c (Cyt-c) protein expression, Bax, p53, Caspase-3/9 protein and/or mRNA expression levels and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine-5'-triphosphate (dUTP) nick end labeling (TUNEL) staining positive cells in mice liver. Meanwhile, AFB1 exposure elevated pyruvate content, inhibited tricarboxylic acid (TCA) cycle rate-limiting enzymes and electron transport chain (ETC) complexes I-V activities, disturbed ETC complexes I-V subunits mRNA expression levels and reduced adenosine triphosphate (ATP) level in mice liver. These results indicated that AFB1 destroyed mitochondrial structure, activated mitochondrion-dependent apoptosis and induced mitochondrial dysfunction. In addition, AFB1 disrupted mitochondrial biogenesis, presented as the abnormalities of protein and/or gene expression levels of voltage dependent anion channel protein 1 (VDAC1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (Nrf1) and mitochondrial transcription factor A (Tfam). This may contribute to hepatic and mitochondrial lesions induced by AFB1. These results provide a new perspective for elucidating the mechanisms of AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Feibo Xu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai 246003, Shandong, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Ke Q, Yang J, Liu H, Huang Z, Bu L, Jin D, Liu C. Dose- and time-effects responses of Nonylphenol on oxidative stress in rat through the Keap1-Nrf2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112185. [PMID: 33836420 DOI: 10.1016/j.ecoenv.2021.112185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is a representative environmental endocrine-disrupting compound that can induce oxidative stress in organisms. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway acts an important role in preventing oxidative stress. The aim of this study was to investigate the influence of oxidative stress caused by NP on Keap1-Nrf2 pathway in rats. Rats were treated with NP (30, 90, 270 mg/kg) for different exposure time (7, 14 and 28 days). The levels of reactive oxygen species (ROS) in serum and glutathione S-transferase (GST), UDP-Glucuronosyl Transferase (UGT) in liver were detected by ELISA kits. Western blot was used to detect Keap1, Nrf2 protein expression in liver and cerebral cortex. The results showed that 28 days of NP exposure significantly increased ROS levels in NPH group. And 14 days exposure to NP significantly enhanced the levels of GST and UGT, while 28 days of exposure showed a suppressive effect. In liver, Keap1 levels was upregulated at 7, 14 and 28 days of NP exposure, while nuclear Nrf2 levels decreased at 7 and 28 days but increased at 14 days. In cerebral cortex, Keap1 and Nrf2 expression increased at 14 days but decreased at 28 days. Besides, with the prolongation of NP exposure time, the GST and UGT levels in NPM and NPH groups were increased firstly and then decreased, while Keap1 and Nrf2 protein levels were constantly decreased in liver and cerebral cortex. In conclusion, the lower dose and shorter exposure time of NP activated the Keap1-Nrf2 pathway that may reduce the damage of oxidative stress, but when further exposed to NP at higher dose and time, the pathway could be inhibited.
Collapse
Affiliation(s)
- Qianhua Ke
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiao Yang
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Huan Liu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoquan Huang
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lingling Bu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dengpeng Jin
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chunhong Liu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021; 95:1521-1533. [PMID: 33554281 PMCID: PMC8113212 DOI: 10.1007/s00204-021-02995-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor participating in response to cellular oxidative stress to maintain the redox balance. Generation of reactive oxygen species (ROS) and, in consequence, oxidative stress, are physiological as well as pathological processes which take place in almost all types of cells. Nrf2, in response to oxidative stress, activates expression and production of antioxidant enzymes to remove free radicals. However, the role of Nrf2 seems to be more sophisticated and its increased expression observed in cancer cells allows to draw a conclusion that its role is tissue—and condition—dependent. Interestingly, Nrf2 might also play a crucial role in response to environmental factors like mycotoxins. Thus, the aim of the study is to review the role of Nrf2 in cells exposed to most common mycotoxins to check if the Nrf2 signaling pathway serves as the main response element to mycotoxin-induced oxidative stress in human and animal cells and if it can be a target of detoxifying agents.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
36
|
