1
|
Ji H, Dong Z, Yang Y, Cui W, Han J, Hu Y, Chen H, Qiao C, Li Q, Li H, Wu S. Neixiao-ruanmai decoction No 2 improves carotid atherosclerosis by modulating gut microbiota and inhibiting TLR4/NF-κB pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156775. [PMID: 40286751 DOI: 10.1016/j.phymed.2025.156775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Carotid atherosclerosis(CAs) plaques are challenging to reverse. Neixiao-Ruanmai Decoction No 2(NXRMT No 2), a Traditional Chinese Medicine (TCM) decoction, has shown potential in treating CAs. However, while preliminary clinical trials have confirmed the efficacy of NXRMT No 2 in improving CAs, the comparative effectiveness of long-term versus short-term treatment courses remains unclear, and the underlying mechanisms of this decoction are not yet fully understood. METHODS We conducted clinical trials, animal studies, 16S rRNA sequencing, metabolomics and fecal microbiota transplantation. RESULT Clinical research results indicate that NXRMT No 2(24 weeks of treatment) reduced total plaque area by 22.02%, maximum plaque thickness by 7.91%, and maximum plaque area by 21.29%. NXRMT No 2 improves patients'serum inflammatory levels, with a 24-week treatment course demonstrated superior efficacy compared to the 12-week treatment. Animal experiments demonstrated that NXRMT No 2 improved CAs progression, modulated the gut microbiota, inhibited the intestinal Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and activated the expression of intestinal tight junction proteins. CONCLUSION NXRMT No 2 significantly attenuates CAs progression, with its primary mechanism likely related to modulating the gut microbiota to counteract the TLR4/NF-κB pathway and protect the intestinal barrier. This study provides evidence-based support for the use of NXRMT No 2 in treating CAs, offers guidance on optimal treatment duration for patients, and contributes to the development of traditional Chinese medicine formulations that improve CAs by modulating the gut microbiota-a significant advance in the prevention and treatment of CAs.
Collapse
Affiliation(s)
- Hanrui Ji
- Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing101400, PR China
| | - Zhizhi Dong
- Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing101400, PR China
| | - Yanan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Wenqiang Cui
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, PR China
| | - Jingbo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, PR China
| | - Yibin Hu
- Neurology Department of The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, PR China
| | - Haonan Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, PR China
| | - Chongxuan Qiao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, PR China
| | - Qingxiao Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, PR China
| | - He Li
- Neurology Department of The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, PR China.
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, PR China.
| |
Collapse
|
2
|
Puccini SJ, Healy CL, Harsch BA, Ahmed AR, Shearer GC, O’Connell TD. A Cell Autonomous Free fatty acid receptor 4 - ChemR23 Signaling Cascade Protects Cardiac Myocytes from Ischemic Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625260. [PMID: 39829927 PMCID: PMC11741238 DOI: 10.1101/2024.11.26.625260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage. Free fatty acid receptor 4 (Ffar4) is a GPCR for long chain fatty acids (FA) that is expressed in multiple cell types including CMs. We have recently shown that CM-specific overexpression of Ffar4 protects the heart from systolic dysfunction in the context of ischemic injury. Mechanistically, in CMs, Ffar4 increases the levels of 18-hydroxyeicosapentaenoic acid (18-HEPE), an eicosapentaenoic acid (EPA)-derived, cardioprotective oxylipin (oxidatively modified FA). 18-HEPE is the precursor for resolvin E1 (RvE1), a cardioprotective, specialized pro-resolving mediator (SPM) that activates the GPCR ChemR23. We hypothesize Ffar4 in CMs protects the heart from oxidative stress and ischemic injury through activation of a CM-autonomous, Ffar4-ChemR23 cardioprotective signaling pathway. Here, we developed an in vitro hypoxia reoxygenation (H/R) model (3 hours of hypoxia, 17 hours of reoxygenation) in adult CMs as a model for ischemic injury. In adult CMs subjected to H/R, TUG-891, an Ffar4 agonist, attenuated ROS generation and TUG-891, 18-HEPE, and RvE1 protected CMs from H/R-induced cell death. More importantly, we found that the ChemR23 antagonist α-NETA prevented TUG-891 cytoprotection in adult CMs subjected to H/R, demonstrating that ChemR23 is required for Ffar4 cardioprotection. In summary, our data demonstrate co-expression of Ffar4 and ChemR23 in the same CM, that Ffar4, 18-HEPE, and RvE1 attenuate H/R-induced CM death, and that ChemR23 is required for Ffar4 cardioprotection in H/R support a CM-autonomous Ffar4-ChemR23 cardioprotective signaling pathway.
Collapse
Affiliation(s)
- Sara J. Puccini
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Brian A. Harsch
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Ahmed R. Ahmed
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Gregory C. Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Timothy D. O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
3
|
Li J, Xiao F, Lin B, Huang Z, Wu M, Ma H, Dou R, Song X, Wang Z, Cai C, Guan X, Xu J, Xiang FL. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis. Front Cell Dev Biol 2024; 12:1510232. [PMID: 39726718 PMCID: PMC11669711 DOI: 10.3389/fcell.2024.1510232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia. However, the effects of Fer-1 in cardiac dysfunction in the early stages of cecal ligation and puncture (CLP) induced sepsis remains unclear. Our study aims to elucidate the role of Fer-1 in the acute phase of peritonitis sepsis induced cardiac injury. Methods and Results CLP was used to induce peritonitis sepsis in mice. Pretreatment of ferroptosis inhibitor ferrostatin-1 (Fer-1) was used in the in vivo models. Survival was monitored for 48h. Cardiac function and histology were analyzed 6h after surgery. We found that ejection fraction (EF) remained normal at 6h after CLP, but the contractility detected by cardiac muscle strain analysis was significantly reduced, along with increased immune cell infiltration. Pretreating the CLP mice with 5 mg/kg Fer-1 significantly reduced mortality. At 6h after CLP, ferroptosis key regulator Gpx4, cardiac iron and malonaldehyde (MDA) did not change, but ferroptosis marker gene expression increased. Fer-1 treatment showed beneficial effects in cardiac function, less myocardial inflammatory cytokine expression and significantly inhibited immune cells, especially neutrophil infiltration in the heart. Consistently, expression of neutrophil associated chemokines (Ccrl2, Cxcl2, Cxcl3 and Cxcl5) as well as extracellular matrix (ECM) degradation enzymes (Adamts1, Adamts4, Adamts9 and Mmp8) significantly decreased in Fer-1 pre-treated CLP heart. Conclusion and Discussion Our findings suggest that Fer-1 inhibits neutrophil infiltration in early sepsis by disrupting the chemokine axis, highlighting its potential as a therapeutic option to manage acute immune overactivation in early stages of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingsen Lin
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Ma
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxu Dou
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changjie Cai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Zheng Z, Zhao M, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Wei C, Qin JJ, Wan J, Wang M. Resolvin D2/GPR 18 axis ameliorates pressure overload-induced heart failure by inhibiting pro-inflammatory macrophage polarization. J Lipid Res 2024; 65:100679. [PMID: 39490925 DOI: 10.1016/j.jlr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Accumulating evidence has revealed that chronic unresolved inflammation can cause significant tissue damage and can be a key mediator of advanced heart failure (HF). Resolvin (Rv) D2, a member of specialized pro-resolving lipid mediators (SPMs), plays a protective role in various diseases by facilitating resolution. However, whether RvD2 participates in the pathogenesis of HF is still unclear. Our study demonstrated that RvD2 treatment mitigated cardiac remodeling and improved cardiac function in HF mice induced by pressure overload. The absence of G protein-coupled receptor 18 (GPR18), an endogenous receptor for RvD2, abolished the beneficial effects of RvD2 on HF. Additionally, RvD2 inhibited inflammatory responses and Ly6Chigh macrophage polarization during both early and late inflammatory stages involved in HF. Further investigation revealed that bone marrow transplantation from Gpr18 deficient mice into WT mice blocked the protective effects of RvD2 in HF mice. Moreover, Gpr18 deficiency impeded RvD2's capacity to downregulate inflammatory responses and Ly6Chigh macrophage polarization. Consistent with experiments in vivo, RvD2 treatment in bone marrow-derived macrophages (BMDMs) reduced inflammatory responses through its receptor GPR18. Mechanistically, RvD2 suppressed the phosphorylation of STAT1 and NF-κB p65, and the effects of RvD2 were reversed by the application of STAT1 or NF-κB p65 agonists in BMDMs. In conclusion, RvD2/GPR18 axis improved cardiac remodeling and function in pressure overload-induced HF mice by modulating macrophage phenotype via STAT1 and NF-κB p65 pathways. Our findings underscore the anti-inflammatory potential of RvD2/GPR18 axis, suggesting that RvD2/GPR18 axis may be a potential strategy for the treatment of HF.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
