1
|
Skulratanasak P, Luxsananun T, Larpparisuth N, Premasathian N, Vongwiwatana A. Variations in de novo donor-specific antibody development among HLA-DQ mismatches in kidney transplant recipients. PLoS One 2025; 20:e0321629. [PMID: 40233060 PMCID: PMC11999115 DOI: 10.1371/journal.pone.0321629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND HLA-DQ antibodies are the most prevalent de novo donor-specific antibodies (dnDSAs) after kidney transplantation (KT). The immunogenicity and impact of each HLA-DQ mismatch on graft outcomes can vary considerably. METHODS This retrospective cohort study investigated the prevalence and risk factors for dnDSA development in patients who underwent KT at Siriraj Hospital between 2006 and 2020 and had HLA-DQB1 mismatches. Our center employed a protocol for post-KT dnDSA surveillance. The impact of dnDSAs on late rejection and graft survival was evaluated. RESULTS In our cohort of 491 KT recipients, 59 (12.02%) developed dnDSAs to HLA-DQB1 at a median time of 4.2 years after KT. The risk of dnDSA occurrence was significantly higher among recipients with HLA-DQ7 mismatch (HR: 2.8; 95% CI: 1.21-6.52; P = 0.017) and HLA-DQ9 mismatch (HR: 2.63; 95% CI: 1.11-6.27; P = 0.028). Recipients who developed dnDSAs were younger (P = 0.009), had higher rates of medication nonadherence (P = 0.031), had pre-KT panel reactive antibody levels above 20% (P = 0.044), and received non-tacrolimus immunosuppression (P < 0.001) compared to those without. Recipients who developed dnDSAs to HLA-DQ exhibited a significantly higher incidence of late graft rejection (HR: 7.76; 95% CI: 5-12.03; P < 0.0001) and inferior death-censored graft survival than those without dnDSAs (log rank P < 0.001). CONCLUSION The patients with HLA-DQ7 and HLA-DQ9 mismatches exhibit the highest risk of developing dnDSAs. Individualized immunosuppression adjustment and kidney allocation based on specific HLA-DQ mismatch may enhance long-term graft survival.
Collapse
Affiliation(s)
- Peenida Skulratanasak
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarat Luxsananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttasith Larpparisuth
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nalinee Premasathian
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Ahmed AF, Mohamed Noor DA, Sabbah MA, Musa NF, Athirah Daud NA. Pharmacogenomics predictors of aromatic antiepileptic drugs-induced SCARs in the Iraqi patients. Heliyon 2025; 11:e41108. [PMID: 39811327 PMCID: PMC11732454 DOI: 10.1016/j.heliyon.2024.e41108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Severe cutaneous adverse reactions (SCARs) are life-threatening and often linked to antiepileptic drugs (AEDs). Common types of SCARs include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). Immune-mediated mechanisms involving human leukocyte antigen (HLA) alleles have been implicated in the pathogenesis of this reaction. This study examines the association between specific HLA alleles (HLA-A, -B, and -DRB1) and AED-induced SCARs in the Iraqi population. Methodology A total of 50 patients diagnosed with SCARs and 90 tolerant controls were recruited from Dr. Saad Al-Wattari Hospital for Neurological Sciences and Baghdad Hospital - Medical City. HLA genotyping was performed using PCR-SSO method from peripheral blood samples. Statistical comparisons were made using the t-test or chi-square test, while univariate logistic regression with Bonferroni's correction (p < 0.05) were used to assess associations between HLA alleles and SCARs. Results Among the patients, SJS was the most prevalent type of SCARs observed. Analysis of HLA allele frequencies revealed significant associations between specific alleles. HLA-A∗02:01 was found to be significantly associated with a lower risk of AED-induced SJS (OR = 0.36; 95 % CI: 0.13-0.97), while HLA-A∗24:02 and HLA-B∗15:02 were associated with an increased risk of AED-induced SJS (OR = 3.60; 95 % CI: 1.21-10.72 and OR = 4.41; 95 % CI: 1.18-16.47, respectively). For AED-induced TEN, HLA-A∗01:02, HLA-B∗15:02, and HLA-B∗52:01 showed significant associations (OR = 6.92; 95 % CI: 1.39-34.37 and OR = 6.55; 95 % CI: 1.62-26.52, respectively), with HLA-DRB1∗03:01 being highly significant (OR = 5.09; 95 % CI: 1.72-15.00). Additionally, HLA-B∗40:02 was strongly associated with AED-induced DRESS (OR = 29.33; 95 % CI: 3.50-245.32). Conclusion This study identifies key HLA alleles associated with AED-induced SCARs in the Iraqi population. These findings could facilitate personalized medicine approaches, aiding in better prediction and prevention of SCARs in AED therapy.
Collapse
Affiliation(s)
- Ali Fadhel Ahmed
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia
| | - Dzul Azri Mohamed Noor
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia
| | - Majeed Arsheed Sabbah
- Forensic DNA for Research and Training Centre, Alnahrain University, Baghdad, 64074, Iraq
| | - Nur Fadhlina Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Aizati Athirah Daud
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Tandhavanant S, Yimthin T, Sengyee S, Charoenwattanasatien R, Lebedev AA, Lafontaine ER, Hogan RJ, Chewapreecha C, West TE, Brett PJ, Burtnick MN, Chantratita N. Genetic variation of hemolysin co-regulated protein 1 affects the immunogenicity and pathogenicity of Burkholderia pseudomallei. PLoS Negl Trop Dis 2025; 19:e0012758. [PMID: 39761280 PMCID: PMC11737846 DOI: 10.1371/journal.pntd.0012758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/16/2025] [Accepted: 12/04/2024] [Indexed: 01/18/2025] Open
Abstract
Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B. pseudomallei strains, variants of hcp1 have recently been identified. This study aimed to examine the prevalence of hcp1 variants in clinical isolates of B. pseudomallei, assess the antigenicity of the Hcp1 variants, and the ability of strains expressing these variants to stimulate multinucleated giant cell (MNGC) formation in comparison to strains expressing wild-type Hcp1 (Hcp1wt). Sequence analysis of 1,283 primary clinical isolates of B. pseudomallei demonstrated the presence of 8 hcp1 alleles encoding three types of Hcp1 proteins, including Hcp1wt (98.05%), Hcp1variant A (1.87%) and Hcp1variant B (0.08%). Compared to strains expressing Hcp1wt, those expressing the dominant variant, Hcp1variant A, stimulated lower levels of Hcp1variant A-specific antibody responses in melioidosis patients. Interestingly, when Hcp1variant A was expressed in B. pseudomallei K96243, this strain retained the ability to stimulate MNGC formation in A549 cells. In contrast, however, similar experiments with the Hcp1variant B demonstrated a decreased ability of B. pseudomallei to stimulate MNGC formation. Collectively, these results show that B. pseudomallei strains expressing variants of Hcp1 elicit variable antibody responses in melioidosis patients and differ in their ability to promote MNGC formation in cell culture.
Collapse
Affiliation(s)
- Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Thatcha Yimthin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Ratana Charoenwattanasatien
- Beamline Division, Synchrotron Light Research Institute, (Public Organization), Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchsima, Thailand
| | - Andrey A. Lebedev
- CCP4, Research Complex at Harwell, UKRI–STFC Rutherford Appleton Laboratory, Harwell, Didcot, United Kingdom
| | - Eric R. Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Paul J. Brett
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Piriyapongsa J, Chumnumwat S, Kaewprommal P, Triparn K, Suvichapanich S, Udomsinprasert W, Jittikoon J, Shaw PJ, Nakhonsri V, Ngamphiw C, Wangkumhang P, Pithukpakorn M, Roothumnong E, Wiboonthanasarn S, Kuptanon C, Jinawath N, Porntaveetus T, Suriyaphol P, Viprakasit V, Pisitkun P, Kantaputra P, Tim-Aroon T, Wattanasirichaigoon D, Sura T, Suphapeetiporn K, Sripichai O, Khongphatthanayothin A, Fucharoen S, Ngamphaiboon N, Shotelersuk V, Mahasirimongkol S, Tongsima S. Pharmacogenomic landscape of the Thai population from genome sequencing of 949 individuals. Sci Rep 2024; 14:30683. [PMID: 39730427 DOI: 10.1038/s41598-024-79018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance. On average, each Thai individual carried 14 SNPs, one to two HLA alleles, and six diplotypes with actionable phenotypic associations. Clinically important diplotypes were present in over 20% of individuals for seven genes (CYP2A6, CYP2B6, CYP2C19, CYP3A5, NAT2, SLCO1B1, and VKORC1). In addition, clinically significant SNPs with allele frequencies exceeding 20% were identified among 15 genes, including VKORC1, CYP4F2, and ABCG2. We also identified 21,211 potentially deleterious variants among 3239 genes. Of these variants, 3746 were novel. The comprehensive dataset from this study serves as a valuable resource of pharmacogenomic variants in the Thai population, which will facilitate the development of personalized drug therapies and enhance patient care in Thailand.
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supatat Chumnumwat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kwankom Triparn
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Philip J Shaw
- Medical Molecular Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Vorthunju Nakhonsri
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pongsakorn Wangkumhang
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supakit Wiboonthanasarn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
- Department of Pediatrics, College of Medicine, Rangsit University, Pathum Thani, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prapat Suriyaphol
- Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vip Viprakasit
- Division of Hematology & Oncology, Department of Pediatrics & Siriraj Thalassemia Center, Siriraj Research Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piranit Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyachai Sura
- Medical Genetics and Molecular Medicine Unit, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Orapan Sripichai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Apichai Khongphatthanayothin
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Arrhythmia Research Chulalongkorn University, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Surakameth Mahasirimongkol
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand.
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
| |
Collapse
|
5
|
Chieochansin T, Sanachai K, Darai N, Chiraphapphaiboon W, Choomee K, Yenchitsomanus PT, Thuwajit C, Rungrotmongkol T. In silico advancements in Peptide-MHC interaction: A molecular dynamics study of predicted glypican-3 peptides and HLA-A*11:01. Heliyon 2024; 10:e36654. [PMID: 39263056 PMCID: PMC11385767 DOI: 10.1016/j.heliyon.2024.e36654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Our study employed molecular dynamics (MD) simulations to assess the binding affinity between short peptides derived from the tumor-associated antigen glypican 3 (GPC3) and the major histocompatibility complex (MHC) molecule HLA-A*11:01 in hepatocellular carcinoma. We aimed to improve the reliability of in silico predictions of peptide-MHC interactions, which are crucial for developing targeted cancer therapies. We used five algorithms to discover four peptides (TTDHLKFSK, VINTTDHLK, KLIMTQVSK, and STIHDSIQY), demonstrating the substantial potential for HLA-A11:01 presentation. The Anchored Peptide-MHC Ensemble Generator (APE-Gen) was used to create the initial structure of the peptide-MHC complex. This was followed by a 200 ns molecular dynamics (MD) simulation using AMBER22, which verified the precise positioning of the peptides in the binding groove of HLA-A*11:01, specifically at the A and F pockets. Notably, the 2nd residue, which serves as a critical anchor within the 2nd pocket, played a pivotal role in stabilising the binding interactions.VINTTDHLK (ΔG SIE = -14.46 ± 0.53 kcal/mol and ΔG MM/GBSA = -30.79 ± 0.49 kcal/mol) and STIHDSIQY (ΔG SIE and ΔG MM/GBSA = -14.55 ± 0.16 and -23.21 ± 2.23 kcal/mol) exhibited the most effective binding potential among the examined peptides, as indicated by both their binding free energies and its binding affinity on the T2 cell line (VINTTDHLK: IC50 = 0.45 nM; STIHDSIQY: IC50 = 0.35 nM). The remarkable concordance between in silico and in vitro binding affinity results was of particular significance, indicating that MD simulation is a potent instrument capable of bolstering confidence in in silico peptide predictions. By employing MD simulation as a method, our study provides a promising avenue for improving the prediction of potential peptide-MHC interactions, thereby facilitating the development of more effective and targeted cancer therapies.
