1
|
Yang Y, Owusu FB, Wu H, Zhang X, Li R, Liu Z, Zhang S, Leng L, Wang Q. Mitochondria as therapeutic targets for Natural Products in the treatment of Cardiovascular Diseases. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119588. [PMID: 40057144 DOI: 10.1016/j.jep.2025.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products represent a unique medical approach to treating disease and have been used in clinical practice for thousands of years in cardiovascular disease (CVDs). In recent years, natural products have received increasing attention for their high efficiency, safety, and low toxicity, and their targeted regulation of mitochondria offers promising strategies for the treatment of CVDs. However, the potential mechanisms by which natural products target mitochondria for cardiovascular treatment have not been fully elucidated. AIM OF THE STUDY Literature from the past decade is reviewed to emphasize the therapeutic efficacy and potential mechanisms of natural products targeting mitochondria in the treatment of CVDs. MATERIALS AND METHODS In the NCBI PubMed database, relevant literature was searched using 'natural products', 'mitochondria' and 'cardiovascular disease' as search terms, and review papers were excluded. The remaining articles were screened for relevance. Priority was given to articles using rat models, in vivo, ex vivo or in vitro assays. The resulting articles were categorized into natural product categories, including saponins, alkaloids, plant extracts and preparations. This article reviews the research progress on mitochondria as potential therapeutic targets for CVDs and summarizes the application of mitochondria-targeted natural products in the treatment of CVDs. RESULTS Mitochondrial damage may be attributed to impairment of biogenesis (mitochondrial number and mitochondrial DNA damage), dynamics disruption (mitophagy inhibition and overpromotion, fusion and fission),disruption of optimal function including Adenosine triphosphate generation, Reactive oxygen species (ROS) production, fatty acid β oxidation, mitochondrial membrane permeability, calcium homeostasis imbalance, and membrane potential depolarization. Mitochondrial dysfunction or damage leads to cardiomyocyte dysfunction, ion disorders, cell death, and ultimately CVDs, such as myocardial infarction, heart failure, ischemia reperfusion, and diabetic heart disease. Natural products, which include flavonoids, saponins, phenolic acids, alkaloids, polysaccharides, extracts, and formulations, are seen to have significant clinical efficacy in the treatment of CVDs. Mechanistically, natural products regulate mitophagy, mitochondrial fusion and fission, while improving mitochondrial respiratory function, reducing ROS production, and inhibiting mitochondria-dependent apoptosis in cardiomyocytes, thereby protecting myocardial cells and heart function. CONCLUSIONS This paper reviews the potential and mechanism of natural products to regulate mitochondria for the treatment of CVDs, creating more opportunities for understanding their therapeutic targets and derivatization of lead compounds, and providing a scientific basis for advancing CVDs drug research.
Collapse
Affiliation(s)
- Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Zhanbiao Liu
- Laboratory Animal Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China; Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Zhou H, Chen J, Liu H, Li X, Zong H, Zhang S, Shi Y, Li Y. Traditional Chinese medicine injections with Tonifying Qi, equivalent effect of regulating energy metabolism, for acute myocardial infarction: a systematic review and meta-analysis of randomized clinical trials. Front Pharmacol 2025; 16:1511486. [PMID: 40223935 PMCID: PMC11985859 DOI: 10.3389/fphar.2025.1511486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background Traditional Chinese medicine injections for Tonifying Qi (TCMi-TQs), which exhibits comparable effect of regulating energy metabolism, is commonly used as an adjuvant treatment for acute myocardial infarction (AMI) in China. Objective A systematic review and meta-analysis was conducted to contrast the effectiveness and safety of four TCMi-TQs in AMI. Methods Eight Databases were thoroughly searched before 31 July 2024, for randomized controlled trials (RCTs) focusing on the application of TCMi-TQs combined with conventional treatments (CT) to treat AMI. The primary outcomes were in-hospital mortality and long-term mortality. Secondary outcomes included malignant arrhythmia, left ventricular ejection fraction (LVEF), and adverse events. Stata17.0 and RevMan 5.4.1 software were employed for meta-analysis. The quality of evidence was evaluated using the GRADE approach. Results A total of 113 RCTs involving 10,779 patients were included in the analysis, none of which described in-dependent testing of the purity or potency of the TCMi-TQ product used. 51/113 reported random sequence generation. All RCTs lack adequate description of allocation concealment. 