Li S, Liu R, Wei G, Guo G, Yu H, Zhang Y, Ishfaq M, Fazilani SA, Zhang X. Curcumin protects against Aflatoxin B1-induced liver injury in broilers via the modulation of long non-coding RNA expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111725. [PMID: 33396056 DOI: 10.1016/j.ecoenv.2020.111725] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic and carcinogenic agent. Curcumin possesses potential anti-inflammatory, anti-oxidative and hepatoprotective effects. However, the role of LncRNAs in the protective mechanisms of curcumin against AFB1-induced liver damage is still elusive. Experimental broilers were randomly divided into 1) control group, 2) AFB1 group (1 mg/kg feed), 3) cur + AFB1 group (1 mg/kg AFB1 plus 300 mg/kg curcumin diet) and 4) curcumin group (300 mg/kg curcumin diet). Liver transcriptome analyses and qPCR were performed to identify shifts in genes expression. In addition, histopathological assessment and oxidant status were determined. Dietary AFB1 caused hepatic morphological injury, significantly increased the production of ROS, decreased liver antioxidant enzymes activities and induced inflammation and apoptosis. However, dietary curcumin partially attenuated the abnormal morphological changes, oxidative stress, and apoptosis in liver tissues. Transcriptional profiling results showed that 34 LncRNAs and 717 mRNAs were differentially expressed with AFB1 and curcumin co-treatment in livers of broilers. Analysis of the LncRNA-mRNA network, GO and KEGG enrichment data suggested that oxidative stress, inflammation and apoptosis pathway were crucial in curcumin's alleviating AFB1-induced liver damage. In conclusion, curcumin prevented AFB1-induced oxidative stress, inflammation and apoptosis through LncRNAs. These results provide new insights for unveiling the protective mechanisms of curcumin against AFB1-induced liver damage.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Guifang Guo
- The Department of Chemical Drug Review, China Institute of Veterinary Drugs Control, Beijing 100081, PR China
| | - Hongxiao Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Saqib Ali Fazilani
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China; Department of Veterinary Pharmacology and Toxicology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Shaheed Benazir Abad, Sakrand 67210, Pakistan
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China.
| |
Collapse
|
37
|
Early Life Exposure to Aflatoxin B1 in Rats: Alterations in Lipids, Hormones, and DNA Methylation among the Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020589. [PMID: 33445757 PMCID: PMC7828191 DOI: 10.3390/ijerph18020589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/30/2023]
Abstract
Aflatoxins are toxic compounds produced by molds of the Aspergillus species that contaminate food primarily in tropical countries. The most toxic aflatoxin, aflatoxin B1 (AFB1), is a major cause of hepatocellular carcinoma (HCC) in these countries. In sub-Saharan Africa, aflatoxin contamination is common, and perinatal AFB1 exposure has been linked to the early onset of HCC. Epigenetic programming, including changes to DNA methylation, is one mechanism by which early life exposures can lead to adult disease. This study aims to elucidate whether perinatal AFB1 exposure alters markers of offspring health including weight, lipid, and hormone profiles as well as epigenetic regulation that may later influence cancer risk. Pregnant rats were exposed to two doses of AFB1 (low 0.5 and high 5 mg/kg) before conception, throughout pregnancy, and while weaning and compared to an unexposed group. Offspring from each group were followed to 3 weeks or 3 months of age, and their blood and liver samples were collected. Body weights and lipids were assessed at 3 weeks and 3 months while reproductive, gonadotropic, and thyroid hormones were assessed at 3 months. Prenatal AFB1 (high dose) exposure resulted in significant 16.3%, 31.6%, and 7.5% decreases in weight of the offspring at birth, 3 weeks, and 3 months, respectively. Both doses of exposure altered lipid and hormone profiles. Pyrosequencing was used to quantify percent DNA methylation at tumor suppressor gene Tp53 and growth-regulator H19 in DNA from liver and blood. Results were compared between the control and AFB1 exposure groups in 3-week liver samples and 3-week and 3-month blood samples. Relative to controls, Tp53 DNA methylation in both low- and high-dose exposed rats was significantly decreased in liver samples and increased in the blood (p < 0.05 in linear mixed models). H19 methylation was higher in the liver from low- and high-exposed rats and decreased in 3-month blood samples from the high exposure group (p < 0.05). Further research is warranted to determine whether such hormone, lipid, and epigenetic alterations from AFB1 exposure early in life play a role in the development of early-onset HCC.