Collapse
Affiliation(s)
- Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nitchakan Darai
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kornkan Choomee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Attapong J, Kaset C, Nakkam N, Tassaneeyakul W, Wichukchinda N, Chomean S. Dual approaches in pharmacogenetics: Developing PCR-SSP and RT-PCR methods for HLA-B*13:01 screening to prevent dapsone and Co-trimoxazole SCARs. Heliyon 2024; 10:e34977. [PMID: 39144953 PMCID: PMC11320476 DOI: 10.1016/j.heliyon.2024.e34977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Dapsone and co-trimoxazole are potent antibiotics for treating various infections and inflammations. However, several studies reported the strongly association between severe cutaneous adverse drug reactions (SCARs) to both drugs and the HLA-B*13:01 allele. Rapid and reliable screening for the HLA-B*13:01 allele can mitigate the risk of dapsone-induced SCARs. We developed two methods, multiplex sequence-specific primer PCR (PCR-SSP) and real-time PCR (RT-PCR), tailored for different clinical settings. These methods were optimized to minimize false positives among the Thai population. Clinical validation demonstrated excellent reproducibility, with both methods showing 100 % concordance in repeated tests. PCR-SSP achieved a limit of detection as low as 100 pg of genomic DNA, while RT-PCR reached 1 pg. Overall statistical accuracy was 100.00 % (95 % CI: 98.18 %-100.00 %). Screening for drug-related HLA alleles is crucial for reducing mortality from severe cutaneous adverse drug reactions, especially dapsone hypersensitivity syndrome (DHS) and dapsone-induced hypersensitivity reactions (DIHRs). Our screening approach for dapsone can also be extended to co-trimoxazole, representing a significant advancement in personalized medicine and preemptive pharmacogenetic testing for tailored patient care and safety, albeit further validation in diverse ethnic populations is warranted to ensure universal applicability.
Collapse
Affiliation(s)
- Jirapat Attapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Chollanot Kaset
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Sirinart Chomean
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| |
Collapse
|
7
|
Simtong P, Jumnainsong A, Leelayuwat C. Genetic profile of RHCE, Kell, Duffy, Kidd, Diego and MNS hybrid glycophorins blood groups in ethnic northeastern Thais: Alleles, genotypes and risk of alloimmunisation. Transfus Med 2024; 34:287-297. [PMID: 38804163 DOI: 10.1111/tme.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Antibodies against blood group antigens play a key role in the pathophysiology of haemolytic transfusion reactions (HTRs) and haemolytic disease of the fetus and newborn (HDFN). This study aimed to determine the frequencies of alleles, genotypes, and risk of alloimmunisation of clinically significant blood group systems in ethnic northeastern Thais. METHODS In total, 345 unrelated, healthy, ethnic northeastern Thais were tested using the in-house PCR-sequence specific primers (PCR-SSP) method for simultaneously genotyping of RHCE, Kell, Duffy, Kidd, Diego and MNS glycophorin hybrids and results confirmed by Sanger sequencing. RESULTS In this cohort, the alleles RHCE*C (81.0%) and RHCE*e (84.8%) were more prevalent than RHCE*c (19.0%) and RHCE*E (15.2%). The most common predicted haplotype combinations of the RHCE alleles were C+c-E-e+(R1R1) (59.4%) followed by the C+c+E+e+ (R1R2) (20.6%) and C+c+E-e+ (R1r) (11.3%). The KEL*01 allele was not found in this study. The frequencies of FY*01 and FY*02 were 88.3% and 11.7%, respectively. The genotype FY*02/02 was found in four samples (1.2%). The frequencies of JK*01 and JK*02 were 52.5% and 47.5%, respectively. Homozygous JK*02/02 was found in 81 samples (23.5%). The frequencies of DI*01 and DI*02 were 0.6% and 99.4%, respectively. In total, 64 samples (18.6%) were found to carry the MNS glycophorin hybrids. CONCLUSIONS Our results indicated a possible high risk of c, E, Fyb, Jka, Jkb and Mia alloimmunisation in these populations. Moreover, methods established for genotyping clinically significant blood groups in this study can now be utilised in routine clinical application.
Collapse
Affiliation(s)
- Piyapong Simtong
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Amonrat Jumnainsong
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chanvit Leelayuwat
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Louthrenoo W, Kasitanon N, Wongthanee A, Okudaira Y, Takeuchi A, Noguchi H, Inoko H, Takeuchi F. HLA Association among Thai Patients with Diffuse and Limited Cutaneous Systemic Sclerosis. Biomedicines 2024; 12:1347. [PMID: 38927554 PMCID: PMC11201995 DOI: 10.3390/biomedicines12061347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to clarify the association of HLA Class I and II with dcSSc and lcSSc in Thais. HLA typing for 11 gene loci (Class I: HLA-A, B and C, and Class II [HLA-DR, DP and DQ]) was carried out using the Next Generation DNA Sequencing method (three fields) in 92 Thai patients with systemic sclerosis (55 dcSSc, 37 lcSSc) and 135 healthy controls (HCs). The distribution of HLA alleles in patients with dcSSc and lcSSc was compared. When compared with HCs, the AF of A*24:02:01, A*24:07:01, B*27:04:01 and B*27:06 showed an increasing trend in lcSSc patients without statistical significance. DRB1*15:02:01, DRB5*01:02:01, DQA1*01:01:01, DQB1*05:01:24, DPA1*02:01:01 and DPB1*13:01:01 increased significantly in dcSSc patients. DQB1*05:01:24 and DPB1*13:01:01 also increased significantly in lcSSc patients, but less significantly than in dcSSc patients. The association of DPB1*05:01:01 with lcSSc was significantly protective. HLA-A*24:02:01, B*27:06 and C*03:04:01 formed a three-locus haplotype that also constituted an eight-locus haplotype with DRB1*15:02:01, DQA1*01:01:01, DQB1*05:01:24, DPA1*02:01:01 and DPB1*13:01:01. There was a possibility that HLA Class I would play a role in the pathogenesis of lcSSc, while Class II played more of a role in the dcSSc in Thai patients.
Collapse
Affiliation(s)
- Worawit Louthrenoo
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nuntana Kasitanon
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Antika Wongthanee
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yuko Okudaira
- GenoDive Pharma Inc., Naka-cho Honatugi, Atsugi 243-0003, Japan; (Y.O.); (H.I.)
| | - Asuka Takeuchi
- Faculty of Economics, Sophia University, Tokyo 102-8554, Japan;
| | - Hiroshi Noguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan; (H.N.); (F.T.)
| | - Hidetoshi Inoko
- GenoDive Pharma Inc., Naka-cho Honatugi, Atsugi 243-0003, Japan; (Y.O.); (H.I.)
| | - Fujio Takeuchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan; (H.N.); (F.T.)
| |
Collapse
|
9
|
Jaruthamsophon K, Sangmanee P, Plong‐on O, Charalsawadi C, Sukasem C, Hnoonual A. Molecular identification of HLA-B75 serotype markers by qPCR: A more inclusive pharmacogenetic approach before carbamazepine prescription. Clin Transl Sci 2024; 17:e13867. [PMID: 38894615 PMCID: PMC11187875 DOI: 10.1111/cts.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic screening for HLA-B*15:02 before prescribing carbamazepine is standard practice to prevent severe cutaneous adverse reactions in Asian populations. These reactions are associated not only with this allele but also with closely related HLA-B75 serotype markers-HLA-B*15:11 and HLA-B*15:21-which are prevalent in several Asian countries. However, a reliable method for identifying HLA-B75 serotype markers is still not available. We developed an in-house quantitative PCR (qPCR) for HLA-B75 screening and validated it using 303 anonymized DNA samples. Due to inadequate quality control, the qPCR results for 11 samples were excluded. We analyzed the sensitivity and specificity of the test using 93 HLA-typed samples. The concordance between the qPCR method and an established screening method was assessed using 199 HLA-screened samples tested for HLA-B*15:02 at Songklanagarind Hospital, Songkhla, Thailand. All discordant results were confirmed by Sanger sequencing. The qPCR method demonstrated a sensitivity of 100% (95% confidence interval = 83.16%-100.00%) and a specificity of 100% (95% confidence interval = 95.07%-100.00%). Concordance analysis revealed a 96.5% agreement between methods (192/199; 44 positive and 148 negative results). All discordant results were due to HLA-B75 markers not being HLA-B*15:02 (two samples with HLA-B*15:11 and five samples with HLA-B*15:21). In conclusion, this qPCR method could be useful for identifying HLA-B75 carriers at risk of carbamazepine-induced reactions in Asian populations where carriers of HLA-B*15:02, HLA-B*15:11, or HLA-B*15:21 are common.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Pornsiri Sangmanee
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Oradawan Plong‐on
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Chariyawan Charalsawadi
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC)Ramathibodi HospitalBangkokThailand
- Pharmacogenomics ClinicBumrungrad Genomic Medicine Institute, Bumrungrad International HospitalBangkokThailand
- Faculty of Pharmaceutical SciencesBurapha UniversitySaensuk, Mueang, ChonburiThailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety ScienceInstitute of Systems, Molecular, and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Areerat Hnoonual
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| |
Collapse
|
10
|
Soha A, Azina I, Rozentale B, Kramicha K, Sture G, Savicka O, Titovica G. HLA class II DRB1, DQA1, DQB1 loci in patients with HIV infection and tuberculosis in a Latvian cohort group. Cent Eur J Immunol 2024; 49:37-44. [PMID: 38812605 PMCID: PMC11130985 DOI: 10.5114/ceji.2024.138738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/24/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Until the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death from a single infectious agent, ranking above HIV/AIDS. It is also the key cause of death among people infected with HIV. Tuberculosis incidence in Latvia has decreased by 25% during the last 30 years, but the mortality level of TB remains significant. The HLA class II genes are responsible for antigen presentation and regulation of immune responses, which plays an important role in individual susceptibility to infection disease. Whether or not differential HLA polymorphism contributes to TB with HIV infection and TB without HIV infection in Latvian patients is unknown. Material and methods For the detection of HLA class II DQA1, DQB1, and DRB1 alleles a total of 616 subjects were enrolled, including 80 primary active TB (PATB) patients, 168 HIV-1/TB patients, 168 HIV-1 patients and 200 HC individuals. Results For immunodeficiency caused by TB, HIV-1 or HIV-1/TB coinfection, alleles DRB1*12:01, 14:01, 16:01, DQA1*01:02, 01:03, 02:01, 06:01, DQB1*03:03, 06:01 are identified as protective, but DRB1*07:01, 11:01, 15:01, DQA1*02:01, 03:01, DQB1*03:01, 05:01 are identified as risk alleles. Conclusions The results of our experimental pilot studies demonstrated that HLA class II genes may contribute to the genetic risk of TB and HIV-1/TB co-infection, possibly by reducing the presentation of protective Mycobacterium tuberculosis antigens to T-helpers. It is necessary to conduct repetitive, multicentre, and large sample studies in order to draw more scientific conclusions and to confirm the relationship between TB, HIV and HIV-1/TB co-infection susceptibility and gene polymorphisms.