112/113 failed to assess blinding. The meta-analysis results demonstrated that the combined application of TCMi-TQ + CT, compared with CT, significantly reduced in-hospital mortality in AMI patients [RR = 0.58, 95% CI (0.51, 0.67), P < 0.05], decreased the incidence of malignant arrhythmia [RR = 0.51, 95%CI(0.42, 0.63), P < 0.05], increased LVEF [MD = 6.52, 95%CI(5.54, 7.50), P < 0.05], and decreased the incidence of adverse events [RR = 0.70, 95%CI(0.60, 0.81), P < 0.05]. The GRADE evidence quality classification indicated that the evidence for in-hospital mortality, malignant arrhythmia, and adverse events was of moderate quality, while the evidence for LVEF was of low quality. Conclusion TCMi-TQ demonstrates additional clinical value in reducing mortality, the risk of malignant arrhythmia, and adverse events in patients with AMI. However, further validation of these findings is warranted through high-quality clinical trials due to methodological weaknesses in randomization, blinding, allocation concealment, and insufficient assessment of the purity/potency of botanical drugs and the quantity of active metabolites. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024573818, identifier PROSPERO (CRD42024573818).
Collapse
Affiliation(s)
- Huiwen Zhou
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaping Chen
- Department of Cardiology, Linping Branch of Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongxu Liu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Cardiology, Lhasa People’s Hospital, Lhasa, China
| | - Huiqi Zong
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shuwen Zhang
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuxin Shi
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yunze Li
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Pan D, Chen P, Zhang H, Zhao Q, Fang W, Ji S, Chen T. Mitochondrial quality control: A promising target of traditional Chinese medicine in the treatment of cardiovascular disease. Pharmacol Res 2025; 215:107712. [PMID: 40154932 DOI: 10.1016/j.phrs.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular disease remains the leading cause of death globally, and drugs for new targets are urgently needed. Mitochondria are the primary sources of cellular energy, play crucial roles in regulating cellular homeostasis, and are tightly associated with pathological processes in cardiovascular disease. In response to physiological signals and external stimuli in cardiovascular disease, mitochondrial quality control, which mainly includes mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, is initiated to meet cellular requirements and maintain cellular homeostasis. Traditional Chinese Medicine (TCM) has been shown to have pharmacological effects on alleviating cardiac injury in various cardiovascular diseases, including myocardial ischemia/reperfusion, myocardial infarction, and heart failure, by regulating mitochondrial quality control. Recently, several molecular mechanisms of TCM in the treatment of cardiovascular disease have been elucidated. However, mitochondrial quality control by TCM for treating cardiovascular disease has not been investigated. In this review, we aim to decipher the pharmacological effects and molecular mechanisms of TCM in regulating mitochondrial quality in various cardiovascular diseases. We also present our perspectives regarding future research in this field.
Collapse
Affiliation(s)
- Deng Pan
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wei Fang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Siyan Ji
- Stomatology Department of Qiqihar Medical College School, Heilongjiang, China
| | - Tielong Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Wang SY, Li MM, Wang L, Pan J, Sun Y, Wu JT, Naseem A, Jiang YK, Kuang HX, Yang BY, Liu Y. Schisandra chinensis (Turcz.) Baill neutral polysaccharides alleviate Parkinson's disease via effectively activating MCL-1 expression regulation of autophagy signaling. Int J Biol Macromol 2024; 279:134952. [PMID: 39197630 DOI: 10.1016/j.ijbiomac.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.
