1
|
Saladino N, Leavitt E, Wong HT, Ji JH, Ebrahimi D, Salamango DJ. HIV-1 Vpr drives epigenetic remodeling to enhance virus transcription and latency reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635859. [PMID: 39975144 PMCID: PMC11838372 DOI: 10.1101/2025.01.31.635859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite decades of research, the primary proviral function of the HIV-1 Vpr accessory protein remains enigmatic. Vpr is essential for pathogenesis in vivo and for virus replication in myeloid cells, but the underlying cause-and-effect mechanism(s) driving these phenomena are poorly understood. Canonically, Vpr hijacks a cellular ubiquitin ligase complex to target several dozen host proteins for proteasomal degradation. Many of these substrates were recently revealed to be involved in DNA damage repair (DDR), which rationalizes the longstanding observation that Vpr induces constitutive activation of DDR signaling. Here, we use a combination of functional, biochemical, and genetic approaches establish a clear mechanistic link between Vpr-induced DDR signaling and remodeling of the epigenetic landscape to enhance HIV-1 promoter activity during acute infection and virus reactivation from latency. Functional, genetic, and bimolecular fluorescence complementation experiments reveal that Vpr utilizes degradation-dependent and -independent mechanisms to induce epigenetic remodeling and that Vpr segregates into two discrete pools with dedicated activities-A multimeric pool in the nucleus that is associated with chromatin and a monomeric pool associated with DCAF1 in the cytoplasm. Vpr function in remodeling the nuclear environment is present in common HIV-1 subtypes worldwide and provides a mechanistic rationale for its essentiality in virus replication.
Collapse
Affiliation(s)
- Nicholas Saladino
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Emily Leavitt
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Hoi Tong Wong
- Department of Microbiology, Mt. Sinai Icahn School of Medicine, New York, New York, USA, 10029
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, Texas, USA, 78227
| | - Daniel J Salamango
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| |
Collapse
|
2
|
Metuge JA, Betow JY, Bekono BD, Tjegbe MJM, Ndip RN, Ntie-Kang F. Effects of some anti-ulcer and anti-inflammatory natural products on cyclooxygenase and lipoxygenase enzymes: insights from in silico analysis. In Silico Pharmacol 2024; 12:97. [PMID: 39498163 PMCID: PMC11531464 DOI: 10.1007/s40203-024-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Gastric and duodenal ulcers are increasingly becoming global health burdens. The side effects of conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), antibiotics, and cytoprotective agents have necessitated the search for new medications. Plants are a rich source of active metabolites and herbal medicines have been used in the treatment of ulcers and cancers. In this study, we used in silico methods like molecular docking and MM-GBSA calculations to evaluate the effects of some anti-ulcer and anti-inflammatory phytochemicals on some key enzymes, cyclooxygenase (COX), and lipoxygenase (LOX), which are implicated in the protection and destruction of the gastric mucosa. The phytochemicals were retrieved from the literature and docked toward the binding sites of the three enzymes (COX-1, COX-2, and 5-LOX). Five compounds, rhamnetin, kaempferol, rutin, rosmarinic acid, and chlorogenic acid were observed to putatively bind to cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) but not to cyclooxygenase 1 (COX-1). The interaction mechanisms between these phytochemicals and the target proteins are discussed. The compounds' drug metabolism, pharmacokinetics, and toxicity have been evaluated to assess their suitability as potential next-generation anti-ulcer and anti-inflammatory drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00269-2.