Collapse
Affiliation(s)
- Alena Soha
- Doctoral studies, Riga Stradins University, Riga, Latvia
| | - Inga Azina
- Latvian Centre of Infectious Disease, Riga East University Hospital, Riga, Latvia
| | - Baiba Rozentale
- Latvian Centre of Infectious Disease, Riga East University Hospital, Riga, Latvia
| | | | - Gunta Sture
- Latvian Centre of Infectious Disease, Riga East University Hospital, Riga, Latvia
- Department of Internal Diseases of Riga East University Hospital, Riga Stradins University, Riga, Latvia
| | - Oksana Savicka
- Infectology Centre of Latvia, National Microbiology Reference Laboratory, Riga East Clinical University Hospital, Riga, Latvia
| | | |
Collapse
|
11
|
Sangphukieo A, Thongkumkoon P, Noisagul P, Lo Piccolo L, O’Brien TE, Chaowattanapanit S, Choonhakarn C, Amornpinyo W, Chaiwarith R, Kiratikanon S, Rujiwetpongstorn R, Tovanabutra N, Chiewchanvit S, Kantaputra P, Intachai W, Dissook S, Chuamanochan M. Human Leukocyte Antigen Markers for Distinguishing Pustular Psoriasis and Adult-Onset Immunodeficiency with Pustular Reaction. Genes (Basel) 2024; 15:278. [PMID: 38540337 PMCID: PMC10970016 DOI: 10.3390/genes15030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Pustular skin diseases, with pustular psoriasis (PP) being the prototype, are immune-mediated diseases characterized by the presence of multiple pustules, resulting from neutrophil accumulation in the layer of epidermis. Sterile skin pustular eruption, like PP, is also observed in 20-30% of patients with adult-onset immunodeficiency syndrome (AOID) and anti-interferon γ autoantibodies (IFN-γ), leading to challenges in classification and diagnosis. While the mechanism underlying this similar phenotype remains unknown, genetic factors in relation to the immune system are suspected of playing an important role. Here, the association between human leukocyte antigen (HLA) genes, which play essential roles in antigen presentation, contributing to immune response, and the presence of skin pustules in AOID and PP was revealed. HLA genotyping of 41 patients from multiple centers in Thailand who presented with multiple sterile skin pustules (17 AOID patients and 24 PP patients) was conducted using a next-generation-sequencing-based approach. In comparison to healthy controls, HLA-B*13:01 (OR = 3.825, 95%CI: 2.08-7.035), C*03:04 (OR = 3.665, 95%CI: 2.102-6.39), and DQB1*05:02 (OR = 2.134, 95%CI: 1.326-3.434) were significantly associated with the group of aforementioned conditions having sterile cutaneous pustules, suggesting a common genetic-related mechanism. We found that DPB1*05:01 (OR = 3.851, p = 0.008) and DRB1*15:02 (OR = 3.195, p = 0.033) have a significant association with pustular reaction in AOID patients, with PP patients used as a control. A variant in the DRB1 gene, rs17885482 (OR = 9.073, p = 0.005), was observed to be a risk factor for PP when using AOID patients who had pustular reactions as a control group. DPB1*05:01 and DRB1*15:02 alleles, as well as the rs17885482 variant in the DRB1 gene, were proposed as novel biomarkers to differentiate PP and AOID patients who first present with multiple sterile skin pustules without known documented underlying conditions.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Pitiporn Noisagul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Luca Lo Piccolo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.); (P.N.); (L.L.P.)
| | - Timothy E. O’Brien
- Applied and Environmental Statistics, Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60153, USA;
| | - Suteeraporn Chaowattanapanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Charoen Choonhakarn
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen 40002, Thailand;
| | - Romanee Chaiwarith
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Salin Kiratikanon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Rujira Rujiwetpongstorn
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Napatra Tovanabutra
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Siri Chiewchanvit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (W.I.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (W.I.)
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mati Chuamanochan
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| |
Collapse
|
12
|
Sharma N, Sharma G, Toor D. Plausible Influence of HLA Class I and Class II Diversity on SARS-CoV-2 Vulnerability. Crit Rev Immunol 2024; 44:31-40. [PMID: 37947070 DOI: 10.1615/critrevimmunol.2023049920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the global coronavirus disease 2019 (COVID-19) pandemic, which adversely affected almost all aspects of human life and resulted in the loss of millions of lives, while affecting nearly 0.67 billion people worldwide. SARS-CoV-2 still poses a challenge to the healthcare system as there are more than 200,000 active cases of COVID-19 around the globe. Epidemiological data suggests that the magnitude of morbidity and mortality due to COVID-19 was low in a few geographical regions and was unpredictably higher in a few regions. The genetic diversity of different geographical regions might explain the sporadic prevalence of the disease. In this context, human leukocyte antigens (HLA) represent the most polymorphic gene-dense region of the human genome and serve as an excellent mini-genome model for evaluating population genetic diversity in the context of susceptibility and progression of various diseases. In this review, we highlight the plausible influence of HLA in susceptibility, severity, immune response, and designing of epitope-based vaccines for COVID-19. Further, there is a need for extensive investigations for illustration and clarification of the functional impact of HLA class I and II alleles in the pathogenesis and progression of SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gaurav Sharma
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
13
|
Youk S, Kang M, Ahn B, Koo Y, Park C. Genetic Diversity and Sequence Conservation of Peptide-Binding Regions of MHC Class I Genes in Pig, Cattle, Chimpanzee, and Human. Genes (Basel) 2023; 15:7. [PMID: 38275589 PMCID: PMC10815642 DOI: 10.3390/genes15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Comparative analyses of MHC gene diversity and evolution across different species could offer valuable insights into the evolution of MHC genes. Intra- and inter-species sequence diversity and conservation of 12 classical major histocompatibility complex (MHC) class I genes from cattle, chimpanzees, pigs, and humans was analyzed using 20 representative allelic groups for each gene. The combined analysis of paralogous loci for each species revealed that intra-locus amino-acid sequence variations in the peptide-binding region (PBR) of MHC I genes did not differ significantly between species, ranging from 8.44% for SLA to 10.75% for BoLA class I genes. In contrast, intraspecies differences in the non-PBRs of these paralogous genes were more pronounced, varying from 4.59% for SLA to 16.89% for HLA. Interestingly, the Shannon diversity index and rate of nonsynonymous substitutions for PBR were significantly higher in SLA and BoLA than those in Patr and HLA. Analysis of peptide-binding pockets across all analyzed MHC class I genes of the four species indicated that pockets A and E showed the lowest and highest diversity, respectively. The estimated divergence times suggest that primate and artiodactyl MHC class I genes diverged 60.41 Mya, and BoLA and SLA genes diverged 35.34 Mya. These results offer new insights into the conservation and diversity of MHC class I genes in various mammalian species.
Collapse
Affiliation(s)
- Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.Y.); (M.K.); (B.A.)
| | - Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.Y.); (M.K.); (B.A.)
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.Y.); (M.K.); (B.A.)
| | - Yangmo Koo
- Genetic & Breeding Department, Korea Animal Improvement Association, Seocho, Seoul 06668, Republic of Korea;
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.Y.); (M.K.); (B.A.)
| |
Collapse
|
14
|
Suttichet TB, Chamnanphon M, Pongpanich M, Chokyakorn S, Kupatawintu P, Srichomthong C, Chetruengchai W, Chuntakaruk H, Rungrotmongkol T, Chariyavilaskul P, Shotelersuk V, Praditpornsilpa K. HLA-B*46:01:01:01 and HLA-DRB1*09:01:02:01 are associated with anti-rHuEPO-induced pure red cell aplasia. Sci Rep 2023; 13:22759. [PMID: 38123661 PMCID: PMC10733298 DOI: 10.1038/s41598-023-50211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Treatment of anemia in patients with chronic kidney disease (CKD) with recombinant human erythropoietin (rHuEPO) can be disrupted by a severe complication, anti-rHuEPO-induced pure red cell aplasia (PRCA). Specific HLA genotypes may have played a role in the high incidence of PRCA in Thai patients (1.7/1,000 patient years vs. 0.03/10,000 patient years in Caucasians). We conducted a case-control study in 157 CKD patients with anti-rHuEPO-induced PRCA and 56 controls. The HLA typing was determined by sequencing using a highly accurate multiplex single-molecule, real-time, long-read sequencing platform. Four analytical models were deployed: Model 1 (additive: accounts for the number of alleles), Model 2 (dominant: accounts for only the presence or absence of alleles), Model 3 (adjusted additive with rHuEPO types) and Model 4 (adjusted dominant with rHuEPO types). HLA-B*46:01:01:01 and DRB1*09:01:02:01 were found to be independent risk markers for anti-rHuEPO-induced PRCA in all models [OR (95%CI), p-values for B*46:01:01:01: 4.58 (1.55-13.51), 0.006; 4.63 (1.56-13.75), 0.006; 5.72 (1.67-19.67), 0.006; and 5.81 (1.68-20.09), 0.005; for DRB1*09:01:02:01: 3.99 (1.28-12.49), 0.017, 4.50 (1.32-15.40), 0.016, 3.42 (1.09-10.74), 0.035, and 3.75 (1.08-13.07), 0.038, in Models 1-4, respectively. HLA-B*46:01:01:01 and DRB1*09:01:02:01 are susceptible alleles for anti-rHuEPO-induced PRCA. These findings support the role of HLA genotyping in helping to monitor patients receiving rHuEPO treatment.
Collapse
Affiliation(s)
- Thitima Benjachat Suttichet
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monpat Chamnanphon
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| | - Sarun Chokyakorn
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chalurmpon Srichomthong
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Panya A, Thepmalee C, Sawasdee N, Saengmuang S, Luangwattananun P, Yenchitsomanus PT. Enhancing cholangiocarcinoma immunotherapy with adoptive T cells targeting HLA-restricted neoantigen peptides derived from driver gene mutations. Biomed Pharmacother 2023; 168:115827. [PMID: 37939617 DOI: 10.1016/j.biopha.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Precision immunotherapy, driven by genomic and bioinformatic advancements, has emerged as a promising and viable approach to combat cancer. Targeting neoantigens offers the advantage of specific immune responses with minimal off-tumor toxicity. In this study, we investigated the potential of adoptive T cells activated by HLA-restricted neoantigen peptides from driver gene mutations for treating cholangiocarcinoma (CCA), a highly aggressive cancer with poor prognosis and high mortality rates. Through whole exome sequencing of CCA cell lines, KKU-213A and KKU-100, we identified mutations in common driver genes and predicted corresponding HLA-restricted peptides. Peptides from KRAS, RNF43, and TP53 mutations exhibited strong binding affinity to HLA-A11, as validated through molecular docking and T2-cell binding assays. Dendritic cells (DCs) from healthy donors expressing HLA-A* 11:01, pulsed with individual or pooled peptides, showed comparable levels of costimulatory molecules (CD11c, CD40, CD86, and HLA-DR) to conventional DCs but higher expression of maturation markers, CD80 and CD86. Autologous HLA-A* 11:01-restricted T cells, activated by peptide-pulsed DCs, effectively lysed KKU-213A (HLA-A*11:01) cells, outperforming conventional tumor lysate-pulsed DCs. This effect was specific to HLA-A* 11:01-restricted T cells and not observed in KKU-100 (HLA-A*33:03) cells. Moreover, HLA-A* 11:01-restricted T cells exhibited elevated levels of IFN-gamma, granulysin, and granzyme B, indicating their potent anti-tumor capabilities. These findings underscore the specificity and efficiency of HLA-A* 11:01-restricted T cells targeting KRAS, RNF43, TP53 mutated CCA cells, and offer valuable insights for developing immunotherapeutic strategies and therapeutic peptide-vaccines for CCA treatment.