Collapse
Affiliation(s)
- Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Juan Pan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Ye Sun
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Jia-Tong Wu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China.
| |
Collapse
|
5
|
Chen C, Hu S, Hu HJ, Liu ZX, Wu XT, Zou T, Su H. Dronedarone Attenuates Ang II-Induced Myocardial Hypertrophy Through Regulating SIRT1/FOXO3/PKIA Axis. Korean Circ J 2024; 54:172-186. [PMID: 38654563 PMCID: PMC11040268 DOI: 10.4070/kcj.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Long-term pathological myocardial hypertrophy (MH) seriously affects the normal function of the heart. Dronedarone was reported to attenuate left ventricular hypertrophy of mice. However, the molecular regulatory mechanism of dronedarone in MH is unclear. METHODS Angiotensin II (Ang II) was used to induce cell hypertrophy of H9C2 cells. Transverse aortic constriction (TAC) surgery was performed to establish a rat model of MH. Cell size was evaluated using crystal violet staining and rhodamine phalloidin staining. Reverse transcription quantitative polymerase chain reaction and western blot were performed to detect the mRNA and protein expressions of genes. JASPAR and luciferase activity were conducted to predict and validate interaction between forkhead box O3 (FOXO3) and protein kinase inhibitor alpha (PKIA) promoter. RESULTS Ang II treatment induced cell hypertrophy and inhibited sirtuin 1 (SIRT1) expression, which were reversed by dronedarone. SIRT1 overexpression or PKIA overexpression enhanced dronedarone-mediated suppression of cell hypertrophy in Ang II-induced H9C2 cells. Mechanistically, SIRT1 elevated FOXO3 expression through SIRT1-mediated deacetylation of FOXO3 and FOXO3 upregulated PKIA expression through interacting with PKIA promoter. Moreover, SIRT1 silencing compromised dronedarone-mediated suppression of cell hypertrophy, while PKIA upregulation abolished the influences of SIRT1 silencing. More importantly, dronedarone improved TAC surgery-induced MH and impairment of cardiac function of rats via affecting SIRT1/FOXO3/PKIA axis. CONCLUSIONS Dronedarone alleviated MH through mediating SIRT1/FOXO3/PKIA axis, which provide more evidences for dronedarone against MH.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Song Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Xuan Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin-Teng Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hua Su
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
6
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhou P, Gao G, Zhao CC, Li JY, Peng JF, Wang SS, Song R, Shi H, Wang L. In vivo and in vitro protective effects of shengmai injection against doxorubicin-induced cardiotoxicity. PHARMACEUTICAL BIOLOGY 2022; 60:638-651. [PMID: 35298357 PMCID: PMC8933025 DOI: 10.1080/13880209.2022.2046801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Shengmai injection (SMI) has been used to treat heart failure. OBJECTIVE This study determines the molecular mechanisms of SMI against cardiotoxicity caused by doxorubicin (DOX). MATERIALS AND METHODS In vivo, DOX (15 mg/kg) was intraperitoneally injected in model, Dex (dexrazoxane), SMI-L (2.7 mL/kg), SMI-M (5.4 mL/kg), and SMI-H (10.8 mL/kg) for 7 consecutive days. Hematoxylin-eosin (HE) and Masson staining were used to evaluate histological changes, and cardiomyocyte apoptosis was identified using TdT-mediated dUTP nick-end labelling (TUNEL). Enzymatic indexes were determined. mRNA and protein expressions were analysed through RT-qPCR and Western blotting. In vitro, H9c2 cells were divided into control group, model group (2 mL 1 μM DOX), SMI group, ML385 group, and SMI + ML385 group, the intervention lasted for 24 h. mRNA and protein expressions were analysed. RESULTS SMI markedly improved cardiac pathology, decreased cardiomyocyte apoptosis, increased creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), decreased superoxide dismutase (SOD). Compared with the model group, the protein expression of nuclear factor erythroid2-related factor 2 (Nrf2) (SMI-L: 2.42-fold, SMI-M: 2.67-fold, SMI-H: 3.07-fold) and haem oxygenase-1(HO-1) (SMI-L: 1.64-fold, SMI-M: 2.01-fold, SMI-H: 2.19-fold) was increased and the protein expression of kelch-like ECH-associated protein 1 (Keap1) (SMI-L: 0.90-fold, SMI-M: 0.77-fold, SMI-H: 0.66-fold) was decreased in SMI groups and Dex group in vivo. Additionally, SMI dramatically inhibited apoptosis, decreased CK, LDH and MDA levels, and enhanced SOD activity. Our results demonstrated that SMI reduced DOX-induced cardiotoxicity via activation of the Nrf2/Keap1 signalling pathway. CONCLUSIONS This study revealed a new mechanism by which SMI alleviates DOX-induced 45 cardiomyopathy by modulating the Nrf2/Keap1 signal pathway.
