1
|
Meng K, Zhao Z, Gao Y, Wu K, Liu W, Wang X, Zheng Y, Zhao W, Wang B. The synergistic effects of anoikis-related genes and EMT-related genes in the prognostic prediction of Wilms tumor. Front Mol Biosci 2024; 11:1469775. [PMID: 39351154 PMCID: PMC11439783 DOI: 10.3389/fmolb.2024.1469775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Wilms tumor (WT) is the most common type of malignant abdominal tumor in children; it exhibits a high degree of malignancy, grow rapidly, and is prone to metastasis. This study aimed to construct a prognosis model based on anoikis-related genes (ARGs) and epithelial-mesenchymal transition (EMT)-related genes (ERGs) for WT patients; we assessed the characteristics of the tumor microenvironment and treatment efficacy, as well as identifying potential therapeutic targets. To this end, we downloaded transcriptome sequencing data and clinical data for WT and normal renal cortices and used R to construct and validate the prognostic model based on ARGs and ERGs. Additionally, we performed clinical feature analysis, nomogram construction, mutation analysis, drug sensitivity analysis, Connectivity Map (cMAP) analysis, functional enrichment analysis, and immune infiltration analysis. Finally, we screened the hub gene using the STRING database and validated it via experiments. In this way, we constructed a model with good accuracy and robustness, which was composed of seven anoikis- and EMT-related genes. Paclitaxel and mesna were selected as potential chemotherapeutic drugs and adjuvant chemotherapeutic drugs for the WT high-risk group by using the Genomics of Drug Sensitivity in Cancer (GDSC) and cMAP compound libraries, respectively. We proved the existence of a strong correlation between invasive immune cells and prognostic genes and risk scores. Next, we selected NTRK2 as the hub gene, and in vitro experiments confirmed that its inhibition can significantly inhibit the proliferation and migration of tumor cells and promote late apoptosis. In summary, we screened out the potential biomarkers and chemotherapeutic drugs that can improve the prognosis of patients with WT.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Zerui Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yaqing Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Keliang Wu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bei Wang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| |
Collapse
|
2
|
Hakami MA, Alotaibi BS, Hazazi A, Shafie A, Alsaiari AA, Ashour AA, Anjum F. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn 2024; 42:2965-2975. [PMID: 37184150 DOI: 10.1080/07391102.2023.2212786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Laschuk Herlinger A, Lovatto Michaelsen G, Sinigaglia M, Fratini L, Nogueira Debom G, Braganhol E, Brunetto de Farias C, Lunardi Brunetto A, Tesainer Brunetto A, da Cunha Jaeger M, Roesler R. Modulation of Viability, Proliferation, and Stemness by Rosmarinic Acid in Medulloblastoma Cells: Involvement of HDACs and EGFR. Neuromolecular Med 2023; 25:573-585. [PMID: 37740824 DOI: 10.1007/s12017-023-08758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 μM) and D283 (IC50 = 334 μM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.
Collapse
Affiliation(s)
- Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
| | - Gustavo Lovatto Michaelsen
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir Lunardi Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
4
|
Li Y, Wei C, Wang W, Li Q, Wang Z. Tropomyosin receptor kinase B (TrkB) signalling: targeted therapy in neurogenic tumours. J Pathol Clin Res 2022; 9:89-99. [PMID: 36533776 PMCID: PMC9896160 DOI: 10.1002/cjp2.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Tropomyosin receptor kinase B (TrkB), a transmembrane receptor protein, has been found to play a pivotal role in neural development. This protein is encoded by the neurotrophic receptor tyrosine kinase 2 (NTRK2) gene, and its abnormal activation caused by NTRK2 overexpression or fusion can contribute to tumour initiation, progression, and resistance to therapeutics in multiple types of neurogenic tumours. Targeted therapies for this mechanism have been designed and developed in preclinical and clinical studies, including selective TrkB inhibitors and pan-TRK inhibitors. This review describes the gene structure, biological function, abnormal TrkB activation mechanism, and current-related targeted therapies in neurogenic tumours.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Zhi‐Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| |
Collapse
|
5
|
Frappaz D, Barritault M. Reply to Roesler et al. concerning the MEVITEM trial. Neuro Oncol 2022; 24:1212. [PMID: 35552748 PMCID: PMC9248393 DOI: 10.1093/neuonc/noac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Roesler R, de Farias CB, Brunetto AT, Gregianin L, Jaeger M, Nör C, Thomaz A. Possible mechanisms and biomarkers of resistance to vismodegib in SHH medulloblastoma. Neuro Oncol 2022; 24:1210-1211. [PMID: 35552442 PMCID: PMC9248385 DOI: 10.1093/neuonc/noac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Children's Cancer Institute, Porto Alegre, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Children's Cancer Institute, Porto Alegre, Brazil
| | - Lauro Gregianin
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Children's Cancer Institute, Porto Alegre, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Si ck Children, Toronto, Ontario, Canada
| | - Amanda Thomaz