Collapse
Affiliation(s)
- Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasithorn Saengmuang
- Master of Science Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
16
|
Iamsumang W, Chanprapaph K, Sukasem C, Satapornpong P, Thadanipon K, Suchonwanit P, Jantararoungtong T, Anuntrangsee T. Genotypic and Phenotypic Characteristics of Co-Trimoxazole-Induced Cutaneous Adverse Reactions. Dermatology 2023; 239:966-975. [PMID: 37793359 DOI: 10.1159/000534342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Co-trimoxazole has been reported as a common culprit drug for various cutaneous adverse drug reactions (CADRs). However, information on genotypic and phenotypic characteristics is still limited. We aimed to study clinical characteristics, genetic suitability, laboratory findings, and treatment outcomes in patients with co-trimoxazole-induced CADR and determine variables associated with severe cutaneous adverse reactions (SCARs). METHODS The medical records of all patients diagnosed with co-trimoxazole-induced CADR during October 2015 and October 2021 were reviewed. Clinical characteristics and laboratory investigation with an emphasis on human leukocyte antigen (HLA) class I and HLA-DRB1 results linked to subtypes of cutaneous adverse reactions were evaluated. RESULTS Seventy-two patients diagnosed with co-trimoxazole-induced CADR were included in the study. Mean age at diagnosis was 38.0 ± 14.6 years old, and 72% were female. Subtypes of reactions included maculopapular eruption (MPE; 56.9%), drug reaction with eosinophilia and systemic symptoms (DRESS; 23.6%), Stevens-Johnson syndrome (SJS; 12.5%), fixed drug eruption (4.2%), and urticaria (2.8%). Characteristics that were significantly associated with SCARs included male gender (OR = 3.01, 95% CI: 1.04-8.75), HIV infection (OR = 3.48, 95% CI: 1.13-10.75), prophylactic use of co-trimoxazole (OR = 4.89, 95% CI: 1.54-15.57), and co-trimoxazole administration longer than 10 days (OR = 7.65, 95% CI: 2.57-22.78). HLA-B*38:02 was associated with co-trimoxazole-induced SJS, while HLA-A*11:01, HLA-B*13:01, and HLA-DRB1*12:01 were associated with co-trimoxazole-induced DRESS. HLA-B*52:01 was associated with co-trimoxazole-induced MPE. CONCLUSIONS Co-trimoxazole could induce various phenotypes of CADRs. Genotypic and phenotypic factors that may potentially predict co-trimoxazole-induced SCARs include male gender, HIV infection, prophylactic and prolonged drug use, as well as the presence of HLA-A*11:01, HLA-B*13:01, HLA-B*38:02, or HLA-DRB1*12:01 alleles.
Collapse
Affiliation(s)
- Wimolsiri Iamsumang
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumutnart Chanprapaph
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Lak Hok, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Lak Hok, Thailand
| | - Kunlawat Thadanipon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poonkiat Suchonwanit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanaporn Anuntrangsee
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Wattanachai P, Amornpinyo W, Konyoung P, Purimart D, Khunarkornsiri U, Pattanacheewapull O, Tassaneeyakul W, Nakkam N. Association between HLA alleles and beta-lactam antibiotics-related severe cutaneous adverse reactions. Front Pharmacol 2023; 14:1248386. [PMID: 37795024 PMCID: PMC10546186 DOI: 10.3389/fphar.2023.1248386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Beta-lactam antibiotics are one of the most common causes of antibiotics-related severe cutaneous adverse reactions (SCARs) including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reactions with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP). Recent evidence demonstrated that the human leukocyte antigen (HLA) polymorphisms play important roles in the development of drug-related SCARs. This study aimed to extensively characterize the associations between HLA genetic polymorphisms and several phenotypes of SCARs related to beta-lactam antibiotics. Methods: Thirty-one Thai patients with beta-lactam antibiotics-related SCARs were enrolled in the study. A total of 183 unrelated native Thai subjects without any evidence of drug allergy were recruited as the control group. Genotyping of HLA class I and class II alleles was performed. Results: Six HLA alleles including HLA-A*01:01, HLA-B*50:01, HLA-C*06:02, HLA-DRB1*15:01, HLA-DQA1*03:01, and HLA-DQB1*03:02, were significantly associated with beta-lactam antibiotics-related SCARs. The highest risk of SCARs was observed in patients with the HLA-B*50:01 allele (OR = 12.6, 95% CI = 1.1-142.9, p = 0.042), followed by the HLA-DQB1*03:02 allele (OR = 5.8, 95% CI = 1.5-22.0, p = 0.012) and the HLA-C*06:02 allele (OR = 5.7, 95% CI = 1.6-19.9, p = 0.011). According to the phenotypes of SCARs related to beta-lactam antibiotics, the higher risk of SJS/TEN was observed in patients with HLA-A*03:02, HLA-B*46:02 (OR = 17.5, 95% CI = 1.5-201.6, p = 0.033), HLA-A*02:06, HLA-B*57:01 (OR = 9.5, 95% CI = 1.3-71.5, p = 0.028), HLA-DQB1*03:02 (OR = 7.5, 95% CI = 1.8-30.9, p = 0.008), or HLA-C*06:02 (OR = 4.9, 95% CI = 1.1-21.4, p = 0.008). While eight HLA alleles including HLA-A*02:05, HLA-A*02:11, HLA-B*37:01, HLA-B*38:01, HLA-B*50:01, HLA-C*06:02, HLA-C*03:09, and HLA-DRB1*15:01 were associated with AGEP, the highest risk of AGEP was observed in patients with the HLA-B*50:01 allele (OR = 60.7, 95% CI = 4.8-765.00, p = 0.005). Among the four HLA alleles associated with DRESS including HLA-C*04:06, HLA-DRB1*04:05, HLA-DRB1*11:01, and HLA-DQB1*04:01, the HLA-C*04:06 allele had the highest risk of beta-lactam antibiotics-related DRESS (OR = 60.0, 95% CI = 3.0-1202.1, p = 0.043). However, these associations did not achieve statistical significance after Bonferroni's correction. Apart from the HLA risk alleles, the HLA-A*02:07 allele appeared to be a protective factor against beta-lactam antibiotic-related SCARs (OR = 0.1, 95% CI = 0.0-0.5, p = 3.7 × 10-4, Pc = 0.012). Conclusion: This study demonstrated the candidate HLA alleles that are significantly associated with several phenotypes of beta-lactam antibiotics-related SCARs. However, whether the HLA alleles observed in this study can be used as valid genetic markers for SCARs related to beta-lactam antibiotics needs to be further explored in other ethnicities and larger cohort studies.
Collapse
Affiliation(s)
- Pansakon Wattanachai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Khon Kaen, Thailand
| | | | | | | | | | | | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
Anukul N, Jenjaroenpun P, Sirikul C, Wankaew N, Nimsamer P, Roothumnong E, Pithukpakorn M, Leetrakool N, Wongsurawat T. Ultrarapid and high-resolution HLA class I typing using transposase-based nanopore sequencing applied in pharmacogenetic testing. Front Genet 2023; 14:1213457. [PMID: 37424729 PMCID: PMC10326273 DOI: 10.3389/fgene.2023.1213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Nanopore sequencing has been examined as a method for rapid and high-resolution human leukocyte antigen (HLA) typing in recent years. We aimed to apply ultrarapid nanopore-based HLA typing for HLA class I alleles associated with drug hypersensitivity, including HLA-A*31:01, HLA-B*15:02, and HLA-C*08:01. Most studies have used the Oxford Nanopore Ligation Sequencing kit for HLA typing, which requires several enzymatic reactions and remains relatively expensive, even when the samples are multiplexed. Here, we used the Oxford Nanopore Rapid Barcoding kit, which is transposase-based, with library preparation taking less than 1 h of hands-on time and requiring minimal reagents. Twenty DNA samples were genotyped for HLA-A, -B, and -C; 11 samples were from individuals of different ethnicity and nine were from Thai individuals. Two primer sets, a commercial set and a published set, were used to amplify the HLA-A, -B, and -C genes. HLA-typing tools that used different algorithms were applied and compared. We found that without using several third-party reagents, the transposase-based method reduced the hands-on time from approximately 9 h to 4 h, making this a viable approach for obtaining same-day results from 2 to 24 samples. However, an imbalance in the PCR amplification of different haplotypes could affect the accuracy of typing results. This work demonstrates the ability of transposase-based sequencing to report 3-field HLA alleles and its potential for race- and population-independent testing at considerably decreased time and cost.