Collapse
Affiliation(s)
- Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ge Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chun-chun Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-ya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-fei Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shu-shu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Shi
- Nursing School, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
9
|
Protective Effect of Shengmaiyin in Myocardial Hypertrophy-Induced Rats: A Genomic Analysis by 16S rDNA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3188292. [PMID: 36118100 PMCID: PMC9473885 DOI: 10.1155/2022/3188292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Background The gut-cardiac axis theory provides new insights into the complex mechanisms of cardiac hypertrophy and provides new therapeutic targets. Cardiac hypertrophy is a risk factor for heart failure. Shengmaiyin (SMY) is a traditional Chinese medicine formula with clear effects in the treatment and prevention of cardiac hypertrophy, but the mechanism by which it improves cardiac hypertrophy is still unclear. Therefore, this study aimed to investigate the protective effect and mechanism of SMY on isoproterenol (ISO)-induced myocardial hypertrophy in rats. Methods First, various pharmacodynamic methods were used to evaluate the therapeutic effect of SMY on ISO-induced myocardial hypertrophy in rats. Then, 16S rDNA amplicon sequencing technology was used to study the effect of SMY on the intestinal flora of rats with myocardial hypertrophy. Finally, the mechanism underlying the effect of SMY on cardiac hypertrophy was predicted by bioinformatics network analysis and verified by Western blotting. Results SMY increased ejection fraction (EF%) and left ventricular fractional shortening (FS%), ameliorated myocardial cell injury and fibrosis, regulated blood lipids and energy metabolism, and decreased cardiac hypertrophy marker gene expression. The gut microbiota of ISO-induced myocardial hypertrophy rats were significantly changed, while SMY effectively ameliorated the dysbiosis of the intestinal flora in rats with myocardial hypertrophy, especially Prevotella 9, Lactobacillus, and Clostridium. Mechanistic studies have shown that the anticardiac hypertrophy effect of SMY is related to the inhibition of the expression of HIF1α/PPAR signalling pathway-related proteins. Conclusion SMY significantly improves cardiac function, relieves myocardial cell fibrosis and necrosis, resists cardiac hypertrophy, improves blood lipid metabolism and energy metabolism, regulates intestinal microbial disturbance, and protects the heart.
Collapse
|
10
|
Mitochondria-Endoplasmic Reticulum Contacts: The Promising Regulators in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2531458. [PMID: 35450404 PMCID: PMC9017569 DOI: 10.1155/2022/2531458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
Abstract
Diabetic cardiomyopathy (DCM), as a serious complication of diabetes, causes structural and functional abnormalities of the heart and eventually progresses to heart failure. Currently, there is no specific treatment for DCM. Studies have proved that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are key factors for the development and progression of DCM. The mitochondria-associated ER membranes (MAMs) are a unique domain formed by physical contacts between mitochondria and ER and mediate organelle communication. Under high glucose conditions, changes in the distance and composition of MAMs lead to abnormal intracellular signal transduction, which will affect the physiological function of MAMs, such as alter the Ca2+ homeostasis in cardiomyocytes, and lead to mitochondrial dysfunction and abnormal apoptosis. Therefore, the dysfunction of MAMs is closely related to the pathogenesis of DCM. In this review, we summarized the evidence for the role of MAMs in DCM and described that MAMs participated directly or indirectly in the regulation of the pathophysiological process of DCM via the regulation of Ca2+ signaling, mitochondrial dynamics, ER stress, autophagy, and inflammation. Finally, we discussed the clinical transformation prospects and technical limitations of MAMs-associated proteins (such as MFN2, FUNDC1, and GSK3β) as potential therapeutic targets for DCM.