5
|
Xu L, Yang X, Liu XT, Li XY, Zhu HZ, Xie YH, Wang SW, Li Y, Zhao Y. Carvacrol alleviates LPS-induced myocardial dysfunction by inhibiting the TLR4/MyD88/NF-κB and NLRP3 inflammasome in cardiomyocytes. J Inflamm (Lond) 2024; 21:47. [PMID: 39548566 PMCID: PMC11568595 DOI: 10.1186/s12950-024-00411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/16/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction (SIMD) may contribute to the poor prognosis of septic patients. Carvacrol (2-methyl-5-isopropyl phenol), a phenolic monoterpene compound extracted from various aromatic plants and fragrance essential oils, has multiple beneficial effects such as antibacterial, anti-inflammatory, and antioxidant properties. These attributes make it potentially useful for treating many diseases. This study aims to investigate the effects of CAR on LPS-induced myocardial dysfunction and explore the underlying mechanism. RESULTS H9c2 cells were stimulated with 10 µg/ml LPS for 12 h, and c57BL/6 mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic-myocardial injury model. Our results showed that CAR could improve cardiac function, significantly reduce serum levels of inflammatory cytokines (including TNF-α, IL-1β, and IL-6), decrease oxidative stress, and inhibit cardiomyocyte apoptosis in LPS-injured mice. Additionally, CAR significantly downregulated the expression of TLR4, MyD88, and NF-κB in LPS-injured mice and H9c2 cells. It also inhibited the upregulation of inflammasome components (such as NLRP3, GSDMD, and IL-1β) in H9c2 cells triggered by LPS. CONCLUSION Taken together, CAR exhibited potential cardioprotective effects against sepsis, which may be mainly attributed to the TLR4/MyD88/NF-κB pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lu Xu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xu Yang
- The College of Life Science, Northwest University, Xi'an, China
| | - Xiao-Ting Liu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xia-Yun Li
- The College of Life Science, Northwest University, Xi'an, China
| | - Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Yan-Hua Xie
- The College of Life Science, Northwest University, Xi'an, China
| | - Si-Wang Wang
- The College of Life Science, Northwest University, Xi'an, China.
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Ye Zhao
- The College of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Ji L, Liu G, Yu G, Xia C, Liu S, Lan Y. Resolvin E1 and Inhibition of BLT2 Signaling Attenuate the Inflammatory Response and Improve One-Lung Ventilation-Induced Lung Injury. Immunol Invest 2024; 53:1293-1307. [PMID: 39230105 DOI: 10.1080/08820139.2024.2399587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION One-lung ventilation (OLV) is a prevalently used technique to sustain intraoperative pulmonary function. Resolvin E1 (RvE1), a specialized pro-resolving lipid mediator, accelerates the resolution of inflammation in the lungs. However, its therapeutic effects on OLV-induced lung injury remain unclear. METHODS We initially developed an OLV rat model and treated it with RvE1. Subsequently, we assessed the wet/dry ratio of the lung tissue, performed hematoxylin and eosin staining, and calculated the ratio of polymorphonuclear cells to white blood cells in the bronchoalveolar lavage fluid. Additionally, we assessed apoptosis, inflammatory factor levels, and lung permeability in the rat lung tissues in the RvE1 treated and untreated groups and explored the molecular mechanisms mediated by RvE1. RESULTS Our results indicated that RvE1 alleviated lung injury and inflammation and improved lung tissue apoptosis and permeability in OLV rats. Moreover, RvE1 suppressed the expression of the BLT1/2 signaling pathway and its ligands. The use of BLT2 and BLT1 inhibitors (LY255283 and U-75302, respectively) enhanced RvE1's anti-inflammatory effects and reduced lung injury. Furthermore, synergistic treatment with the BLT2 inhibitor and RvE1 provided grater benefits by more effectively inhibiting the NF-kB, p38 MAPK, and ERK pathways. DISCUSSION RvE1 and the inhibition of BLT2 signalling reduce the inflammatory response and mitigate OLV-induced lung injury. These findings suggest a novel therapeutic pathway for managing OLV-related complications.
Collapse
Affiliation(s)
- Liting Ji
- Department of Anesthesiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Gang Liu
- Department of Anesthesiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Gongmin Yu
- Department of Anesthesiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Changxing Xia
- Department of Anesthesiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| | | | - Yunping Lan
- Department of Anesthesiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| |
Collapse
|
7
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
8
|
Sun S, Yang D, Lv J, Xia H, Mao Z, Chen X, Gao Y. Pharmacological effects of specialized pro-resolving mediators in sepsis-induced organ dysfunction: a narrative review. Front Immunol 2024; 15:1444740. [PMID: 39372413 PMCID: PMC11451296 DOI: 10.3389/fimmu.2024.1444740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Sepsis is a life-threatening syndrome of organ dysfunction, characterized by uncontrolled inflammatory response and immune dysregulation, often leading to multiple organ failure and even death. Specialized pro-resolving mediators (SPMs), which are typically thought to be formed via consecutive steps of oxidation of polyenoic fatty acids, have been shown to suppress inflammation and promote timely resolution of inflammation. They are mainly divided into four categories: lipoxins, resolvins, protectins, and maresins. The SPMs may improve the prognosis of sepsis by modulating the immune and inflammatory balance, thereby holding promise for clinical applications. However, their biosynthetic and pharmacological properties are very complex. Through a literature review, we aim to comprehensively elucidate the protective mechanisms of different SPMs in sepsis and its organ damage, in order to provide sufficient theoretical basis for the future clinical translation of SPMs.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhangyan Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yafen Gao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
9
|
Shih WC, Jang IH, Kruglov V, Dickey D, Cholensky S, Bernlohr DA, Camell CD. Role for BLT1 in regulating inflammation within adipose tissue immune cells of aged mice. Immun Ageing 2024; 21:57. [PMID: 39187841 PMCID: PMC11346001 DOI: 10.1186/s12979-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Aging is a complex biological process characterized by obesity and immunosenescence throughout the organism. Immunosenescence involves a decline in immune function and the increase in chronic-low grade inflammation, called inflammaging. Adipose tissue expansion, particularly that of visceral adipose tissue (VAT), is associated with an increase in pro-inflammatory macrophages that play an important role in modulating immune responses and producing inflammatory cytokines. The leukotriene B4 receptor 1 (BLT1) is a regulator of obesity-induced inflammation. Its ligand, LTB4, acts as a chemoattractant for immune cells and induces inflammation. Studies have shown that BLT1 is crucial for cytokine production during lipopolysaccharide (LPS) endotoxemia challenge in younger organisms. However, the expression patterns and function of BLT1 in older organisms remains unknown. RESULTS In this study, we investigated BLT1 expression in immune cell subsets within the VAT of aged male and female mice. Moreover, we examined how antagonizing BLT1 signaling could alter the inflammatory response to LPS in aged mice. Our results demonstrate that aged mice exhibit increased adiposity and inflammation, characterized by elevated frequencies of B and T cells, along with pro-inflammatory macrophages in VAT. BLT1 expression is the highest in VAT macrophages. LPS and LTB4 treatment result in increased BLT1 in young and aged bone marrow-derived macrophages (BMDMs). However, LTB4 treatment resulted in amplified Il6 from aged, but not young BMDMs. Treatment of aged mice with the BLT1 antagonist, U75302, followed by LPS-induced endotoxemia resulted in an increase in anti-inflammatory macrophages, reduced phosphorylated NFκB and reduced Il6. CONCLUSIONS This study provides valuable insights into the age- and sex- specific changes in BLT1 expression on immune cell subsets within VAT. This study offers support for the potential of BLT1 in modulating inflammation in aging.