Collapse
Affiliation(s)
- Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Natnicha Wankaew
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipapan Leetrakool
- Blood Bank Section, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicines, Chiang Mai University, Chiang Mai, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
19
|
Thawornpan P, Malee C, Kochayoo P, Wangriatisak K, Leepiyasakulchai C, Ntumngia FB, De SL, Adams JH, Chootong P. Characterization of Duffy Binding Protein II-specific CD4 +T cell responses in Plasmodium vivax patients. Sci Rep 2023; 13:7741. [PMID: 37173361 PMCID: PMC10177721 DOI: 10.1038/s41598-023-34903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein region II (PvDBPII) is a leading vaccine candidate against blood-stage vivax malaria. Anti-PvDBPII antibodies potentially block parasite invasion by inhibition of erythrocyte binding. However, knowledge of PvDBPII-specific T cell responses is limited. Here, to assess the responses of PvDBPII-specific CD4+T cells in natural P. vivax infection, three cross-sectional studies were conducted in recovered subjects. In silico analysis was used for potential T cell epitope prediction and selection. PBMCs from P. vivax subjects were stimulated with selected peptides and examined for cytokine production by ELISPOT or intracellular cytokine staining. Six dominant T cell epitopes were identified. Peptide-driven T cell responses showed effector memory CD4+T cell phenotype, secreting both IFN-γ and TNF-α cytokines. Single amino acid substitutions in three T cell epitopes altered levels of IFN-γ memory T cell responses. Seropositivity of anti-PvDBPII antibodies were detected during acute malaria (62%) and persisted up to 12 months (11%) following P. vivax infection. Further correlation analysis showed four out of eighteen subjects had positive antibody and CD4+T cell responses to PvDBPII. Altogether, PvDBPII-specific CD4+T cells were developed in natural P. vivax infections. Data on their antigenicity could facilitate development of an efficacious vivax malaria vaccine.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
20
|
Rojrung R, Kuamsab N, Putaporntip C, Jongwutiwes S. Analysis of sequence diversity in Plasmodium falciparum glutamic acid-rich protein (PfGARP), an asexual blood stage vaccine candidate. Sci Rep 2023; 13:3951. [PMID: 36894624 PMCID: PMC9996596 DOI: 10.1038/s41598-023-30975-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Glutamic acid-rich protein of Plasmodium falciparum (PfGARP) binds to erythrocyte band 3 and may enhance cytoadherence of infected erythrocytes. Naturally acquired anti-PfGARP antibodies could confer protection against high parasitemia and severe symptoms. While whole genome sequencing analysis has suggested high conservation in this locus, little is known about repeat polymorphism in this vaccine candidate antigen. Direct sequencing was performed from the PCR-amplified complete PfGARP gene of 80 clinical isolates from four malaria endemic provinces in Thailand and an isolate from a Guinean patient. Publicly available complete coding sequences of this locus were included for comparative analysis. Six complex repeat (RI-RVI) and two homopolymeric glutamic acid repeat (E1 and E2) domains were identified in PfGARP. The erythrocyte band 3-binding ligand in domain RIV and the epitope for mAB7899 antibody eliciting in vitro parasite killing property were perfectly conserved across isolates. Repeat lengths in domains RIII and E1-RVI-E2 seemed to be correlated with parasite density of the patients. Sequence variation in PfGARP exhibited genetic differentiation across most endemic areas of Thailand. Phylogenetic tree inferred from this locus has shown that most Thai isolates formed closely related lineages, suggesting local expansion/contractions of repeat-encoding regions. Positive selection was observed in non-repeat region preceding domain RII which corresponded to a helper T cell epitope predicted to be recognized by a common HLA class II among Thai population. Predicted linear B cell epitopes were identified in both repeat and non-repeat domains. Besides length variation in some repeat domains, sequence conservation in non-repeat regions and almost all predicted immunogenic epitopes have suggested that PfGARP-derived vaccine may largely elicit strain-transcending immunity.
Collapse
Affiliation(s)
- Rattanaporn Rojrung
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Community Public Health Program, Faculty of Health Science and Technology, Southern College of Technology, Nakorn Si Thammarat, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
21
|
Saepoo J, Pangsomboon K, Tianviwat S. Awareness of HLA-B* 15:02 screening in trigeminal neuralgia and the gene screening policy among dentists in Southern Thailand. SPECIAL CARE IN DENTISTRY 2023; 43:286-293. [PMID: 35973978 DOI: 10.1111/scd.12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine the factors associated with public hospital dentists' awareness of HLA-B*15:02 screening in trigeminal neuralgia (TN) and the national gene screening policy in Thailand. METHODS Cross-sectional study. A validated questionnaire was distributed to public hospital dentists with at least 1 year of practice in Southern Thailand (n = 760) to assess their knowledge of TN, carbamazepine (CBZ) use, awareness of HLA-B*15:02 screening, and the gene screening policy. RESULTS A total of 385 dentists participated (50.7% response rate); 81.3% of respondents were aware of HLA-B*15:02 screening. However, 18.7% of dentists were not aware of the importance of gene testing. Furthermore, dentists who were aware of gene screening had significantly better knowledge of TN diagnosis and CBZ use than "unaware" dentists. Awareness of HLA-B*15:02 screening was also significantly associated with dental specialty. Moreover, 80.5% of respondents were not aware of the gene screening policy. The primary problems related to the policy were its inefficient publication, poor implementation, and lack of clinical practice guidelines (CPGs) to encourage dentists to follow the policy and prescribe gene tests. CONCLUSION While most hospital dentists were aware of the necessity of HLA-B*15:02 screening prior to prescribing CBZ in TN, the majority were unaware of the national gene screening policy. Dental specialty and knowledge were associated with awareness of HLA-B*15:02 screening.
Collapse
Affiliation(s)
- Jirayu Saepoo
- Section of Oral Medicine, Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Kanokporn Pangsomboon
- Section of Oral Medicine, Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Sukanya Tianviwat
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| |
Collapse
|
22
|
Gibson A, Deshpande P, Campbell CN, Krantz MS, Mukherjee E, Mockenhaupt M, Pirmohamed M, Palubinsky AM, Phillips EJ. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J Allergy Clin Immunol 2023; 151:289-300.e4. [PMID: 36740326 PMCID: PMC9976545 DOI: 10.1016/j.jaci.2022.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Abstract
Severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome, toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS) cause significant morbidity and mortality and impede new drug development. HLA class I associations with SJS/TEN and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome have aided preventive efforts and provided insights into immunopathogenesis. In SJS/TEN, HLA class I-restricted oligoclonal CD8+ T-cell responses occur at the tissue level. However, specific HLA risk allele(s) and antigens driving this response have not been identified for most drugs. HLA risk alleles also have incomplete positive and negative predictive values, making truly comprehensive screening currently challenging. Although, there have been key paradigm shifts in knowledge regarding drug hypersensitivity, there are still many open and unanswered questions about SCAR immunopathogenesis, as well as genetic and environmental risk. In addition to understanding the cellular and molecular basis of SCAR at the single-cell level, identification of the MHC-restricted drug-reactive self- or viral peptides driving the hypersensitivity reaction will also be critical to advancing premarketing strategies to predict risk at an individual and drug level. This will also enable identification of biologic markers for earlier diagnosis and accurate prognosis, as well as drug causality and targeted therapeutics.
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Chelsea N Campbell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew S Krantz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen Department of Dermatologie, Medical Center and Medical Faculty, University of Freiburg, Freiberg, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
23
|
Kategeaw W, Nakkam N, Kiertiburanakul S, Sukasem C, Tassaneeyakul W, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*13:01 screening for the prevention of co-trimoxazole-induced severe cutaneous adverse reactions among HIV-infected patients in Thailand. J Med Econ 2023; 26:1330-1341. [PMID: 37830976 DOI: 10.1080/13696998.2023.2270868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Studies found a strong association between HLA-B*13:01 allele and co-trimoxazole-induced severe cutaneous adverse reactions (SCARs). Genetic screening before initiation of co-trimoxazole may decrease the incidence of co-trimoxazole-induced SCARs. This study aims to evaluate the cost-effectiveness of HLA-B*13:01 screening before co-trimoxazole initiation in HIV-infected patients in Thailand. A combination of a decision tree model and a Markov model was used to estimate lifetime costs and outcomes of two strategies including 1) HLA-B*13:01 screening before co-trimoxazole initiation and 2) usual practice from a societal perspective. Alternative drugs are not considered because dapsone (the second-line drug) also presents a genetic risk. Input parameters were obtained from literature, government documents, and part of the TREAT Asia HIV Observational Database (TAHOD). One-way sensitivity analyses and probabilistic analyses were performed to determine robustness of the findings. HLA-B*13:01 screening resulted in 0.0061 quality-adjusted life years (QALYs) loss with an additional cost of 370 THB ($11.84). At the cost-effectiveness threshold of 160,000 THB ($5,112.85), the probability of the genetic screening strategy being cost-effective is 9.54%. This analysis demonstrated that HLA-B*13:01 allele screening before initiation of co-trimoxazole among HIV-infected patients is unlikely to be cost-effective in Thailand. Our findings will help policymakers make an evidence-informed decision making.
Collapse
Affiliation(s)
- Warittakorn Kategeaw
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasisopin Kiertiburanakul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Bangkok, Thailand
| | | | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Nakkam N, Saksit N, Konyoung P, Amornpinyo W, Khunarkornsiri U, Purimart D, Pattanacheewapull O, Naewla T, Wattanachai P, Khaeso K, Chumworathayi P, Tassaneeyakul W. Associations of HLA and drug-metabolizing enzyme genes in co-trimoxazole-induced severe cutaneous adverse reactions. Drug Metab Pharmacokinet 2022; 47:100480. [DOI: 10.1016/j.dmpk.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/03/2022]
|
25
|
Putaporntip C, Kuamsab N, Rojrung R, Seethamchai S, Jongwutiwes S. Structural organization and sequence diversity of the complete nucleotide sequence encoding the Plasmodium malariae merozoite surface protein-1. Sci Rep 2022; 12:15591. [PMID: 36114242 PMCID: PMC9481586 DOI: 10.1038/s41598-022-19049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
The merozoite surface protein-1 (MSP1) is a prime candidate for an asexual blood stage vaccine against malaria. However, polymorphism in this antigen could compromise the vaccine’s efficacy. Although the extent of sequence variation in MSP1 has been analyzed from various Plasmodium species, little is known about structural organization and diversity of this locus in Plasmodium malariae (PmMSP1). Herein, we have shown that PmMSP1 contained five conserved and four variable blocks based on analysis of the complete coding sequences. Variable blocks were characterized by short insertion and deletion variants (block II), polymorphic nonrepeat sequences (block IV), complex repeat structure with size variation (block VI) and degenerate octapeptide repeats (block VIII). Like other malarial MSP1s, evidences of intragenic recombination have been found in PmMSP1. The rate of nonsynonymous nucleotide substitutions significantly exceeded that of synonymous nucleotide substitutions in block IV, suggesting positive selection in this region. Codon-based analysis of deviation from neutrality has identified a codon under purifying selection located in close proximity to the homologous region of the 38 kDa/42 kDa cleavage site of P. falciparum MSP1. A number of predicted linear B-cell epitopes were identified across both conserved and variable blocks of the protein. However, polymorphism in repeat-containing blocks resulted in alteration of the predicted linear B-cell epitope scores across variants. Although a number of predicted HLA-class II-binding peptides were identified in PmMSP1, all variants of block IV seemed not to be recognized by common HLA-class II alleles among Thai population, suggesting that diversity in this positive selection region could probably affect host immune recognition. The data on structural diversity in PmMSP1 could be useful for further studies such as vaccine development and strain characterization of this neglected malaria parasite.
Collapse
|
26
|
Turongkaravee S, Praditsitthikorn N, Ngamprasertchai T, Jittikoon J, Mahasirimongkol S, Sukasem C, Udomsinprasert W, Wu O, Chaikledkaew U. Economic Evaluation of Multiple-Pharmacogenes Testing for the Prevention of Adverse Drug Reactions in People Living with HIV. CLINICOECONOMICS AND OUTCOMES RESEARCH 2022; 14:447-463. [PMID: 35832304 PMCID: PMC9272846 DOI: 10.2147/ceor.s366906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Pharmacogenetics (PGx) testing is one of the methods for determining whether individuals are at risk of adverse drug reactions (ADRs). It has been reported that multiple-PGx testing, a sequencing technology, has a higher predictive value than single-PGx testing. Therefore, this study aimed to determine the most cost-effective PGx testing strategies for preventing drug-induced serious ADRs in human immunodeficiency virus (HIV)-infected patients. Patients and Methods Potential strategies, including 1) single-PGx esting (ie, HLA-B*57:01 testing before prescribing abacavir, HLA-B*13:01 testing before prescribing co-trimoxazole and dapsone, and NAT2 testing before prescribing isoniazid) and 2) multiple-PGx testing as a combination of four single-gene PGx tests in one panel, were all compared to no PGx testing (current practice). To evaluate total cost in Thai baht (THB) and quality-adjusted life years (QALYs) for each strategy-based approach to a societal perspective, a hybrid decision tree and Markov model was constructed. Incremental cost-effectiveness ratios (ICERs) were estimated. Uncertainty, threshold, and scenario analyses were all performed. Results Before prescribing HIV therapy, providing single or multiple-PGx testing might save roughly 68 serious ADRs per year, and the number needed to screen (NNS) to avoid one serious ADR was 40. Consequently, approximately 35% and 40% of the cost of ADR treatment could be avoided by the implementation of single- and multiple-PGx testing, respectively. Compared with no PGx testing strategy, the ICERs were 146,319 THB/QALY gained for single-PGx testing and 152,014 THB/QALY gained for multiple-PGx testing. Moreover, the probability of multiple-PGx testing being cost-effective was 45% at the Thai willingness to pay threshold of 160,000 THB per QALY. Threshold analyses showed that multiple-PGx testing remained cost-effective under the range of cost, sensitivity at 0.95–1.00 and specificity at 0.98–1.00. Conclusion Single and multiple-PGx testing might be cost-effective options for reducing the incidence of drug-induced serious ADRs in people living with HIV.