Collapse
|
11
|
Qu S, Deng S, Yang T, Yang Y, Zhang Y, Zheng Z, Chen L, Li Y. Shengmai Yin alleviated plaque vulnerability and ischemic myocardial damage in diesel exhaust particle-aggravated atherosclerosis with myocardial ischemia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113379. [PMID: 35278994 DOI: 10.1016/j.ecoenv.2022.113379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure to diesel exhaust particles (DEP) increases the risk of ischemic heart disease, especially heart attacks and ischemic/thrombotic strokes. Shengmai Yin (SMY) is a traditional Chinese medicine used to treat coronary heart disease. The aim of this study was to determine the protective role of SMY and the mechanism by which SMY affects DEP-induced cardiovascular injury. This study is expected to provide the basis for the development of an adaptive signature of SMY in the prevention of atherosclerotic cardiovascular disease and premature death from global air pollution exposure. We developed animal models of myocardial ischemia and atherosclerosis (AS) in response to DEP exposure. After SMY treatment, serum lipids returned to normal. Aortic plaque area and MMP9 expression were significantly reduced and collagen fiber expression increased after SMY treatment compared to DEP exposure alone. Thus, the risk of plaque formation and vulnerability is reduced. In addition, SMY improved left ventricular structure, morphology, function, blood flow, infarct area, myocardial damage, and ROS accumulation to varying degrees in ApoE-/- mice. These results indicate that the use of SMY is effective, to varying degrees, for the treatment of dyslipidemia, atherosclerosis, myocardial ischemia, and oxidative stress in ApoE-/- mice. SMY has a potential protective effect in DEP-aggravated AS in people with myocardial ischemia.
Collapse
Affiliation(s)
- Shuiqing Qu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuoqiu Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanmin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Wang C, Liu AL, Wu HZ, Yang YF. Prediction the Molecular Mechanism of Shengmai Injection in Acute Treatment of COVID-19 Based on Network Pharmacology. Nat Prod Commun 2022; 17:1934578X221075075. [PMID: 35136386 PMCID: PMC8814618 DOI: 10.1177/1934578x221075075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Objective: To predict the mechanism of Shengmai Injection (SMI) in the acute treatment of COVID-19 by network pharmacology and molecular docking. Methods: Search the compounds in the Traditional Chinese Medicine Systems Pharmacology (TCMSP), and screen them by Drug-like properties (DL) and Oral bioavailability (OB); Using PharmMapper database and GeneCards database to collect compounds targets and COVID-19 targets, and using UniProt database to standardize the names of target genes; Using DAVID database for KEGG pathway annotation and GO bioinformatics analysis; Using Cytoscape 3.8.2 software and STRING 10.5 database to construct “Component-Target-Pathway” network and Protein-Protein Interaction network (PPI); Using molecular docking to predict the binding ability of key compounds and key proteins. Results: A total of 34 active components, 38 core targets and 180 signaling pathways were screened out. The results of molecular docking showed that Schisantherin A and Moupinamide have strong binding with EGFR and MAPK1. Conclusion: The key active compounds of SMI in the treatment of COVID-19 may be Schisantherin A and Moupinamide, and the molecular mechanism may be related to key targets such as EGFR and MAPK1, and may be involved in the PI3K-Akt signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Chen Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - Ao-lei Liu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - He-zhen Wu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| | - Yan-fang Yang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei
Province, Wuhan, 430065, China
| |
Collapse
|
13
|
Wang S, Gan J, Li J, Wang Y, Zhang J, Song L, Yang Z, Guo M, Jiang X. Shengmai Yin formula exerts cardioprotective effects on rats with chronic heart failure via regulating Linoleic Acid metabolism. Prostaglandins Other Lipid Mediat 2021; 158:106608. [PMID: 34958945 DOI: 10.1016/j.prostaglandins.2021.106608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The objective of this study was to investigate the protective effects of Shengmai Yin(SMY) on rats with chronic heart failure(CHF).Sprague-Dawley rats were used to establish a CHF animal model via ligation of the left anterior descending branch of the coronary artery and exhaustive swimming.Echocardiography, serum biochemical indicators and histopathology were used to evaluate the pharmacodynamics of SMY in CHF rats.UPLC-Q-TOF/MS analysis based on serum was performed to identify the potential metabolites in the pathological process of CHF. Metabolic pathway analysis was carried out to elucidate the metabolic network associated with SMY treatment of CHF.Moreover,quantitative real-time PCR (qRT-PCR), Western blotting (WB), and Enzyme-linked immunosorbent assay (ELISA) were used to measure the RNA and protein expression levels in related pathways. Results revealed that SMY significantly restored the cardiac function of CHF rats, reduced the serum biochemical indicators, and alleviated cardiac histological damage. Metabolomics analysis shows that the therapeutic effect of SMY for CHF involves 14 biomarkers and 8 metabolic pathways, especially linoleic acid pathway, to be influenced, which implied the potential mechanism of SMY in treating CHF. Two key indicators Lipoxygenase arachidonic acid 15 lipoxygenase (ALOX15) and Cytochrome P450 1A2(CYP1A2) of linoleic acid metabolism pathway were verified by RT-PCR, WB and ELISA. Verification result showed that compared with the model group, expression levels of ALOX15 and CYP1A2 in SMY group were lower. In conclusion, SMY has cardioprotective effect on chronic heart failure rats, and its mechanism may be related to linoleic acid metabolism pathway.