Collapse
Affiliation(s)
- Wei-Ching Shih
- Department of Pharmacology, Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Victor Kruglov
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Deborah Dickey
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Stephanie Cholensky
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D Camell
- Department of Pharmacology, Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Wei C, Zhang J, Peng S, Liu J, Xu Y, Zhao M, Xu S, Pan W, Yin Z, Zheng Z, Qin JJ, Wan J, Wang M. Resolvin D1 attenuates Ang II-induced hypertension in mice by inhibiting the proliferation, migration and phenotypic transformation of vascular smooth muscle cells by blocking the RhoA/mitogen-activated protein kinase pathway. J Hypertens 2024; 42:420-431. [PMID: 37937508 PMCID: PMC10842678 DOI: 10.1097/hjh.0000000000003610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| |
Collapse
|
12
|
Yin Z, Zhang J, Zhao M, Peng S, Ye J, Liu J, Xu Y, Xu S, Pan W, Wei C, Qin J, Wan J, Wang M. Maresin-1 ameliorates hypertensive vascular remodeling through its receptor LGR6. MedComm (Beijing) 2024; 5:e491. [PMID: 38463394 PMCID: PMC10924638 DOI: 10.1002/mco2.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
13
|
Zhang J, Yin Z, Xu Y, Wei C, Peng S, Zhao M, Liu J, Xu S, Pan W, Zheng Z, Liu S, Ye J, Qin JJ, Wan J, Wang M. Resolvin E1/ChemR23 Protects Against Hypertension and Vascular Remodeling in Angiotensin II-Induced Hypertensive Mice. Hypertension 2023; 80:2650-2664. [PMID: 37800344 DOI: 10.1161/hypertensionaha.123.21348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Yao Xu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Wei Pan
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Jing Ye
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Center for Healthy Aging, Wuhan University School of Nursing, China (J.-J.Q.)
| | - Jun Wan
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| |
Collapse
|
14
|
Hu S, Huang M, Mao S, Yang M, Ju H, Liu Z, Cheng M, Wu G. Serinc2 deficiency exacerbates sepsis-induced cardiomyopathy by enhancing necroptosis and apoptosis. Biochem Pharmacol 2023; 218:115903. [PMID: 37918695 DOI: 10.1016/j.bcp.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In critical care medicine, sepsis is a potentially fatal syndrome characterized by multi-organ dysfunction and eventual failure. Sepsis-induced cardiomyopathy (SIC) is characterized by decreased venstricular contractility. Serine incorporator 2 (Serinc2) is a protein involved in phosphatidylserine biosynthesis and membrane incorporation. It may also be a protective factor in septic lung injury. However, it is unknown whether Serinc2 influences SIC onset or progression. In the present study, we found that Serinc2 was downregulated in the cardiomyocytes of cecal ligation and puncture (CLP)-induced SIC and in neonatal rat cardiomyocytes (NRCMs) exposed to lipopolysaccharides (LPS). Serinc2 knockout (KO) exacerbated sepsis-induced myocardial inflammation, necroptosis, apoptosis, myocardial damage, and contractility impairment. Furthermore, the lack of Serinc2 in cardiomyocytes aggravated LPS-induced cardiomyopathic inflammation, necroptosis, and apoptosis. An adenovirus overexpressing Serinc2 inhibited the inflammatory response and favored cardiomyocyte survival. A mechanistic analysis revealed that Serinc2 deficiency exacerbated LPS-induced cardiac dysfunction by inhibiting the protein kinase B (Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway that regulates necrotic complex formation and apoptotic pathways in cardiomyopathy. The findings of the present work demonstrated that Serinc2 plays an essential role in SIC and is, therefore, promising as a prophylactic and therapeutic target for this condition.
Collapse
Affiliation(s)
- Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Min Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Manqi Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Hao Ju
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zheyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
15
|
Zhao M, Zheng Z, Yin Z, Zhang J, Peng S, Liu J, Pan W, Wei C, Xu Y, Qin JJ, Wan J, Wang M. DEL-1 deficiency aggravates pressure overload-induced heart failure by promoting neutrophil infiltration and neutrophil extracellular traps formation. Biochem Pharmacol 2023; 218:115912. [PMID: 37956894 DOI: 10.1016/j.bcp.2023.115912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Recent studies have shown that neutrophils play an important role in the development and progression of heart failure. Developmental endothelial locus-1 (DEL-1) is an anti-inflammatory glycoprotein that has been found to have protective effects in various cardiovascular diseases. However, the role of DEL-1 in chronic heart failure is not well understood. In a mouse model of pressure overload-induced non-ischemic cardiac failure, we found that neutrophil infiltration in the heart increased and DEL-1 levels decreased in the early stages of heart failure. DEL-1 deficiency worsened pressure overload-induced cardiac dysfunction and remodeling in mice. Mechanistically, DEL-1 deficiency promotes neutrophil infiltration and the formation of neutrophil extracellular traps (NETs) through the regulation of P38 signaling. In vitro experiments showed that DEL-1 can inhibit P38 signaling and NETs formation in mouse neutrophils in a MAC-1-dependent manner. Depleting neutrophils, inhibiting NETs formation, and inhibiting P38 signaling all reduced the exacerbation of heart failure caused by DEL-1 deletion. Overall, our findings suggest that DEL-1 deficiency worsens pressure overload-induced heart failure by promoting neutrophil infiltration and NETs formation.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| |
Collapse
|
16
|
Zhang J, Xu Y, Wei C, Yin Z, Pan W, Zhao M, Ding W, Xu S, Liu J, Yu J, Ye J, Ye D, Qin JJ, Wan J, Wang M. Macrophage neogenin deficiency exacerbates myocardial remodeling and inflammation after acute myocardial infarction through JAK1-STAT1 signaling. Cell Mol Life Sci 2023; 80:324. [PMID: 37824022 PMCID: PMC11072237 DOI: 10.1007/s00018-023-04974-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Zheng A, Huang N, Bean D, Rayapaneni S, Deeney J, Sagar M, Hamilton JA. Resolvin E1 heals injured cardiomyocytes: Therapeutic implications and H-FABP as a readout for cardiovascular disease & systemic inflammation. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102586. [PMID: 37604082 PMCID: PMC11203388 DOI: 10.1016/j.plefa.2023.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.