Collapse
Affiliation(s)
- Saowalak Turongkaravee
- Social, Economic and Administrative Pharmacy (SEAP) Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Thundon Ngamprasertchai
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine; Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Genetics Center, Medical Life Sciences Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
| | | | - Olivia Wu
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Editorial: Precision psychiatry and the clinical care for people with schizophrenia: sex, race and ethnicity in relation to social determinants of mental health. Curr Opin Psychiatry 2022; 35:137-139. [PMID: 35579868 DOI: 10.1097/yco.0000000000000781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Koomdee N, Kloypan C, Jinda P, Rachanakul J, Jantararoungtong T, Sukprasong R, Prommas S, Nuntharadthanaphong N, Puangpetch A, Ershadian M, John S, Biswas M, Sukasem C. Evolution of HLA-B Pharmacogenomics and the Importance of PGx Data Integration in Health Care System: A 10 Years Retrospective Study in Thailand. Front Pharmacol 2022; 13:866903. [PMID: 35450046 PMCID: PMC9016335 DOI: 10.3389/fphar.2022.866903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10‐year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011–2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
Collapse
Affiliation(s)
- Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand.,Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
29
|
Tunwongsa K, Chonnawakul M, Geratikornsupuk N, Tewthanom K. Genetic screening to avoid adverse drug reactions from medication use and approach patients' better outcomes: A lesson learn from the report of the Queen Savang Vadhana Memorial Hospital. Health Sci Rep 2022; 5:e591. [PMID: 35509409 PMCID: PMC9059221 DOI: 10.1002/hsr2.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aims The polymerase chain reaction (PCR) technique is adopted for pharmacogenetic testing and adverse drug reaction (ADR) analysis. Methods: PCR was used for testing of pharmacogenetic markers for HLA and non‐HLA polymorphism related to specific drugs. Results Among 76 cases that underwent genetic screening, 7.7%, 11.1%, and 2.7% of the patients were found to be genetically positive for allopurinol, carbamazepine, and abacavir, respectively. Two cases were genetically positive for interferon, and two cases of extensive metabolizers were positive for clopidogrel. One case of a NAT2 slow acetylator for isoniazid was found. Among the 74 cases with complete outcomes, 39.2% showed improvements and 18.9% reported a deterioration. Although no serious ADR was observed, two HLA‐B*5701‐negative cases reported ADRs (2.7%). All patients positive for IL28B were improved. One patient receiving clopidogrel showed improvements, but another showed deterioration. Finally, the outcome of slow acetylation NAT2 was worse without ADR. Conclusion PCR‐based pharmacogenetic testing is critical for ADR monitoring in a cost‐effective manner.
Collapse
Affiliation(s)
- Kessada Tunwongsa
- Department of Pharmacy Queen Savang Vadhana Memorial Hospital Chonburi Thailand
| | - Malinee Chonnawakul
- Department of Pharmacy Queen Savang Vadhana Memorial Hospital Chonburi Thailand
| | | | | |
Collapse
|
30
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Phung TH, Cong Duong KN, Junio Gloria MA, Nguyen TK. The association between HLA-B*15:02 and phenytoin-induced severe cutaneous adverse reactions: a meta-analysis. Pharmacogenomics 2021; 23:49-59. [PMID: 34816768 DOI: 10.2217/pgs-2021-0126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Phenytoin (PHT) is a common anticonvulsant agent known for inducing severe cutaneous adverse reactions (SCARs). HLA-B*15:02 as a risk factor of PHT-induced SCARs was reported in numerous studies with inconsistent results. This meta-analysis aimed to establish pooling evidence of this association. Materials & methods: Pooled odds ratios (ORs) with 95% CIs were estimated using a random-effects model. Results: A total of 11 studies on 1389 patients, were included for the analyses. There was a significant association between HLA-B*15:02 and PHT-induced SCAR (pooled OR = 2.29, 95% CI: 1.25-4.19, p = 0.008). Furthermore, there was a significant association regarding Stevens-Johnson syndrome/toxic epidermal necrolysis (OR = 3.63, 95% CI: 2.15-6.13, p < 0.001) but no association regarding drug reaction with eosinophilia and systemic symptom. Conclusion: The results supported the recommendations of HLA-B*15:02 screening before treatment with PHT.
Collapse
Affiliation(s)
- Thanh Huong Phung
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Khanh Ngoc Cong Duong
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Mac Ardy Junio Gloria
- Department of Pharmacy, University of The Philippines, Manila College of Pharmacy, Manila, Philippines
| | - Thien Khac Nguyen
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
32
|
Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel) 2021; 14:1077. [PMID: 34832859 PMCID: PMC8622011 DOI: 10.3390/ph14111077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA vary widely at population level and are responsible for developing severe cutaneous adverse drug reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE). The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive for clinical considerations. Prescribing guidelines generated by different national and international working groups for translation of HLA pharmacogenetics into clinical practice are underway and functional in many countries, including Thailand. Cutting edge genomic technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are great opportunities and several challenges as well for effective implementation of HLA genotyping globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing precision medicine initiatives.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction THAI-SCAR Research-Genomics Thailand, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics and Precision Medicine Clinic, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
33
|
Nersisyan S, Zhiyanov A, Shkurnikov M, Tonevitsky A. T-CoV: a comprehensive portal of HLA-peptide interactions affected by SARS-CoV-2 mutations. Nucleic Acids Res 2021; 50:D883-D887. [PMID: 34396391 PMCID: PMC8385993 DOI: 10.1093/nar/gkab701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rapidly appearing SARS-CoV-2 mutations can affect T cell epitopes, which can help the virus to evade either CD8 or CD4 T-cell responses. We developed T-cell COVID-19 Atlas (T-CoV, https://t-cov.hse.ru) – the comprehensive web portal, which allows one to analyze how SARS-CoV-2 mutations alter the presentation of viral peptides by HLA molecules. The data are presented for common virus variants and the most frequent HLA class I and class II alleles. Binding affinities of HLA molecules and viral peptides were assessed with accurate in silico methods. The obtained results highlight the importance of taking HLA alleles diversity into account: mutation-mediated alterations in HLA-peptide interactions were highly dependent on HLA alleles. For example, we found that the essential number of peptides tightly bound to HLA-B*07:02 in the reference Wuhan variant ceased to be tight binders for the Indian (Delta) and the UK (Alpha) variants. In summary, we believe that T-CoV will help researchers and clinicians to predict the susceptibility of individuals with different HLA genotypes to infection with variants of SARS-CoV-2 and/or forecast its severity.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
35
|
Jantararoungtong T, Tempark T, Koomdee N, Medhasi S, Sukasem C. Genotyping HLA alleles to predict the development of Severe cutaneous adverse drug reactions (SCARs): state-of-the-art. Expert Opin Drug Metab Toxicol 2021; 17:1049-1064. [PMID: 34148467 DOI: 10.1080/17425255.2021.1946514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Pharmacogenomics has great potential in reducing drug-induced severe cutaneous adverse drug reactions (SCARs). Pharmacogenomic studies have revealed an association between HLA genes and SCARs including acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN).Areas covered: Pharmacogenomics-guided therapy could prevent severe drug hypersensitivity reactions. The US Food and Drug Administration (FDA), Clinical Pharmacogenetics Implementation Consortium (CPIC), and Dutch Pharmacogenetics Working Group (DPWG) provided guidelines in the translation of clinically relevant and evidence-based SCARs pharmacogenomics research into clinical practice. In this review, we intended to summarize the significant HLA alleles associated with SCARs induced by different drugs in different populations. We also summarize the SCARs associated with genetic and non-genetic factors and the cost-effectiveness of screening tests.Expert opinion: The effectiveness of HLA screening on a wider scale in clinical practice requires significant resources, including state-of-the-art laboratory; multidisciplinary team approach and health care provider education and engagement; clinical decision support alert system via electronic medical record (EMR); laboratory standards and quality assurance; evidence of cost-effectiveness; and cost of pharmacogenomics tests and reimbursement.
Collapse
Affiliation(s)
- Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sadeep Medhasi
- Center of Medical Genomics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
| |
Collapse
|
36
|
Sukasem C, Sririttha S, Chaichan C, Nakkrut T, Satapornpong P, Jaruthamsophon K, Jantararoungtong T, Koomdee N, Medhasi S, Oo-Puthinan S, Rerkpattanapipat T, Klaewsongkram J, Rerknimitr P, Tuchinda P, Chularojanamontri L, Tovanabutra N, Suvannang N, Rungrotmongkol T, Saokaew S, Aekplakorn W, Puangpetch A. Spectrum of cutaneous adverse reactions to aromatic antiepileptic drugs and human leukocyte antigen genotypes in Thai patients and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2021; 21:682-690. [PMID: 34175889 PMCID: PMC8602035 DOI: 10.1038/s41397-021-00247-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Aromatic antiepileptic drugs (AEDs)-induced cutaneous adverse drug reactions (cADRs) add up to the limited use of the AEDs in the treatment and prevention of seizures. Human leukocyte antigen-B (HLA-B) alleles have been linked to AEDs-induced cADRs. We investigated the association between cADRs (including Stevens-Johnson syndrome; SJS/toxic epidermal necrolysis; TEN, drug reaction with eosinophilia and systemic symptoms; DRESS, and Maculopapular eruption; MPE) caused by AEDs (phenytoin, carbamazepine, lamotrigine, phenobarbital and oxcarbazepine) and HLA-B alleles in Thai population. Through the case-control study, 166 patients with AEDs-induced cADRs, 426 AEDs-tolerant patients (AEDs-tolerant controls), and 470 healthy subjects (Thai population) were collected. The HLA genotypes were detected using the polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSOP) method. We also performed a meta-analysis with these data and other populations. The carrier rate of HLA-B*15:02 was significantly different between AEDs-induced cADRs group and AEDs-tolerant group (Odds ratio; OR 4.28, 95% Confidence interval; CI 2.64-6.95, p < 0.001), AEDs-induced cADRs group and Thai population (OR 2.15, 95%CI 1.41-3.29, p < 0.001). In meta-analysis showed the strong association HLA-B*15:02 with AEDs-induced cADRs (OR 4.77, 95%CI 1.79-12.73, p < 0.001). Furthermore, HLA-B*15:02 was associated with SJS/TEN induced by AEDs (OR 10.28, 95%CI 6.50-16.28, p < 0.001) Phenytoin (OR 4.12, 95%CI 1.77-9.59, p = 0.001) and carbamazepine (OR 137.69, 95%CI 50.97-371.98, p < 0.001). This study demonstrated that genetic association for AEDs-induced cADRs was phenotype-specific. A strong association between HLA-B*15:02 and AEDs-induced SJS/TEN was demonstrated with an OR of 10.79 (95%CI 5.50-21.16, p < 0.001) when compared with AEDs-tolerant group. On the other hand, the carrier rates of HLA-B*08:01, HLA-B*13:01, and HLA-B*56:02 were significantly higher in the DRESS group compared with the AEDs-tolerant group (p = 0.029, 0.007, and 0.017, respectively). The HLA-B*15:02 allele may represent a risk factor for AEDs-induced cADRs.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. .,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand. .,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand. .,Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.