Collapse
Affiliation(s)
- Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jingfang Li
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lili Song
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhen Yang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
Liu W, Qaed E, Zhu HG, Dong MX, Tang Z. Non-energy mechanism of phosphocreatine on the protection of cell survival. Biomed Pharmacother 2021; 141:111839. [PMID: 34174505 DOI: 10.1016/j.biopha.2021.111839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9, and eventually, effectively prevent LPS-induced apoptosis of cells. Understandably, PCr prevents the apoptosis caused by abnormal mitochondrial energy metabolism and has a protective role in a non-energy manner. Moreover, recent studies have shown that PCr protects cell survival through PI3K/Akt/eNOS, MAPK pathway, and inhibition of Ang II-induced NF-κB activation. Furthermore, PCr antagonizes oxidative stress through the activation of PI3K/Akt/GSK3b intracellular pathway, PI3K/AKT-PGC1α signaling pathway, while through the promotion of SIRT3 expression to maintain normal cell metabolism. Interestingly, PCr results in delaying the time to enter pathological metabolism through the delayed activation of AMPK pathway, which is different from previous studies, now we propose the hypothesis that the "miRNA-JAK2/STAT3 -CypD pathway" may take part in protecting cells from apoptosis, PCr may be further be involved in the dynamic relationship between CypD and STAT3. Furthermore, we believe that PCr and CypD would be the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.
Collapse
Affiliation(s)
- Wu Liu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Han Guo Zhu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Ma Xiao Dong
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - ZeYao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China.
| |
Collapse
|
15
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
16
|
Zhang X, Zhang J, Ji X, Wei Z, Ding B, Liu G, Lv X, Zheng Y, Zhan S. A Quantitative Serum Proteomic Analysis Helps to Explore the Comprehensive Mechanism and Identify Serum Biomarkers of Shengmai Injection's Effect on Isoproterenol-Induced Myocardial Ischemia in Rats. Front Pharmacol 2021; 12:666429. [PMID: 33995093 PMCID: PMC8113823 DOI: 10.3389/fphar.2021.666429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Shengmai injection (SMI), a traditional Chinese medicine formula with the nature of multicomponent and multi-target, has been widely used in clinic for treating cardiovascular diseases in China; however, its comprehensive mechanism of action remains unclear. In this study, a TMT-based quantitative serum proteomics was performed to explore SMI's global mechanism and help identify serum biomarkers of its effect on isoproterenol (ISO)-induced myocardial ischemia rats. The results of TMT-based proteomic analysis identified 227, 100, and 228 differentially expressed proteins (DEPs) for the model compared to the control group, SMI pretreatment + model compared to the model group, and SMI pretreatment + model compared to the control group, respectively. Based on bioinformatics analyses of gene ontology (GO), KEGG pathways, and the protein-protein interaction (PPI) networks for the DEPs, it is concluded that the comprehensive mechanism of SMI's effect on ISO-induced myocardial ischemia injury includes regulation of energy metabolism, reducing endothelial cell permeability, regulation of vessel and cardiac contractility, anti-inflammation, and prevention of cell apoptosis. Furthermore, 10 common DEPs were found, and six of them were regulated in model vs. control group, while back-regulated in SMI pretreatment + model vs. model group. Among them, three functional proteins of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Fas apoptotic inhibitory molecule 3 (FAIM3), and uncharacterized protein (M0R5J4), which were verified by the PRM analysis, might be the potential serum biomarkers on SMI's effects. Overall, this serum proteomics of SMI not only provides insights into the comprehensive mechanism underlying SMI's effects on ischemic heart disease but also helps identify serum biomarkers for directing SMI's cardioprotective effects.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Science and Education, the First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jie Zhang