Collapse
|
38
|
Yiannikouris A, Apajalahti J, Kettunen H, Ojanperä S, Bell ANW, Keegan JD, Moran CA. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins (Basel) 2021; 13:24. [PMID: 33401432 PMCID: PMC7824576 DOI: 10.3390/toxins13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, adsorption of the carcinogenic mycotoxin aflatoxin B1 (AFB1) by two sequestrants-a yeast cell wall-based adsorbent (YCW) and a hydrated sodium calcium aluminosilicate (HSCAS)-was studied across four laboratory models: (1) an in vitro model from a reference method was employed to quantify the sorption capabilities of both sequestrants under buffer conditions at two pH values using liquid chromatography with fluorescence detection (LC-FLD); (2) in a second in vitro model, the influence of the upper gastrointestinal environment on the mycotoxin sorption capacity of the same two sequestrants was studied using a chronic AFB1 level commonly encountered in the field (10 µg/L and in the presence of feed); (3) the third model used a novel ex vivo approach to measure the absorption of 3H-labelled AFB1 in the intestinal tissue and the ability of the sequestrants to offset this process; and (4) a second previously developed ex vivo model readapted to AFB1 was used to measure the transfer of 3H-labelled AFB1 through live intestinal tissue, and the influence of sequestrants on its bioavailability by means of an Ussing chamber system. Despite some sorption effects caused by the feed itself studied in the second model, both in vitro models established that the adsorption capacity of both YCW and HSCAS is promoted at a low acidic pH. Ex vivo Models 3 and 4 showed that the same tested material formed a protective barrier on the epithelial mucosa and that they significantly reduced the transfer of AFB1 through live intestinal tissue. The results indicate that, by reducing the transmembrane transfer rate and reducing over 60% of the concentration of free AFB1, both products are able to significantly limit the bioavailability of AFB1. Moreover, there were limited differences between YCW and HSCAS in their sorption capacities. The inclusion of YCW in the dietary ration could have a positive influence in reducing AFB1's physiological bioavailability.
Collapse
Affiliation(s)
- Alexandros Yiannikouris
- Chemistry and Toxicology Division, Center for Animal Nutrigenomic and Applied Animal Nutrition, Alltech Inc., 3031 Nicholasville, KY 40356, USA
| | - Juha Apajalahti
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Hannele Kettunen
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Suvi Ojanperä
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Andrew N. W. Bell
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Jason D. Keegan
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Colm A. Moran
- Alltech SARL (France), ZA La Papillionnière, Rue Charles Amand, 14500 Vire, France;
| |
Collapse
|
39
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
40
|
Adelani I, Ogadi E, Onuzulu C, Rotimi O, Maduagwu E, Rotimi S. Dietary vitamin D ameliorates hepatic oxidative stress and inflammatory effects of diethylnitrosamine in rats. Heliyon 2020; 6:e04842. [PMID: 32984584 PMCID: PMC7495049 DOI: 10.1016/j.heliyon.2020.e04842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
The generation of reactive oxygen species (ROS) plays an essential role in the pathogenesis of several diseases. Its implication in inflammation has suggested a possible link between oxidative stress and activation/release of cytokines in precancerous states. Recent observational studies have suggested an association between inflammation and vitamin D deficiency; hence, suggesting that vitamin D could play a role in the pathogenesis of diseases. This study examined the antioxidant and anti-inflammatory potentials of vitamin D in diethylnitrosamine (DEN)-induced oxidative stress and inflammation in rats. Rats were divided into four experimental groups. While groups one and two were administered twice weekly with 30 mg/kg body weight DEN for six weeks, groups three and four were given normal saline. Groups one and three were fed with vitamin D deficient diet, while groups two and four were fed vitamin D diet during the experiment. After that, biomarkers of oxidative stress status were assayed spectrophotometrically. The concentration of inflammatory cytokines was determined using enzyme-linked immunosorbent assay (ELISA). DEN-induced vitamin D deficient diet group had increased antioxidant enzymes' activities. Also, there were elevated concentrations of thiobarbituric acid reactive substances (TBARS) and inflammatory cytokines in the same group. Vitamin D diet, however, reduced oxidative stress effects through the reduction in the activities of TBARS and caused a significant (p < 0.05) increase in nitric oxide concentration. Vitamin D diet significantly (p < 0.05) reduced the level of interleukin 1β and TNF-α produced in the deficiency state. These findings show that vitamin D may play an essential role in the regulation of hepatic oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- I.B. Adelani