| | - Suthida Sririttha
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Clinical Pharmacy Practice, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Chonlawat Chaichan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Pathology, School of medicine, University of Phayao, Phayao, Thailand
| | - Thapanat Nakkrut
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy, Neurological Institute of Thailand, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Kanoot Jaruthamsophon
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sadeep Medhasi
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarawut Oo-Puthinan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Ticha Rerkpattanapipat
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jettanong Klaewsongkram
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Skin and Allergy Research Unit, Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Rerknimitr
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Papapit Tuchinda
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Leena Chularojanamontri
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Napatra Tovanabutra
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) research group, Bangkok, Thailand.,Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Surasak Saokaew
- Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Wichai Aekplakorn
- Department of Community Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| |
Collapse
|
37
|
Satapornpong P, Pratoomwun J, Rerknimitr P, Klaewsongkram J, Nakkam N, Rungrotmongkol T, Konyoung P, Saksit N, Mahakkanukrauh A, Amornpinyo W, Khunarkornsiri U, Tempark T, Wantavornprasert K, Jinda P, Koomdee N, Jantararoungtong T, Rerkpattanapipat T, Wang CW, Naisbitt D, Tassaneeyakul W, Ariyachaipanich M, Roonghiranwat T, Pirmohamed M, Chung WH, Sukasem C. HLA-B*13 :01 Is a Predictive Marker of Dapsone-Induced Severe Cutaneous Adverse Reactions in Thai Patients. Front Immunol 2021; 12:661135. [PMID: 34017337 PMCID: PMC8130671 DOI: 10.3389/fimmu.2021.661135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 01/25/2023] Open
Abstract
HLA-B*13:01 allele has been identified as the genetic determinant of dapsone hypersensitivity syndrome (DHS) among leprosy and non-leprosy patients in several studies. Dapsone hydroxylamine (DDS-NHOH), an active metabolite of dapsone, has been believed to be responsible for DHS. However, studies have not highlighted the importance of other genetic polymorphisms in dapsone-induced severe cutaneous adverse reactions (SCAR). We investigated the association of HLA alleles and cytochrome P450 (CYP) alleles with dapsone-induced SCAR in Thai non-leprosy patients. A prospective cohort study, 16 Thai patients of dapsone-induced SCARs (5 SJS-TEN and 11 DRESS) and 9 Taiwanese patients of dapsone-induced SCARs (2 SJS-TEN and 7 DRESS), 40 dapsone-tolerant controls, and 470 general Thai population were enrolled. HLA class I and II alleles were genotyped using polymerase chain reaction-sequence specific oligonucleotides (PCR-SSOs). CYP2C9, CYP2C19, and CYP3A4 genotypes were determined by the TaqMan real-time PCR assay. We performed computational analyses of dapsone and DDS-NHOH interacting with HLA-B*13:01 and HLA-B*13:02 alleles by the molecular docking approach. Among all the HLA alleles, only HLA-B*13:01 allele was found to be significantly associated with dapsone-induced SCARs (OR = 39.00, 95% CI = 7.67–198.21, p = 5.3447 × 10−7), SJS-TEN (OR = 36.00, 95% CI = 3.19–405.89, p = 2.1657 × 10−3), and DRESS (OR = 40.50, 95% CI = 6.38–257.03, p = 1.0784 × 10−5) as compared to dapsone-tolerant controls. Also, HLA-B*13:01 allele was strongly associated with dapsone-induced SCARs in Asians (OR = 36.00, 95% CI = 8.67–149.52, p = 2.8068 × 10−7) and Taiwanese (OR = 31.50, 95% CI = 4.80–206.56, p = 2.5519 × 10−3). Furthermore, dapsone and DDS-NHOH fit within the extra-deep sub pocket of the antigen-binding site of the HLA-B*13:01 allele and change the antigen-recognition site. However, there was no significant association between genetic polymorphism of cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) and dapsone-induced SCARs (SJS-TEN and DRESS). The results of this study support the specific genotyping of the HLA-B*13:01 allele to avoid dapsone-induced SCARs including SJS-TEN and DRESS before initiating dapsone therapy in the Asian population.
Collapse
Affiliation(s)
- Patompong Satapornpong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Pawinee Rerknimitr
- The Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jettanong Klaewsongkram
- The Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Program in Bioinformatics and Computational Biology, Graduated School, Chulalongkorn University, Bangkok, Thailand
| | | | - Niwat Saksit
- Unit of Excellence on Pharmacogenomic Pharmacokinetic and Pharmacotherapeutic Researches (UPPER), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Ajanee Mahakkanukrauh
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Khon Kaen, Thailand
| | | | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Ticha Rerkpattanapipat
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Dean Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Bangkok, Thailand
| |
Collapse
|
38
|
Bothos E, Ntoumou E, Kelaidoni K, Roukas D, Drakoulis N, Papasavva M, Karakostis FA, Moulos P, Karakostis K. Clinical pharmacogenomics in action: design, assessment and implementation of a novel pharmacogenetic panel supporting drug selection for diseases of the central nervous system (CNS). J Transl Med 2021; 19:151. [PMID: 33858454 PMCID: PMC8048316 DOI: 10.1186/s12967-021-02816-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pharmacogenomics describes the link between gene variations (polymorphisms) and drug responses. In view of the implementation of precision medicine in personalized healthcare, pharmacogenetic tests have recently been introduced in the clinical practice. However, the translational aspects of such tests have been limited due to the lack of robust population-based evidence. Materials In this paper we present a novel pharmacogenetic panel (iDNA Genomics-PGx–CNS or PGx–CNS), consisting of 24 single nucleotide polymorphisms (SNPs) on 13 genes involved in the signaling or/and the metabolism of 28 approved drugs currently administered to treat diseases of the Central Nervous System (CNS). We have tested the PGx–CNS panel on 501 patient-derived DNA samples from a southeastern European population and applied biostatistical analyses on the pharmacogenetic associations involving drug selection, dosing and the risk of adverse drug events (ADEs). Results Results reveal the occurrences of each SNP in the sample and a strong correlation with the European population. Nonlinear principal component analysis strongly indicates co-occurrences of certain variants. The metabolization efficiency (poor, intermediate, extensive, ultra-rapid) and the frequency of clinical useful pharmacogenetic, associations in the population (drug relevance), are also described, along with four exemplar clinical cases illustrating the strong potential of the PGx–CNS panel, as a companion diagnostic assay. It is noted that pharmacogenetic associations involving copy number variations (CNVs) or the HLA gene were not included in this analysis. Conclusions Overall, results illustrate that the PGx–CNS panel is a valuable tool supporting therapeutic medical decisions, urging its broad clinical implementation. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02816-3.
Collapse
Affiliation(s)
- E Bothos
- HybridStat Predictive Analytics, Athens, Greece.,Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
| | - E Ntoumou
- iDNA Genomics Private Company, Evrota 25, Kifissia, 145 64, Athens, Greece
| | - K Kelaidoni
- iDNA Genomics Private Company, Evrota 25, Kifissia, 145 64, Athens, Greece
| | - D Roukas
- Department of Psychiatry, Army Hospital (NIMTS), 417 Veterans, 115 21, Athens, Greece
| | - N Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - M Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - F A Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - P Moulos
- HybridStat Predictive Analytics, Athens, Greece.,Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', 34 Fleming str, 16672, Athens, Vari, Greece
| | - K Karakostis
- iDNA Genomics Private Company, Evrota 25, Kifissia, 145 64, Athens, Greece.
| |
Collapse
|
39
|
Pham TTH, Tran QB, Sukasem C, Nguyen VD, Chu CH, Do TQN, Tran NPM, Phung TH. A Novel Allele-Specific PCR Protocol for the Detection of the HLA-C*03:02 Allele, a Pharmacogenetic Marker, in Vietnamese Kinh People. APPLICATION OF CLINICAL GENETICS 2021; 14:27-35. [PMID: 33603436 PMCID: PMC7881795 DOI: 10.2147/tacg.s278652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
Background Allopurinol, a common anti-hyperuricemia drug, is well known as an inducer of severe cutaneous adverse drug reactions (SCARs). One of the most well-defined risk factors of allopurinol-induced SCARs is the presence of polymorphic alleles of human leukocyte antigen (HLA) genes, such as HLA-B*58:01 and HLA-C*03:02 alleles. There is no commercial test or published in-house protocol for the specific detection of the HLA-C*03:02 allele. In this article, we established for the first time a simple allele-specific (AS) PCR method to identify HLA-C*03:02 allele carriers, and at the same time, determine their zygosities. Methods A two-step AS-PCR protocol, using four primer sets, was designed to specifically amplify and differentiate the HLA-C*03:02 allele from 17 other HLA-C alleles found in Vietnamese people. The protocol was validated with PCR-sequencing-based typing (SBT) of 100 samples of unknown genotypes. Results The PCR protocol can detect the HLA-C*03:02 allele and determine the zygosity. The results of this protocol were highly consistent with those of the SBT (ĸ = 0.98, p < 0.001). Regarding the specific detection of the HLA-C*03:02 allele, the PCR protocol had a sensitivity of 100% (95% CI: 91.61-100%) and specificity of 98.3% (95% CI: 90.9-99.7%). The protocol was used to determine the distribution of the HLA-C*03:02 allele in 810 unrelated Vietnamese Kinh people, 14.2% of which were HLA-C*03:02 carriers, the allele frequency was 7.5%. Conclusion A novel AS-PCR protocol with a sensitivity of 100% for the detection of the HLA-C*03:02 allele was established. The protocol can be used for personalized treatment with allopurinol in order to minimize the risk of SCARs in Vietnamese people as well as in other Asian populations with similar genetic characteristics.