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiangyu Ji
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Zhenzhen Wei
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Baoyue Ding
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Guoqiang Liu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaoqing Lv
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yongxia Zheng
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shuyu Zhan
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
17
|
肖 珊, 马 郁, 李 婧, 张 彦, 何 泓, 方 春, 王 万. [Angiotensin Ⅱ inhibits AMPK/SIRT1 pathway by inducing oxidative stress in RAW264.7 macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:384-390. [PMID: 33849829 PMCID: PMC8075794 DOI: 10.12122/j.issn.1673-4254.2021.03.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism by which angiotensin Ⅱ-induced oxidative stress response inhibits AMPK/ SIRT1 signaling in RAW264.7 macrophages. OBJECTIVE RAW264.7 cells were treated with 0.5, 1, 3, 10, or 20 μmol/L angiotensin Ⅱ for 24 h, and the changes in the expressions of AMPK, p-AMPK, and SIRT1 proteins were detected using Western blotting. The intracellular ROS release level was measured and the levels of SOD and MDA were detected. The effects of angiotensin Ⅱ type 1 receptor (AT1R) gene silencing on the cell response to angiotensin Ⅱ treatment were examined by detecting the changes in AMPK, p-AMPK and SIRT1 protein levels. The effects of a ROS inhibitor on cellular AMPK and SIRT1 were also examined. OBJECTIVE Angiotensin Ⅱ stimulation at 20 μmol/L significantly inhibited the phosphorylation of AMPK protein and increased cellular ROS release (P < 0.05). Treatment with 0.5-10 μmol/L angiotensin Ⅱ did not cause significant changes in SOD activity or MDA expression, but angiotensin Ⅱ at the dose of 20 μmol/L significantly inhibited SOD activity in the cells (P < 0.05). In the macrophages with AT1R gene silencing, treatment with angiotensin Ⅱ did not obviously inhibit AMPK phosphorylation or down- regulate SIRT1 expression. In cells treated with the ROS inhibitor, angiotensin Ⅱ failed to lower the level of AMPK phosphorylation or the expression of SIRT1. OBJECTIVE Angiotensin Ⅱ induces oxidative stress to cause disturbance of AMPK/ SIRT1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- 珊 肖
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 郁文 马
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 婧 李
- 广 州中医药大学中药学院,广东 广州 511400School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - 彦红 张
- 广州市第一人民医院中医科,广东 广州 511400Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, Guangzhou 511400, China
| | - 泓 何
- 广州医科大学第三附属医院妇产科,广东 广 州 511400Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - 春香 方
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 万铭 王
- 长江航运总医院,湖北 武汉 430000General Hospital of the Yangtze River Shipping, Wuhan 430000, China
- 武汉脑科医院,湖北 武汉 430000Wuhan Brain Hospital, Wuhan 430000, China
| |
Collapse
|
18
|
Meng XW, He CX, Chen X, Yang XS, Liu C. The extract of Gnaphalium affine D. Don protects against H 2O 2-induced apoptosis by targeting PI3K/AKT/GSK-3β signaling pathway in cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113579. [PMID: 33189844 DOI: 10.1016/j.jep.2020.113579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gnaphalium affine D. Don is an important Traditional Chinese herbal Medicine (TCM) used to treat hyperuricemia, asthma, rheumatic arthritis, antitussive, expectorant and cardiovascular in folk medicine because of anti-inflammatory and anti-oxidant activity. The aim of this study was to investigate the potential beneficial effect of G. affine extract (GAE) on hydrogen peroxide (H2O2)-induced apoptosis and explore the possible underlying mechanism in cardiomyocyte. MATERIALS AND METHODS The ingredients of GAE were isolated and tentatively identified by HPLC-ESI-Q-Qribatrip-MS/MS. The cardioprotective and anti-oxidant effects of GAE were evaluated in the experimental model with H2O2 induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 3 h with or