Collapse
Affiliation(s)
- A Zheng
- Boston University, United States of America
| | - N Huang
- Boston University School of Medicine, United States of America
| | - D Bean
- Boston University School of Medicine, United States of America
| | | | - Jude Deeney
- Boston University School of Medicine, United States of America
| | - M Sagar
- Boston Medical Center, United States of America
| | | |
Collapse
|
18
|
Zhao M, Zheng Z, Zhang P, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Xu S, Wei C, Wan J, Wang M. IL-30 protects against sepsis-induced myocardial dysfunction by inhibiting pro-inflammatory macrophage polarization and pyroptosis. iScience 2023; 26:107544. [PMID: 37636037 PMCID: PMC10450523 DOI: 10.1016/j.isci.2023.107544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Cardiac dysfunction is a well-recognized complication of sepsis and seriously affects the prognosis of sepsis patients. IL-30 has been reported to exert anti-inflammatory effects in various diseases. However, the role of IL-30 in sepsis-induced myocardial dysfunction (SIMD) remains unclear. Here, we explored the protective role of IL-30 in cecum ligation and puncture (CLP)-induced SIMD mice. IL-30 expression increased in the cardiac tissues of septic mice and was mainly derived from macrophages. IL-30 deletion or neutralization aggravated sepsis-induced cardiac dysfunction and injury, whereas recombinant IL-30 treatment significantly ameliorated it. Mechanistically, IL-30 deficiency exerts pro-inflammatory effects by promoting Ly6Chigh macrophage polarization and pyroptosis. Inhibiting NLRP3 with MCC950 significantly reversed cardiac dysfunction, macrophage polarization and pyroptosis aggravated by IL-30 deficiency. Recombinant IL-30 inhibited pro-inflammatory macrophage polarization and pyroptosis in vivo and vitro. Taken together, these results suggest that IL-30 protects against SIMD by inhibiting pro-inflammatory macrophage polarization and pyroptosis.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| |
Collapse
|
19
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
20
|
Wang M, Zhang J, Yin Z, Ding W, Zhao M, Liu J, Xu Y, Xu S, Pan W, Wei C, Jiang H, Wan J. Microglia-Mediated Neuroimmune Response Regulates Cardiac Remodeling After Myocardial Infarction. J Am Heart Assoc 2023; 12:e029053. [PMID: 37318008 PMCID: PMC10356026 DOI: 10.1161/jaha.122.029053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
Background Sympathetic hyperactivity contributes to pathological remodeling after myocardial infarction (MI). However, the mechanisms underlying the increase in sympathetic activity remain unknown. Microglia are the predominant immune cells in the central nervous system and can regulate sympathetic neuron activity through neuroimmune response in the hypothalamic paraventricular nucleus. The present study aimed to investigate whether microglia-mediated neuroimmune response can regulate sympathetic activity and cardiac remodeling after MI. Methods and Results PLX3397 (pexidartinib) was used to deplete central microglia via intragastric injection or intracerebroventricular injection. After that, MI was induced by ligation of the left anterior descending coronary artery. Our study showed that MI resulted in the activation of microglia in the paraventricular nucleus. Microglia depletion, which was induced by PLX3397 treatment via intragastric injection or intracerebroventricular injection, improved cardiac function, reduced infarction size, and attenuated cardiomyocyte apoptosis, fibrosis, pathological electrical remodeling, and myocardial inflammation after MI. Mechanistically, these protective effects were associated with an attenuated neuroimmune response in the paraventricular nucleus, which contributed to the decrease of sympathetic activity and attenuation of sympathetic remodeling in the heart. However, intragastric injection with PLX3397 obviously depleted macrophages and induced neutrophil and T-lymphocyte disorders in the heart, blood, and spleen. Conclusions Microglia depletion in the central nervous system attenuates pathological cardiac remodeling after MI by inhibiting neuroimmune response and sympathetic activity. Intragastric administration of PLX3397 leads to serious deleterious effects in peripheral immune cells, especially macrophages, which should be a cause for concern in animal experiments and clinical practice.
Collapse
Affiliation(s)
- Menglong Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zheng Yin
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wen Ding
- Department of RadiologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Mengmeng Zhao
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hong Jiang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jun Wan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
21
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
22
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Abstract
Angiogenesis, the growth of new blood vessels, plays a critical role in tissue repair and regeneration, as well as in cancer. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving mediators (SPMs), including resolvins. Angiogenesis and the resolution of inflammation are critical interdependent processes. Disrupted inflammation resolution can accelerate tumor growth, which is angiogenesis-dependent. SPMs, including resolvins and lipoxins, inhibit physiologic and pathological angiogenesis at nanogram concentrations. The failure of resolution of inflammation is an emerging hallmark of angiogenesis-dependent diseases including arthritis, psoriasis, diabetic retinopathy, age-related macular degeneration, inflammatory bowel disease, atherosclerosis, endometriosis, Alzheimer's disease, and cancer. Whereas therapeutic angiogenesis repairs tissue damage (e.g., limb ischemia), inhibition of pathological angiogenesis suppresses tumor growth and other non-neoplastic diseases such as retinopathies. Stimulation of resolution of inflammation via pro-resolving lipid mediators promotes the repair of tissue damage and wound healing, accelerates tissue regeneration, and inhibits cancer. Here we provide an overview of the mechanisms of cross talk between angiogenesis and inflammation resolution in chronic inflammation-driven diseases. Stimulating the resolution of inflammation via pro-resolving lipid mediators has emerged as a promising new field to treat angiogenic diseases.
Collapse
Affiliation(s)
- Abigail G Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| |
Collapse
|
24
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
25
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
26
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
27
|
Ni L, Lin B, Shen M, Li C, Hu L, Fu F, Chen L, Yang J, Shi D. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Discov 2022; 8:496. [PMID: 36564378 PMCID: PMC9789059 DOI: 10.1038/s41420-022-01287-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening syndrome with multi-organ dysfunction in critical care medicine. With the occurrence of sepsis-induced cardiomyopathy (SIC), characterized by reduced ventricular contractility, the mortality of sepsis is boosted to 70-90%. Pyruvate kinase M2 (PKM2) functions in a variety of biological processes and diseases other than glycolysis, and has been documented as a cardioprotective factor in several heart diseases. It is currently unknown whether PKM2 influences the development of SIC. Here, we found that PKM2 was upregulated in cardiomyocytes treated with LPS both in vitro and in vivo. Pkm2 inhibition exacerbated the LPS-induced cardiac damage to neonatal rat cardiomyocytes (NRCMs). Furthermore, cardiomyocytes lacking PKM2 aggravated LPS-induced cardiomyopathy, including myocardial damage and impaired contractility, whereas PKM2 overexpression and activation mitigated SIC. Mechanism investigation revealed that PKM2 interacted with sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), a key regulator of the excitation-contraction coupling, to maintain calcium homeostasis, and PKM2 deficiency exacerbated LPS-induced cardiac systolic dysfunction by impairing SERCA2a expression. In conclusion, these findings highlight that PKM2 plays an essential role in gram-negative sepsis-induced cardiomyopathy, which provides an attractive target for the prevention and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiting Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Can Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengmei Fu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lei Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
28
|
RvD1 n-3 DPA Downregulates the Transcription of Pro-Inflammatory Genes in Oral Epithelial Cells and Reverses Nuclear Translocation of Transcription Factor p65 after TNF-α Stimulation. Int J Mol Sci 2022; 23:ijms232314878. [PMID: 36499208 PMCID: PMC9737907 DOI: 10.3390/ijms232314878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1n-3 DPA and that cultured OECs respond to RvD1n-3 DPA addition by intracellular calcium release, nuclear receptor translocation and transcription of genes coding for antimicrobial peptides. The aim of the present study was to assess the functional outcome of RvD1n-3 DPA-signaling in OECs under inflammatory conditions. To this end, we performed transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1n-3 DPA and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target genes. Further bioinformatics analyses showed that RvD1n-3 DPA inhibited the expression of several genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of RvD1n-3 DPA to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1n-3 DPA increases nuclear export of p65. Taken together, our observations suggest that SPMs also have the potential to be used as a therapeutic aid when inflammation is established.
Collapse
|
29
|
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, Shou ST, Liu YC, Chai YF. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res 2022; 185:106473. [PMID: 36182039 DOI: 10.1016/j.phrs.2022.106473] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.