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - E.O. Ogadi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - C. Onuzulu
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - O.A. Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - E.N. Maduagwu
- Department of Biochemistry, Chrisland University, Abeokuta, Ogun State, Nigeria
| | - S.O. Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
41
|
Nassar AY, Mahgoub SA, Omar HEDM, Bakkar SM, Osman AA. Comparative ameliorative actions of extracted bradykinin potentiating fraction from cobra snake venom and synthetic antioxidants on hepatic tissue of aflatoxicosed rats. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1850459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmed Y. Nassar
- Biochemistry Department, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Safaa A. Mahgoub
- Chemistry Department, Faculty of Science, Assiut University, Cairo, Egypt
| | | | - Sally M. Bakkar
- Biochemistry Department, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Amany A. Osman
- Chemistry Department, Faculty of Science, Assiut University, Cairo, Egypt
| |
Collapse
|
42
|
Hassan AA, Abu Hafsa SH, Elghandour MMMY, Kanth Reddy PR, Monroy JC, Salem AZM. Dietary Supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B 1 in rabbits. Toxicon 2019; 171:35-42. [PMID: 31526810 DOI: 10.1016/j.toxicon.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
Abstract
Eighty-four male New Zealand White rabbits with average body weight 778 ± 65 g were blocked into four groups to evaluate the ability of sodium bentonite and coumarin in alleviating the toxicity of aflatoxin B1. The first group was fed on a diet without any treatment (CON), while the remaining three diets were added with aflatoxin B1 at 0.25 ppm diet. Diet fed to the third and fourth group of rabbits were further supplemented with sodium bentonite at 5 g/kg (SOB) and coumarin at 5 g/kg (COU) of the diet, respectively. Feeding aflatoxin-contaminated diet (AFL) caused necrosis of liver tissue and reduced the weight gain, average daily gain, feed conversion ratio, nutrient digestibility coefficients, and nitrogen balance of rabbits. This, in turn, was reflected as a reduction in carcass characteristics. The serum collected from rabbits fed aflatoxin-contaminated diet showed decreased levels of total protein, albumin, globulin, glucose, total cholesterol, and triglycerides, and increased concentrations of urea, creatinine, and liver enzymes. Further, aflatoxin diet increased the cecal pH, and decreased the ammonia nitrogen, total volatile fatty acids, and individual fatty acids proportion of cecal fluid. Supplementing sodium bentonite and coumarin at 5 g/kg diet reduced the negative effects of aflatoxin B1 on growth performance, digestibility of nutrients, biochemical parameters, carcass characteristics, and cecal fermentation profile. Furthermore, the coumarin-supplemented group showed better body weight gains and carcass weights compared to the rabbits fed with diets containing sodium bentonite. In conclusion, both sodium bentonite and coumarin supplementation was beneficial in ameliorating the toxicity of aflatoxin B1. Further, the increased body weight gains and better-feed conversion in coumarin-supplemented rabbits project the coumarin as a better anti-aflatoxigenic supplement.
Collapse
Affiliation(s)
- Ayman A Hassan
- Animal Production Research Institute, Ministry of Agriculture, Dokki, Gizza, Egypt
| | - Salma H Abu Hafsa
- Livestock Department, City of Scientific Research and Technological Applications, New Borg-Elarab, Alexandria, Egypt
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Mexico
| | - Poonooru Ravi Kanth Reddy
- Department of Livestock Farm Complex, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, 516 360, Andhra Pradesh, India
| | - Jose Cedillo Monroy
- Centro Universitario UAEM-Temascaltepec, Universidad Autónoma del Estado de México, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Mexico.
| |
Collapse
|