Collapse
Affiliation(s)
| | | | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Bangkok, Thailand
| | - Van Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit, Internal Medicine Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam.,College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Chi Hieu Chu
- Center of Allergology and Clinical Immunology, Bach Mai Hospital, Hanoi, Vietnam
| | | | | | | |
Collapse
|
40
|
Songsaigath S, Makiuchi T, Putaporntip C, Pattanawong U, Kuamsab N, Tachibana H, Jongwutiwes S. Immunoglobulin G responses to variant forms of Plasmodium vivax merozoite surface protein 9 upon natural infection in Thailand. Sci Rep 2021; 11:3201. [PMID: 33547377 PMCID: PMC7864938 DOI: 10.1038/s41598-021-82928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Merozoite surface protein 9 (MSP9) constitutes a ligand complex involved in erythrocyte invasion by malarial merozoites and is a promising vaccine target. Plasmodium vivax MSP9 (PvMSP9) is immunogenic upon natural malaria exposure. To address whether sequence diversity in PvMSP9 among field isolates could affect natural antibody responses, the recombinant proteins representing two variants each for the N- and the C-terminal domains of PvMSP-9 were used as antigens to assess antibody reactivity among 246 P. vivax-infected patients’ sera from Tak and Ubon Ratchathani Provinces in Thailand. Results revealed that the seropositivity rates of IgG antibodies to the N-terminal antigens were higher than those to the C-terminal antigens (87.80% vs. 67.48%). Most seropositive sera were reactive to both variants, suggesting the presence of common epitopes. Variant-specific antibodies to the N- and the C-terminal antigens were detected in 15.85% and 16.70% of serum samples, respectively. These seropositivity rates were not significant difference between provinces. The seropositivity rates, levels and avidity of anti-PvMSP9 antibodies exhibited positive trends towards increasing malaria episodes. The IgG isotype responses to the N- and the C-terminal antigens were mainly IgG1 and IgG3. The profile of IgG responses may have implications for development of PvMSP9-based vaccine.
Collapse
Affiliation(s)
- Sunisa Songsaigath
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
41
|
Doña I, Jurado-Escobar R, Pérez-Sánchez N, Laguna JJ, Bartra J, Testera-Montes A, de Santa María RS, Torres MJ, Cornejo-García JA. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine? CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Jan A, Saeed M, Afridi MH, Khuda F, Shabbir M, Khan H, Ali S, Hassan M, Akbar R. Association of HLA-B Gene Polymorphisms with Type 2 Diabetes in Pashtun Ethnic Population of Khyber Pakhtunkhwa, Pakistan. J Diabetes Res 2021; 2021:6669731. [PMID: 34258292 PMCID: PMC8254654 DOI: 10.1155/2021/6669731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
Human leukocyte antigen (HLA) system is the most polymorphic and gene dense region of human DNA that has shown many disease associations. It has been further divided into HLA classes I, II, and III. Polymorphism in HLA class II genes has been reported to play an important role in the pathogenesis of type 1 diabetes (T1D). It also showed association with T2D in different ethnic populations. However, a little is known about the relationship of HLA class I gene polymorphism and T2D. This study has evaluated the association of HLA-B (class I gene) variants with T2D in Pashtun ethnic population of Khyber Pakhtunkhwa. In the first phase of the study, whole exome sequencing (WES) of 2 pooled DNA samples was carried out, and DNA pools used were constructed from 100 diabetic cases and 100 control subjects. WES results identified a total of n = 17 SNPs in HLA-B gene. In the next phase, first 5 out of n = 17 reported SNPs were genotyped using MassARRAY® system in order to validate WES results and to confirm association of selected SNPs with T2D. Minor allele frequencies (MAFs) and selected SNPs×T2D association were determined using chi-square test and logistic regression analysis. The frequency of minor C allele was significantly higher in the T2D group as compared to control group (45.0% vs. 13.0%) (p = 0.006) for rs2308655 in HLA-B gene. No significant difference in MAF distribution between cases and controls was observed for rs1051488, rs1131500, rs1050341, and rs1131285 (p > 0.05). Binary logistic regression analyses showed significant results for SNP rs2308655 (OR = 2.233, CI (95%) = 1.223-4.077, and p = 0.009), while no considerable association was observed for the other 4 SNPs. However, when adjusted for these variants, the association of rs2308655 further strengthened significantly (adjusted OR = 7.485, CI (95%) = 2.353-23.812, and p = 0.001), except for rs1131500, which has no additive effect. In conclusion, the finding of this study suggests rs2308655 variant in HLA-B gene as risk variant for T2D susceptibility in Pashtun population.
Collapse
Affiliation(s)
- Asif Jan
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Muhammad Saeed
- Department of Pharmacy, University of Peshawar, Pakistan
| | | | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Muhammad Shabbir
- Internal Medicine, College of Medicine, Shaqra University, Saudi Arabia
| | - Hamayun Khan
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Rani Akbar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
43
|
Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, Asl BB, Bishop JR, Burmeister M, Chaumette B, Chen LS, Cordner ZA, Deckert J, Degenhardt F, DeLisi LE, Folkersen L, Kennedy JL, Klein TE, McClay JL, McMahon FJ, Musil R, Saccone NL, Sangkuhl K, Stowe RM, Tan EC, Tiwari AK, Zai CC, Zai G, Zhang J, Gaedigk A, Müller DJ. Review and Consensus on Pharmacogenomic Testing in
Psychiatry. PHARMACOPSYCHIATRY 2020; 54:5-17. [DOI: 10.1055/a-1288-1061] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe implementation of pharmacogenomic (PGx) testing in psychiatry remains modest,
in part due to divergent perceptions of the quality and completeness of the
evidence base and diverse perspectives on the clinical utility of PGx testing
among psychiatrists and other healthcare providers. Recognizing the current lack
of consensus within the field, the International Society of Psychiatric Genetics
assembled a group of experts to conduct a narrative synthesis of the PGx
literature, prescribing guidelines, and product labels related to psychotropic
medications as well as the key considerations and limitations related to the use
of PGx testing in psychiatry. The group concluded that to inform medication
selection and dosing of several commonly-used antidepressant and antipsychotic
medications, current published evidence, prescribing guidelines, and product
labels support the use of PGx testing for 2 cytochrome P450 genes (CYP2D6,
CYP2C19). In addition, the evidence supports testing for human leukocyte
antigen genes when using the mood stabilizers carbamazepine (HLA-A and
HLA-B), oxcarbazepine (HLA-B), and phenytoin (CYP2C9, HLA-B). For
valproate, screening for variants in certain genes (POLG, OTC, CSP1) is
recommended when a mitochondrial disorder or a urea cycle disorder is suspected.
Although barriers to implementing PGx testing remain to be fully resolved, the
current trajectory of discovery and innovation in the field suggests these
barriers will be overcome and testing will become an important tool in
psychiatry.
Collapse
Affiliation(s)
- Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology &
Pharmacology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of
Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB,
Canada
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
| | - Susanne A. Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical
University of Graz, Austria
| | - Katherine J. Aitchison
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Azmeraw T. Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide,
Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI),
Adelaide, SA, Australia
| | - Harald Aschauer
- Biopsychosocial Corporation (BioPsyC), non-profit association, Vienna,
Austria
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of
Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University
of Melbourne, Parkville, VIC, Australia
| | - Bahareh Behroozi Asl
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of
Minnesota College of Pharmacy and Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
| | - Margit Burmeister
- Michigan Neuroscience Institute and Departments of Computational
Medicine & Bioinformatics, Human Genetics and Psychiatry, The University
of Michigan, Ann Arbor MI, USA
| | - Boris Chaumette
- Institute of Psychiatry and Neuroscience of Paris, GHU Paris
Psychiatrie & Neurosciences, University of Paris, Paris,
France
- Department of Psychiatry, McGill University, Montreal,
Canada
| | - Li-Shiun Chen
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, Würzburg, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine
& University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and
Psychotherapy, University Hospital Essen, University of Duisburg-Essen,
Duisburg, Germany
| | - Lynn E. DeLisi
- Department of Psychiatry, Harvard Medical School, Cambridge Health
Alliance, Cambridge, Massachusetts, USA
| | - Lasse Folkersen
- Institute of Biological Psychiatry, Capital Region Hospitals,
Copenhagen, Denmark
| | - James L. Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Joseph L. McClay
- Department of Pharmacotherapy and Outcome Science, Virginia
Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Francis J. McMahon
- Human Genetics Branch, National Institute of Mental Health, Bethesda,
MD, USA
| | - Richard Musil
- Department of Psychiatry and Psychotherapy,
Ludwig-Maximilians-University, Munich, Germany
| | - Nancy L. Saccone
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Robert M. Stowe
- Departments of Psychiatry and Neurology (Medicine), University of
British Columbia, USA
| | - Ene-Choo Tan
- KK Research Centre, KK Women’s and Children’s Hospital,
Singapore, Singapore
| | - Arun K. Tiwari
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Clement C. Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Jianping Zhang
- Department of Psychiatry, Weill Cornell Medical College, New
York-Presbyterian Westchester Division, White Plains, NY, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic
Innovation, Children’s Mercy Kansas City, Kansas City and School of
Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
44
|
Sukasem C, Pratoomwun J, Satapornpong P, Klaewsongkram J, Rerkpattanapipat T, Rerknimitr P, Lertpichitkul P, Puangpetch A, Nakkam N, Konyoung P, Khunarkornsiri U, Disphanurat W, Srisuttiyakorn C, Pattanacheewapull O, Kanjanawart S, Kongpan T, Chumworathayi P, Saksit N, Bruminhent J, Tassaneeyakul W, Chantratita W, Pirmohamed M. Genetic Association of Co-Trimoxazole-Induced Severe Cutaneous Adverse Reactions Is Phenotype-Specific: HLA Class I Genotypes and Haplotypes. Clin Pharmacol Ther 2020; 108:1078-1089. [PMID: 32452529 DOI: 10.1002/cpt.1915] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Co-trimoxazole (CTX) causes various forms of severe cutaneous adverse reactions (SCARs). This case-control study was conducted to investigate the involvement between genetic variants of human leukocyte antigen (HLA) and CYP2C9 in CTX-induced SCARs, including Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) in Thai patients. Thirty cases of CTX-induced SCARs were enrolled and compared with 91 CTX-tolerant controls and 150 people from the general Thai population. Cases comprised 18 SJS/TEN and 12 DRESS patients. This study demonstrated that genetic association of CTX-induced SCARs was phenotype-specific. HLA-B*15:02 and HLA-C*08:01 alleles were significantly associated with CTX-induced SJS/TEN, whereas the HLA-B*13:01 allele was significantly associated with CTX-induced DRESS. In addition, a significant higher frequency of HLA-A*11:01-B*15:02 and HLA-B*13:01-C*03:04 haplotypes were detected in the group of CTX-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and DRESS cases, respectively. Genetic association of CTX-induced SCARs is phenotype-specific. Interestingly, these association was observed only in HIV-infected patients but not in non-HIV-infected patients.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Division of General Pharmacy Practice, Department of Pharmaceutical Care, Faculty of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Jettanong Klaewsongkram
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand.,King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ticha Rerkpattanapipat
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pawinee Rerknimitr
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Pattamon Lertpichitkul
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Wareeporn Disphanurat
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Chutika Srisuttiyakorn
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group.,Division of Dermatology, Department of Medicine, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | | | | - Thachanan Kongpan
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Pansu Chumworathayi
- Pharmacy Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand
| | - Niwat Saksit
- School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Wasun Chantratita
- Genomic Medicine Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, The Royal Liverpool, Broadgreen University Hospitals NHS Trust, MRC Centre for Drug Safety Science, Liverpool Health Partners, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Chang WC, Hung SI, Carleton BC, Chung WH. An update on CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol 2020; 16:723-734. [DOI: 10.1080/17425255.2020.1780209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wan-Chun Chang
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Shuen-Iu Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Teaching Hospital of School of Medicine, Tsinghua University, China
| |
Collapse
|