Collapse
Affiliation(s)
- Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Shu-Hang Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Chen-Yan Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Xiang-Long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
30
|
Liu M, Wang Z, Zhang J, Ye D, Wang M, Xu Y, Zhao M, Feng Y, Lu X, Pan H, Pan W, Wei C, Tian D, Li W, Lyu J, Ye J, Wan J. IL-12p40 deletion aggravates lipopolysaccharide-induced cardiac dysfunction in mice. Front Cardiovasc Med 2022; 9:950029. [PMID: 36186987 PMCID: PMC9523082 DOI: 10.3389/fcvm.2022.950029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiac dysfunction is one of the most common complications of sepsis and is associated with the adverse outcomes and high mortality of sepsis patients. IL-12p40, the common subunit of IL-12 and IL-23, has been shown to be involved in a variety of inflammation-related diseases, such as psoriasis and inflammatory bowel disease. However, the role of IL-12p40 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains obscure. This study aimed to explore the role of IL-12p40 in LPS-induced cardiac dysfunction and its potential mechanisms. METHODS In this study, mice were treated with LPS and the cardiac expression of IL-12p40 was determined. Then, IL-12p40-/- mice were used to detect the role and mechanisms of IL-12p40 in LPS-induced cardiac injury. In addition, monocytes were adoptively transferred to IL-12p40-/- mice to explore their effects on LPS-induced cardiac dysfunction. RESULTS The results showed that cardiac IL-12p40 expression was significantly increased after treated with LPS. In addition, IL-12p40 deletion significantly aggravated LPS-induced cardiac dysfunction, evidenced by the increased serum levels of cardiomyocyte injury markers and heart injury scores, as well as by the deteriorated cardiac function. Moreover, IL-12p40 deletion increased LPS-induced monocyte accumulation and cardiac expression of inflammatory cytokines, as well as enhanced the activation of the NF-κB and MAPK pathways. Furthermore, adoptive transfer WT mouse monocytes to IL-12p40-/- mice alleviated LPS-induced cardiac dysfunction and decreased the phosphorylation of p65. CONCLUSION IL-12p40 deletion significantly aggravated LPS-induced cardiac injury and cardiac dysfunction in mice by regulating the NF-κB and MAPK signaling pathways, and this process was related to monocytes. Therefore, IL-12p40 show a protective role in SIC, and IL-12p40 deficiency or anti-IL-12p40 monoclonal antibodies may be detrimental to patients with SIC.
Collapse
Affiliation(s)
- Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Tian
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Zou HX, Qiu BQ, Zhang ZY, Hu T, Wan L, Liu JC, Huang H, Lai SQ. Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Front Cardiovasc Med 2022; 9:923066. [PMID: 35983185 PMCID: PMC9378994 DOI: 10.3389/fcvm.2022.923066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Septic cardiomyopathy (SCM) is severe organ dysfunction caused by sepsis that is associated with poor prognosis, and its pathobiological mechanisms remain unclear. Autophagy is a biological process that has recently been focused on SCM, yet the current understanding of the role of dysregulated autophagy in the pathogenesis of SCM remains limited and uncertain. Exploring the molecular mechanisms of disease based on the transcriptomes of human pathological samples may bring the closest insights. In this study, we analyzed the differential expression of autophagy-related genes in SCM based on the transcriptomes of human septic hearts, and further explored their potential crosstalk and functional pathways. Key functional module and hub genes were identified by constructing a protein–protein interaction network. Eight key genes (CCL2, MYC, TP53, SOD2, HIF1A, CTNNB1, CAT, and ADIPOQ) that regulate autophagy in SCM were identified after validation in a lipopolysaccharide (LPS)-induced H9c2 cardiomyoblast injury model, as well as the autophagic characteristic features. Furthermore, we found that key genes were associated with abnormal immune infiltration in septic hearts and have the potential to serve as biomarkers. Finally, we predicted drugs that may play a protective role in SCM by regulating autophagy based on our results. Our study provides evidence and new insights into the role of autophagy in SCM based on human septic heart transcriptomes, which would be of great benefit to reveal the molecular pathological mechanisms and explore the diagnostic and therapeutic targets for SCM.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Huang Huang,
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Song-Qing Lai,
| |
Collapse
|
32
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
33
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
34
|
Carbon monoxide-releasing molecule-2 ameliorates postresuscitation myocardial dysfunction in rat via mitochondrial-mediated apoptosis pathway and the regulation of mitochondrial dynamics. Eur J Pharmacol 2022; 927:175038. [DOI: 10.1016/j.ejphar.2022.175038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
|
35
|
Chen YL, Xie YJ, Liu ZM, Chen WB, Zhang R, Ye HX, Wang W, Liu XY, Chen HS. Omega-3 fatty acids impair miR-1-3p-dependent Notch3 down-regulation and alleviate sepsis-induced intestinal injury. Mol Med 2022; 28:9. [PMID: 35090386 PMCID: PMC8796544 DOI: 10.1186/s10020-021-00425-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Sepsis is a troublesome syndrome that can cause intestinal injury and even high mortality rates. Omega-3 fatty acids (FAs) are known to protect against intestinal damage. Accordingly, the current study set out to explore if omega-3 FAs could affect sepsis-induced intestinal injury with the involvement of the microRNA (miR)-1-3p/Notch3-Smad axis. Methods First, cecal ligation and perforation (CLP) was performed to establish septic mouse models in C57BL/6J mice, and mouse intestinal epithelial MODE-K cells were induced by lipopolysaccharide (LPS) to establish sepsis cell models. The CLP-induced septic mice or LPS-exposed cells were subjected to treatment with Omega-3 FAs and activin (Smad signaling activator), miR-1-3p inhibitor and over-expressed/short hairpin RNA (oe-/sh)-Notch3 to explore their roles in inflammation, intestinal oxidative stress and cell apoptosis. A dual-luciferase reporter gene assay was further performed to verify the regulatory relationship between miR-1-3p and Notch3. Results Omega-3 FAs inhibited CLP-induced intestinal injury and ameliorated LPS-induced intestinal epithelial cell injury by down-regulating miR-1-3p, as evidenced by decreased levels of tumor necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in addition to diminished levels of reactive oxygen species, malondialdehyde levels and superoxide dismutase activity. Furthermore, miR-1-3p could down-regulate Notch3, which inactivated the Smad pathway. Conclusion Collectively, our findings indicated that omega-3 FAs elevate the expression of Notch3 by down-regulating miR-1-3p, and then blocking the Smad pathway to alleviate intestinal epithelial inflammation and oxidative stress injury caused by sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00425-w.
Collapse
Affiliation(s)
- You-Lian Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Yin-Jing Xie
- Clinical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Zhen-Mi Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Wei-Bu Chen
- Clinical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Ru Zhang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Hong-Xing Ye
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Huai-Sheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China.