without GAE or with GAE plus PX866 (PI3K inhibitor), then exposed to H2O2 for 6 h, H9c2 cells viability were detected by CCK8 kit, the content of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and intracellular superoxide dismutase (SOD) activity were measured by the commercial biochemical kits, western blotting, immunohistochemical (IHC), immunofluorescence (IF) and reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to evaluate the proteins and mRNA expression, propidium iodide (PI) staining was adopted to indicate H9c2 cells apoptosis. RESULTS Firstly, seventeen polyphenols and flavonoids compounds with the characteristics of anti-inflammatory and anti-oxidant in GAE were tentatively identified by HPLC-ESI-Q-Qribatrip-MS/MS. In the experimental model, GAE not only significantly improved cells viability, but also showed anti-oxidant effects through improving SOD activity, up-regulating nuclear factor E2-related factor 2 (Nrf2), and decreasing intracellular concentration of ROS and MDA and the proteins expression of p47phox, p67phox and gp91phox. On the other hand, GAE revealed anti-apoptotic effect through up-regulating the expression of B-cell lymphoma-2 (Bcl-2), down-regulating Bcl2-associated X (BAX) and cleaved-caspase 3. Furthermore, GAE significantly facilitated phosphorylation of AKT and glycogen synthase kinase-3 beta (GSK-3β) but not AMPK, while the effects were blocked by PX866 (PI3K inhibitor). CONCLUSIONS Our data suggested that GAE showed strong anti-oxidant effect to ameliorate oxidative stress and attenuate apoptosis induced by H2O2 in H9c2 cells by targeting PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xiang-Wen Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Can-Xia He
- Institute of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiao Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xiao-Song Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
19
|
Lou T, Ma J, Xie Y, Yao G, Fan Y, Ma S, Zou X. Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway. Biomed Pharmacother 2021; 135:111188. [PMID: 33418304 DOI: 10.1016/j.biopha.2020.111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oxidative stress and apoptosis play critical roles in the pathogenesis of heart failure (HF).Nuanxin capsule (NX) is a Chinese medicine that has outstanding protective effects on HF. The present study aimed to elucidate whether NX could protect HF against oxidative stress-induced apoptosis through intrinsic mitochondrial pathway. METHODS In vivo, HF was induced by transverse aortic constriction. NX and Compound C (Comp C) were administered to C57BL/6 J mice for over a 4-week period. Cardiac function was assessed with echocardiography. In vitro, H9c2 cells were exposed to H2O2 in the presence or absence of NX and Compound C. Cell viability, cytotoxicity, reactive oxygen species (ROS) production, apoptosis, mitochondrial membrane potential (ΔΨm) and mitochondrial function by oxygen consumption rate (OCR) were detected. The expressions of cytochrome c, BAX, Bcl-2, cleaved caspase-3, AMPK and JNK were evaluated by western blotting. RESULTS The results indicated that NX significantly improved cardiac function and enhanced the cell viability, ΔΨm and mitochondrial respiration. Also NX treatment reduced cell cytotoxicity and ROS production. Moreover, NX inhibited mitochondrial-mediated apoptosis by upregulating AMPK and downregulating JNK both in vivo and in vitro. The protective effects of NX on cardiac function by reducing oxidative stress-induced mitochondrial dependent apoptosis were reversed by Compound C treatment. CONCLUSIONS These findings demonstrated that NX effectively improved cardiac function in TAC mice by reducing oxidative stress-induced mitochondrial dependent apoptosis by activating AMPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Lou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Yanzheng Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Gengzhen Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Fan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China.
| | - Xu Zou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China; Dongguan Kanghua Hospital, Dongguan, 523080, China.
| |
Collapse
|