- Faculty of Health and Medicine, University of Lancaster, Lancaster, UK
| |
Collapse
|
7
|
Chen Z, Huang Z, Luo Y, Zou Q, Bai L, Tang G, Wang X, Cao G, Huang M, Xiang J, Yu H. Genome-wide analysis identifies critical DNA methylations within NTRKs genes in colorectal cancer. J Transl Med 2021; 19:73. [PMID: 33593392 PMCID: PMC7885252 DOI: 10.1186/s12967-021-02740-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Neurotrophic tropomyosin receptor kinases (NTRKs) are a gene family function as oncogene or tumor suppressor gene in distinct cancers. We aimed to investigate the methylation and expression profiles and prognostic value of NTRKs gene in colorectal cancer (CRC). Methods An analysis of DNA methylation and expression profiles in CRC patients was performed to explore the critical methylations within NTRKs genes. The methylation marker was validated in a retrospectively collected cohort of 229 CRC patients and tested in other tumor types from TCGA. DNA methylation status was determined by quantitative methylation-specific PCR (QMSP). Results The profiles in six CRC cohorts showed that NTRKs gene promoter was more frequently methylated in CRC compared to normal mucosa, which was associated with suppressed gene expression. We identified a specific methylated region within NTRK3 promoter targeted by cg27034819 and cg11525479 that best predicted survival outcome in CRC. NTRK3 promoter methylation showed independently predictive value for survival outcome in the validation cohort (P = 0.004, HR 2.688, 95% CI [1.355, 5.333]). Based on this, a nomogram predicting survival outcome was developed with a C-index of 0.705. Furthermore, the addition of NTRK3 promoter methylation improved the performance of currently-used prognostic model (AIC: 516.49 vs 513.91; LR: 39.06 vs 43.64, P = 0.032). Finally, NTRK3 promoter methylation also predicted survival in other tumors, including pancreatic cancer, glioblastoma and stomach adenocarcinoma. Conclusions This study highlights the essential value of NTRK3 methylation in prognostic evaluation and the potential to improve current prognostic models in CRC and other tumors.
Collapse
Affiliation(s)
- Zijian Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zenghong Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Bai
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guannan Tang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Xiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
TrkB-Targeted Therapy for Mucoepidermoid Carcinoma. Biomedicines 2020; 8:biomedicines8120531. [PMID: 33255325 PMCID: PMC7759804 DOI: 10.3390/biomedicines8120531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines. Interestingly, the spheroid forming capacity recovered, following the combination therapy, as compared to Cisplatin alone. Our studies allowed us to conclude that the TrkB inhibition, efficiently impaired MEC cell migration, invasion and survival in vitro, however, the decrease in CSC number, following the combined treatment of ANA-12 and Cisplatin, was less than that seen with Cisplatin alone; this represents a limiting factor.
Collapse
|
9
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
10
|
Pinheiro KV, Thomaz A, Souza BK, Metcalfe VA, Freire NH, Brunetto AT, de Farias CB, Jaeger M, Bambini V, Smith CGS, Shaw L, Roesler R. Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma. Mol Biol Rep 2020; 47:6817-6828. [PMID: 32862352 DOI: 10.1007/s11033-020-05739-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM.
Collapse
Affiliation(s)
- Kelly V Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA 4YG, UK
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victoria Anne Metcalfe
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victorio Bambini
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Christopher G S Smith
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Lisa Shaw
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
11
|
TrkB Inhibits the BMP Signaling-Mediated Growth Inhibition of Cancer Cells. Cancers (Basel) 2020; 12:cancers12082095. [PMID: 32731498 PMCID: PMC7464134 DOI: 10.3390/cancers12082095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
We have previously observed that tropomyosin receptor kinase B (TrkB) induces breast cancer metastasis by activating both the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) and phosphatidylinositol-3-Kinase (PI3K)/AKT signaling pathways and inhibiting runt-related transcription factor 3 (RUNX3) and kelch-like ECH-associated protein 1 (KEAP1). These studies indicated that TrkB expression is crucial to the pathogenesis of breast cancer. However, how TrkB regulates bone morphogenetic protein (BMP) signaling and tumor suppression is largely unknown. Herein, we report that TrkB is a key regulator of BMP-mediated tumor suppression. TrkB enhances the metastatic potential of cancer cells by promoting cell anchorage-independent growth, migration, and suppressing BMP-2-mediated growth inhibition. TrkB inhibits the BMP-mediated activation of SMAD family member 1 (SMAD1) by promoting the formation of the TrkB/BMP type II receptor complex and suppresses RUNX3 by depleting BMP receptor I (BMPRI) expression. In addition, the knockdown of TrkB restored the tumor-inhibitory effect of BMP-2 via the activation of SMAD1. Moreover, the TrkB kinase activity was required for its effect on BMP signaling. Our study identified a unique role of TrkB in the regulation of BMP-mediated growth inhibition and BMP-2-induced RUNX3 expression.
Collapse
|