| |
Collapse
|
36
|
Al-Shaer AE, Pal A, Shaikh SR. Resolvin E1-ChemR23 Axis Regulates the Hepatic Metabolic and Inflammatory Transcriptional Landscape in Obesity at the Whole Genome and Exon Level. Front Nutr 2022; 8:799492. [PMID: 35004828 PMCID: PMC8740313 DOI: 10.3389/fnut.2021.799492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Resolvin E1 (RvE1) is an immunoresolvent that is synthesized from eicosapentaenoic acid and can bind the receptor ERV1/ChemR23. We previously showed activation of the RvE1-ChemR23 axis improves hyperglycemia and hyperinsulinemia of obese mice; however, it remains unclear how RvE1 controls glucose homeostasis. Here we investigated hepatic metabolic and inflammatory transcriptional targets of the RvE1-ChemR23 axis using lean and obese wild type (WT) and ChemR23 knockout (KO) mice. We conducted an in-depth transcriptional study by preforming whole gene-level and exon-level analyses, which provide insight into alternative splicing variants and miRNA regulation. Compared to controls, WT and KO obese mice in the absence of RvE1 displayed similar gene-level profiles, which entailed dysregulated pathways related to glucose homeostasis. Notably, obese WT mice relative to lean controls showed a robust decrease in pathways related to the biosynthesis of unsaturated fatty acids. At the exon-level, obese ChemR23 KOs compared to obese WT mice displayed changes in pathways related to hepatic lipid transport, cholesterol metabolism, and immunological functions such as complement cascades and platelet activation. Importantly, upon RvE1 administration to WT obese mice, we discovered upregulated genes in pathways relating to insulin sensitivity and downregulated genes related to regulators of TGF-β signaling. This transcriptional profile was generally not recapitulated with obese ChemR23 KO mice administered RvE1. Collectively, gene and exon-level analyses suggest RvE1 controls the hepatic transcriptional profile related to glucose homeostasis, insulin sensitivity, and inflammation in a manner that is largely dependent on ChemR23. These studies will drive future mechanistic experiments on the RvE1-ChemR23 axis.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
37
|
Chang CY, Chen KY, Shih HJ, Chiang M, Huang IT, Huang YH, Huang CJ. Let-7i-5p Mediates the Therapeutic Effects of Exosomes from Human Placenta Choriodecidual Membrane-Derived Mesenchymal Stem Cells on Mitigating Endotoxin-Induced Mortality and Liver Injury in High-Fat Diet-Induced Obese Mice. Pharmaceuticals (Basel) 2021; 15:ph15010036. [PMID: 35056093 PMCID: PMC8779189 DOI: 10.3390/ph15010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023] Open
Abstract
Obesity complicates sepsis and increases the mortality of sepsis. We examined the effects of exosomes (from human placenta choriodecidual membrane-derived mesenchymal stem cells, pcMSCs) on preventing sepsis in obesity and the mitigating role of hsa-let-7i-5p microRNA. Obese mice (adult male C57BL/6J mice fed a high-fat diet for 12 weeks) received normal saline (HFD), endotoxin (10 mg/kg, intraperitoneal (ip); HFDLPS), endotoxin with exosomes (1 × 108 particles/mouse, ip; HLE), or endotoxin with let-7i-5p microRNA inhibitor-pretreated exosomes (1 × 108 particles/mouse, ip; HLEi). Our data demonstrated that the 48-h survival rate in the HLE (100%) group was significantly higher than in the HFDLPS (50%) and HLEi (58.3%) groups (both p < 0.05). In the surviving mice, by contrast, levels of liver injury (injury score, plasma aspartate transaminase and alanine transaminase concentrations, tissue water content, and leukocyte infiltration in liver tissues; all p < 0.05), inflammation (nuclear factor-κB activation, hypoxia-inducible factor-1α activation, macrophage activation, and concentrations of tumor necrosis factor-α, interleukin-6, and leptin in liver tissues; all p < 0.05), and oxidation (malondialdehyde in liver tissues, with p < 0.001) in the HLE group were significantly lower than in the HFDLPS group. Levels of mitochondrial injury/dysfunction and apoptosis in liver tissues in the HLE group were also significantly lower than in the HFDLPS group (all p < 0.05). Inhibition of let-7i-5p microRNA offset the effects of the exosomes, with most of the aforementioned measurements in the HLEi group being significantly higher than in the HLE group (all p < 0.05). In conclusion, exosomes mitigated endotoxin-induced mortality and liver injury in obese mice, and these effects were mediated by let-7i-5p microRNA.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Kung-Yen Chen
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Jen Shih
- Department of Surgery, Division of Urology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Recreation and Holistic Wellness, MinDao University, Changhua 523, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Milton Chiang
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - I-Tao Huang
- Emergency Department, Redcliffe Hospital, Brisbane, QLD 4020, Australia;
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-H.H.); (C.-J.H.)
| | - Chun-Jen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-H.H.); (C.-J.H.)
| |
Collapse
|
38
|
Zhang Y, Cheng J, Su Y, Li M, Wen J, Li S. Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol 2021; 74:227-235. [PMID: 34850068 DOI: 10.1093/jpp/rgab162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To explore the impacts of cordycepin and underlying mechanism on the sepsis. METHODS The sepsis mice model was built and treated with different concentrations of cordycepin. Then the liver and lung injury caused by cecal ligation and puncture (CLP) was assessed using H&E staining and TUNEL assay. The expression of relevant genes was detected using qRT-PCR analysis and ELISA assays. Besides, the macrophage polarization was checked by flow cytometry. KEY FINDINGS Cordycepin could significantly improve the liver and lung injury. Moreover, cordycepin increased the distribution of F4/80+ CD206+ M2-like macrophages and F4/80+ iNOS+ M1-like macrophages through down-regulating the expression of relevant genes. More importantly, cordycepin could monitor the protein expression of iNOS, Arg-1, TNF-α, MCP-1, IL-4 and IL-10 in CLP mice. Meanwhile, the elevated level of p65 induced by CLP was also repressed by the increase of the cordycepin. Moreover, cordycepin played a crucial part in CLP mice through modulating the NF-κB/p65 signalling pathway. CONCLUSIONS Cordycepin played an important role in mice with sepsis via reducing the M1/M2 macrophage polarization and modulating the NF-κB/p65 signalling pathway.
Collapse
Affiliation(s)
- Yudan Zhang
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Jing Cheng
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Yufei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Mingyue Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Jun Wen
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Sixiu Li
- Neonatal Intensive Care Unit, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
39
|
Wang S, Jia D, Lu H, Qu X. Paeoniflorin improves myocardial injury via p38 MAPK/NF-KB p65 inhibition in lipopolysaccharide-induced mouse. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1449. [PMID: 34734001 PMCID: PMC8506776 DOI: 10.21037/atm-21-4049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Background Paeoniflorin (Pae) is an active compound with a variety of pharmacological effects. This aim was to investigate how Pae protects against myocardial injury and to explore its potential mechanism. Methods We established a BALB/c mouse model that was intraperitoneal injection (i.p.) of RvE1 (25 µg/kg) or Pae (20 mg/kg) for 3 days, and then treated with lipopolysaccharide (LPS, 10 mg/kg, i.p.). The mice were randomly divided into the sham group, the LPS group, the LPS + RvE1 group, the LPS + Pae group (n=8). Cardiac dysfunction was detected by HE staining and ELISA assay. The oxidative stress, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) and apoptosis were assessed. Furthermore, western blotting (WB) assay were employed to analyze the protective mechanisms. Results Pae improved LPS-induced cardiac function and impeded apoptosis. Pae significantly reduced the release of inflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and IL-1β. Furthermore, Pae decreased malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS), and increased superoxide dismutase (SOD). In addition, Pae attenuated the mPTP opening and MMP depolarization. Notably, Pae treatment inhibited the activation of p38 MAPK and NF-κB p65. Conclusions It was confirmed that Pae alleviated LPS-induced myocardial injury. Pae might be as a new drug candidate for myocardial ischaemic complications.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Jia
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haimiao Lu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Wang Z, Liu M, Ye D, Ye J, Wang M, Liu J, Xu Y, Zhang J, Zhao M, Feng Y, Xu S, Pan W, Luo Z, Li D, Wan J. Il12a Deletion Aggravates Sepsis-Induced Cardiac Dysfunction by Regulating Macrophage Polarization. Front Pharmacol 2021; 12:632912. [PMID: 34276358 PMCID: PMC8284189 DOI: 10.3389/fphar.2021.632912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiac dysfunction is a well-recognized complication of sepsis and is associated with the outcome and prognosis of septic patients. Evidence suggests that Il12a participates in the regulation of various cardiovascular diseases, including heart failure, hypertension and acute myocardial infarction. However, the effects of Il12a in sepsis-induced cardiac dysfunction remain unknown. In our study, lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) model were used to mimic sepsis, and cardiac Il12a expression was assessed. In addition, Il12a knockout mice were used to detect the role of Il12a in sepsis-related cardiac dysfunction. We observed for the first time that Il12a expression is upregulated in mice after LPS treatment and macrophages were the main sources of Il12a. In addition, our findings demonstrated that Il12a deletion aggravates LPS-induced cardiac dysfunction and injury, as evidenced by the increased serum and cardiac levels of lactate dehydrogenase (LDH) and cardiac creatine kinase-myocardial band (CK-MB). Moreover, Il12a deletion enhances LPS-induced macrophage accumulation and drives macrophages toward the M1 phenotype in LPS-treated mice. Il12a deletion also downregulated the activity of AMP-activated protein kinase (AMPK) but increased the phosphorylation levels of p65 (p-p65) and NF-κB inhibitor alpha (p-IκBα). In addition, Il12a deletion aggravates CLP-induced cardiac dysfunction and injury. Treatment with the AMPK activator AICAR abolishes the deterioration effect of Il12a deletion on LPS-induced cardiac dysfunction. In conclusion, Il12a deletion aggravated LPS-induced cardiac dysfunction and injury by exacerbating the imbalance of M1 and M2 macrophages. Our data provide evidence that Il12a may represent an attractive target for sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
41
|
Liang Z, Pan F, Yang Z, Wang M, Hu C, Shi L, Ji Q, Liu L. Interleukin-9 deficiency affects lipopolysaccharide-induced macrophage-related oxidative stress and myocardial cell apoptosis via the Nrf2 pathway both in vivo and in vitro. Biofactors 2021; 47:674-685. [PMID: 33979459 DOI: 10.1002/biof.1754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/25/2021] [Indexed: 01/29/2023]
Abstract
Previous studies showed that interleukin-9 (IL-9) is involved in cardiovascular diseases, including hypertension and cardiac fibrosis. This study aimed to investigate the role of IL-9 in lipopolysaccharide (LPS)-induced myocardial cell (MC) apoptosis. Mice were treated with LPS, and IL-9 expression was measured and the results showed that compared with WT mice, LPS-treated mice exhibited increased cardiac Mø-derived IL-9. Additionally, the effects of IL-9 deficiency (IL-9-/-) on macrophage (Mø)-related oxidative stress and MC apoptosis were evaluated, the results showed that IL-9 knockout significantly exacerbated cardiac dysfunction, inhibited Nrf2 nuclear transfer, promoted an imbalance in M1 and M2 Møs, and exacerbated oxidative stress and MC apoptosis in LPS-treated mice. Treatment with ML385, a specific nuclear factor erythroid-2 related factor 2 (Nrf2) pathway inhibitor significantly alleviated the above effects in LPS-treated IL-9-/- mice. Bone marrow-derived Møs from wild-type (WT) mice and IL-9-/- mice were treated with LPS, and the differentiation and oxidative stress levels of Møs were measured. The effect of Mø differentiation on mouse MC apoptosis was also analyzed in vitro. The results showed that LPS-induced M1 Mø/M2 Mø imbalance and Mø-related oxidative stress were alleviated by IL-9 knockout but were exacerbated by ML385 treatment. The protective effects of IL-9 deficiency on the MC apoptosis mediated by LPS-treated Møs were reversed by ML-385. Our results suggest that deletion of IL-9 decreased the nuclear translocation of Nrf2 in Møs, which further aggravated Mø-related oxidative stress and MC apoptosis. IL-9 may be a target for the prevention of LPS-induced cardiac injury.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Gene Expression Regulation
- Interleukin-9/deficiency
- Interleukin-9/genetics
- Interleukin-9/immunology
- Lipopolysaccharides/administration & dosage
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Myocarditis/chemically induced
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/pathology
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/immunology
- Oxidative Stress
- Primary Cell Culture
- Protein Transport
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/immunology
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/immunology
- Signal Transduction
- Thiazoles/pharmacology
- Ventricular Function, Left/physiology
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/immunology
Collapse
Affiliation(s)
- Zhishan Liang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fuze Pan
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mengjie Wang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Changxing Hu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
42
|
Gantenbein KV, Kanaka-Gantenbein C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021; 13:nu13061951. [PMID: 34204057 PMCID: PMC8227318 DOI: 10.3390/nu13061951] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
It has been established, worldwide, that non-communicable diseases such as obesity, diabetes, metabolic syndrome, and cardiovascular events account for a high percentage of morbidity and mortality in contemporary societies. Several modifiable risk factors, such as sedentary activities, sleep deprivation, smoking, and unhealthy dietary habits have contributed to this increase. Healthy nutrition in terms of adherence to the Mediterranean diet (MD), rich in fruits, legumes, vegetables, olive oil, herbs, spices, and high fiber intake may contribute to the decrease in this pandemic. The beneficial effects of the MD can be mainly attributed to its numerous components rich in anti-inflammatory and antioxidant properties. Moreover, the MD may further contribute to the improvement of reproductive health, modify the risk for neurodegenerative diseases, and protect against depression and psychosocial maladjustment. There is also evidence highlighting the impact of healthy nutrition in female people on the composition of the gut microbiota and future metabolic and overall health of their offspring. It is therefore important to highlight the beneficial effects of the MD on metabolic, reproductive, and mental health, while shaping the overall health of future generations. The beneficial effects of MD can be further enhanced by increased physical activity in the context of a well-balanced healthy lifestyle.
Collapse
|
43
|
Chen X, Liu Y, Gao Y, Shou S, Chai Y. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol 2021; 96:107791. [PMID: 34162154 DOI: 10.1016/j.intimp.2021.107791] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022]
Abstract
Sepsis is a life-threatening clinical syndrome caused by infection. Its pathogenesis is complex and entails coagulation dysfunction, inflammation, and immune disorders. Macrophages are important components of innate and adaptive immunity that are highly heterogeneous and plastic. They can polarize into a multi-dimensional spectrum of phenotypes with different functions relating to immune regulation in response to changes in the microenvironment of specific tissues. We reviewed studies that examined the role of macrophage polarization with a focus on the classical activated (M1-like) and alternative activated (M2-like) macrophages as the two main phenotypes involved in the host immune response to sepsis. A complex regulatory network is involved in the process of macrophage polarization, which is influenced by a variety of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. M1-like macrophages release large quantities of pro-inflammatory mediators, while M2-like macrophages release large quantities of anti-inflammatory mediators. An imbalance between M1-like and M2-like macrophages induces the occurrence and development of sepsis. Therefore, targeted regulation of the process of macrophage polarization could be a useful approach to normalize the immune balance of the host, offering a new treatment modality for different stages of sepsis.
Collapse
Affiliation(s)
- Xinsen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
44
|
Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol 2021; 12:651444. [PMID: 34113251 PMCID: PMC8185275 DOI: 10.3389/fphar.2021.651444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is an important metabolic organ, and acute liver injury (ALI) is potentially lethal. Itaconate, a metabolic intermediate from the tricarboxylic acid cycle, showed emerging anti-oxidative and anti-inflammation properties, and an accumulating protective effect in multiple diseases, but its role in ALI still needs to be further explored. Here we established an ALI model induced by carbon tetrachloride in mice. Our results showed that 4-Octyl itaconate (OI), a derivate of itaconate, mitigated hepatic damage by improving liver function, reducing histopathological damage, and decreasing the death of hepatocytes. Additionally, OI decreased myeloperoxidase and thiobarbituric acid reactive substances (TBARS) levels in the ALI model. OI also inhibited the inflammatory response by reducing pro-inflammatory cytokine secretion (IL-6, TNF-α, IL-1β, and MCP-1) and infiltration of macrophages and neutrophils in the ALI model. However, administration of ML385, a specified Nrf2 inhibitor, eliminated the protective properties of OI in the CCl4-induced liver injury model by increasing hepatic damage and oxidative stress. Furthermore, OI increased the expression and nuclear translocation of Nrf2 and elevated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1, while knockdown of Nrf2 eliminated these effects in murine hepatocyte NCTC 1469 under CCl4 treatment. Moreover, we found that OI reduced serum High-mobility group box 1 (HMGB1) levels in CCl4-treated mice. Finally, OI inhibited nuclear translocation of factor-kappa B (NF-𝜅B) and inflammatory cytokine production in murine macrophages. In conclusion, these results indicated that OI ameliorated CCl4-induced ALI by mitigating oxidative stress and the inflammatory response. The possible mechanism was associated with the elevation of Nrf2 nuclear translocation and inhibition of HMGB1 mediated the nuclear translocation of NF-𝜅B.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Wang X, Yang B, Cao HL, Wang RY, Lu ZY, Chi RF, Li B. Selenium Supplementation Protects Against Lipopolysaccharide-Induced Heart Injury via Sting Pathway in Mice. Biol Trace Elem Res 2021; 199:1885-1892. [PMID: 32737811 DOI: 10.1007/s12011-020-02295-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Sepsis-induced myocardial dysfunctions are associated with high morbidity and mortality. Selenium, an essential trace element, has been reported to exert anti-inflammation, anti-oxidative stress, and anti-apoptosis. However, the protective effects of selenium on LPS-induced heart injury are still poorly illustrated. Therefore, in the present study, we sought to explore the effects of selenium pretreatment on LPS-induced myocardial injury in mice. We firstly found that selenium pretreatment significantly improved markers of myocardial injury and alleviated LPS-induced myocardial dysfunctions. Moreover, selenium supplementation reduced pro-inflammatory cytokines expression, decreased oxidative stress, and inhibited myocardial apoptosis. In addition, selenium supplementation inactivated the Sting pathway. In conclusion, our study suggests that selenium exerts protective effects on LPS-induced myocardial injury, and the underlying molecular mechanism may be related to the inactivation of Sting pathway, implying a potential therapy for sepsis-induced myocardial dysfunctions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Hui-Li Cao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Rui-Ying Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Zhao-Yang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Rui-Fang Chi
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, China.
| |
Collapse
|
46
|
Wang ZG, Zhu ZQ, He ZY, Cheng P, Liang S, Chen AM, Yang Q. Endogenous conversion of n-6 to n-3 polyunsaturated fatty acids facilitates the repair of cardiotoxin-induced skeletal muscle injury in fat-1 mice. Aging (Albany NY) 2021; 13:8454-8466. [PMID: 33714197 PMCID: PMC8034919 DOI: 10.18632/aging.202655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the beneficial effects of high endogenous levels of n-3 polyunsaturated fatty acids (PUFAs) on skeletal muscle repair and regeneration using a mouse cardiotoxin (CTX, 20 μM/200 μL) -induced gastrocnemius muscle injury model. Transgenic fat-1 mice expressing the Caenorhabditis elegans fat-1 gene, encoding n-3 fatty acid desaturase, showed higher n-3 PUFA levels and lower n-6/n-3 PUFA ratios in gastrocnemius muscle tissues. Hematoxylin and eosin and Masson’s trichrome staining of gastrocnemius sections revealed increased muscle fiber size and reduced fibrosis in fat-1 mice on days 7 and 14 after CTX injections. Gastrocnemius muscle tissues from fat-1 mice showed reduced inflammatory responses and increased muscle fiber regeneration reflecting enhanced activation of satellite cells on day 3 after cardiotoxin injections. Gastrocnemius muscle tissues from cardiotoxin-treated fat-1 mice showed reduced levels of pro-apoptotic proteins (Caspase 3 and Bax) and increased levels of anti-apoptotic proteins (Bcl-2 and Survivin). Moreover, eicosapentaenoic acid (EPA) reduced the incidence of apoptosis among cardiotoxin-treated C2C12 mouse myoblasts. These findings demonstrate that higher endogenous n-3 PUFA levels in fat-1 mice enhances skeletal muscle repair and regeneration following cardiotoxin-induced injury.
Collapse
Affiliation(s)
- Zheng-Gang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Zi-Qing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Zhi-Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - An-Min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Qing Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| |
Collapse
|
47
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
48
|
Artiach G, Bäck M. Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis? Front Cell Dev Biol 2020; 8:584128. [PMID: 33304901 PMCID: PMC7693622 DOI: 10.3389/fcell.2020.584128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation is well-established in cardiovascular disease, including valvular heart disease. Inflammation is a key process in the fibrosis and calcification of the aortic valve leaflets, which ultimately clinically manifest as aortic valve stenosis characterized by valve dysfunction and cardiac obstruction. In the absence of pharmacological treatment, either surgical or transcatheter aortic valve replacement is currently the only available therapeutic strategy for patients with severe aortic valve stenosis. Omega-3 polyunsaturated fatty acids, which exert beneficial effects in several cardiovascular diseases, serve as the substrate for several bioactive lipid mediators that regulate inflammation. Recent findings point to the beneficial effects of omega-3 fatty acids in cardiac valves, being inversely associated with aortic valve calcification and contributing to the resolution of valvular inflammation by means of the pro-resolving mediator resolvin E1 and downstream signaling through its receptor ChemR23.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Rodríguez MJ, Herrera F, Donoso W, Castillo I, Orrego R, González DR, Zúñiga-Hernández J. Pro-Resolving Lipid Mediator Resolvin E1 Mitigates the Progress of Diethylnitrosamine-Induced Liver Fibrosis in Sprague-Dawley Rats by Attenuating Fibrogenesis and Restricting Proliferation. Int J Mol Sci 2020; 21:ijms21228827. [PMID: 33266360 PMCID: PMC7700193 DOI: 10.3390/ijms21228827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a complex process associated to most types of chronic liver disease, which is characterized by a disturbance of hepatic tissue architecture and the excessive accumulation of extracellular matrix. Resolvin E1 (RvE1) is a representative member of the eicosapentaenoic omega-3 lipid derivatives, and is a drug candidate of the growing family of endogenous resolvins. Considering the aforementioned, the main objective of this study was to analyze the hepatoprotective effect of RvE1 in a rat model of liver fibrosis. Male Sprague-Dawley rats received diethylnitrosamine (DEN, 70 mg/mg body weight intraperitoneally (i.p)) as an inductor of liver fibrosis once weekly and RvE1(100 ng/body weight i.p) twice weekly for four weeks. RvE1 suppressed the alterations induced by DEN, normalizing the levels of alanine aminotransferase (ALT), albumin, and lactate dehydrogenase (LDH), and ameliorated DEN injury by decreasing the architecture distortion, inflammatory infiltration, necrotic areas, and microsteatosis. RvE1 also limited DEN-induced proliferation through a decrease in Ki67-positive cells and cyclin D1 protein expression, which is related to an increase of the levels of cleaved caspase-3. Interestingly, we found that RvE1 promotes higher nuclear translocation of nuclear factor κB (NF-κB)p65 than DEN. RvE1 also increased the levels of nuclear the nuclear factor erythroid 2-related factor 2 (Nrf2), but with no antioxidant effect, measured as an increase in glutathione disulfide (GSSG) and a decrease in the ratio of glutathione (GSH)/GSSG. Taken together, these results suggest that RvE1 modulates the fibrogenesis, steatosis, and cell proliferation in a model of DEN induced fibrosis.
Collapse
Affiliation(s)
- Maria José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Francisca Herrera
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Wendy Donoso
- Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Roxana Orrego
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Correspondence: ; Tel.: +56-71-241-8855
| |
Collapse
|
50
|
Zhang J, Wang M, Ding W, Zhao M, Ye J, Xu Y, Wang Z, Ye D, Li D, Liu J, Wan J. Resolvin E1 protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress, autophagy and apoptosis by targeting AKT/mTOR signaling. Biochem Pharmacol 2020; 180:114188. [PMID: 32750329 DOI: 10.1016/j.bcp.2020.114188] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity impairs the quality of life of cancer patients during or after DOX treatment, and it is imperative to explore a novel strategy to address this problem. Resolvin E1 (RvE1) is derived from eicosapentaenoic acid (EPA), which has been reported to exert beneficial effects on DOX-induced oxidative stress in cardiomyocytes. This study was designed to investigate whether RvE1 protects against DOX-induced cardiotoxicity, and the underlying mechanism was explored. DOX (20 mg/kg, one injection, i.p.) was used to induce DOX-induced cardiotoxicity in C57BL/6 mice. At 5 days after DOX administration, the effect of RvE1 was assessed by measuring cardiac function, oxidative stress, autophagy and apoptosis in cardiac tissue. We used an AKT inhibitor and rapamycin to investigate the underlying mechanisms. Our results showed that RvE1 inhibited the DOX-induced decrease in body weight and heart weight, the reduction in left ventricular ejection fraction and fractional shortening, and the increase in lactate dehydrogenase, creatine kinase myocardial bound and cardiomyocyte vacuolization. Compared to the control group, the DOX group exhibited increased oxidative stress, autophagy and apoptosis in cardiac tissue, which were alleviated by treatment with RvE1. The AKT/mTOR signaling pathways were responsible for RvE1-mediated regulation of DOX-induced oxidative stress, autophagy and myocardial apoptosis. In conclusion, RvE1 protected against DOX-induced cardiotoxicity via the regulation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|