Collapse
Affiliation(s)
- Jonathan A. Metuge
- Department of Natural Resources and Environmental Sciences, Alabama A&M University, Huntsville, USA
| | - Jude Y. Betow
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Boris D. Bekono
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Roland N. Ndip
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Vasukutty A, Pillarisetti S, Choi J, Kang SH, Park IK. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS APPLIED BIO MATERIALS 2024; 7:4831-4842. [PMID: 37586084 DOI: 10.1021/acsabm.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antiretroviral drugs are limited in their ability to target latent retroviral reservoirs in CD4+ T cells, highlighting the need for a T cell-targeted drug delivery system that activates the transcription of inactivated viral DNA in infected cells. Histone deacetylase inhibitors (HDACi) disrupt chromatin-mediated silencing of the viral genome and are explored in HIV latency reversal. But single drug formulations of HDACi are insufficient to elicit therapeutic efficacy, warranting combination therapy. Furthermore, protein kinase C activators (PKC) have shown latency reversal activity in HIV by activating the NF-κB signaling pathway. Combining HDACi (SAHA) with PKC (PMA) activators enhances HIV reservoir activation by promoting chromatin decondensation and subsequent transcriptional activation. In this study, we developed a mixed nanomicelle (PD-CR4) drug delivery system for simultaneous targeting of HIV-infected CD4+ T cells with two drugs, suberoylanilide hydroxamic acid (SAHA) and phorbol 12-myristate 13-acetate (PMA). SAHA is a HDACi that promotes chromatin decondensation, while PMA is a PKC agonist that enhances transcriptional activation. The physicochemical properties of the formulated PD-CR4 nanoparticles were characterized by NMR, CMC, DLS, and TEM analyses. Further, we investigated in vitro safety profiles, targeting efficacy, and transcriptional activation of inactivated HIV reservoir cells. Our results suggest that we successfully prepared a targeted PD system with dual drug loading. We have compared latency reversal efficacy of a single drug nanoformulation and combination drug nanoformulation. Final PD-SP-CR4 successfully activated infected CD4+ T cell reservoirs and showed enhanced antigen release from HIV reservoir T cells, compared with the single drug treatment group as expected. To summarize, our data shows PD-SP-CR4 has potential T cell targeting efficiency and efficiently activated dormant CD4+ T cells. Our data indicate that a dual drug-loaded particle has better therapeutic efficacy than a single loaded particle as expected. Hence, PD-CR4 can be further explored for HIV therapeutic drug delivery studies.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
5
|
Majoumo-Mbe F, Sangbong NA, Tadjong Tcho A, Namba-Nzanguim CT, Simoben CV, Eni DB, Alhaji Isa M, Poli ANR, Cassel J, Salvino JM, Montaner LJ, Tietjen I, Ntie-Kang F. 5-chloro-3-(2-(2,4-dinitrophenyl) hydrazono)indolin-2-one: synthesis, characterization, biochemical and computational screening against SARS-CoV-2. CHEMICKE ZVESTI 2024; 78:3431-3441. [PMID: 38685970 PMCID: PMC11055700 DOI: 10.1007/s11696-023-03274-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/04/2023] [Indexed: 05/02/2024]
Abstract
Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 μM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 μM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-03274-5.
Collapse
Affiliation(s)
- Felicite Majoumo-Mbe
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Neba Abongwa Sangbong
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Alain Tadjong Tcho
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Cyril T. Namba-Nzanguim
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Center for Drug Discovery, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Conrad V. Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Donatus B. Eni
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Center for Drug Discovery, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Mustafa Alhaji Isa
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, PMB 1069, Maiduguri, Borno State Nigeria
| | | | - Joel Cassel
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 USA
| | - Joseph M. Salvino
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 USA
| | - Luis J. Montaner
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 USA
| | - Ian Tietjen
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 USA
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Center for Drug Discovery, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Eni DB, Cassel J, Namba-Nzanguim CT, Simoben CV, Tietjen I, Akunuri R, Salvino JM, Ntie-Kang F. Design, synthesis, and biochemical and computational screening of novel oxindole derivatives as inhibitors of Aurora A kinase and SARS-CoV-2 spike/host ACE2 interaction. Med Chem Res 2024; 33:620-634. [PMID: 38646411 PMCID: PMC11024012 DOI: 10.1007/s00044-024-03201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 04/23/2024]
Abstract
Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 μ M), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 μ M), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.
Collapse
Affiliation(s)
- Donatus B. Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Cyril T. Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Conrad V. Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | | | | | | | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
9
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
11
|
Serumula W, Nkambule B, Parboosing R. Novel Aptamers for the Reactivation of Latent HIV. Curr HIV Res 2023; 21:279-289. [PMID: 37881079 DOI: 10.2174/011570162x248488230926045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION A "Shock and Kill" strategy has been proposed to eradicate the HIV latent viral reservoir. Effective Latency Reversal Agents (LRA) are a key requirement for this strategy. The search for LRAs with a novel mechanism of action is ongoing. This is the first study to propose aptamers for the reactivation of HIV. OBJECTIVE The purpose of this study was to identify an aptamer that potentially reactivates HIV via the NF-κβ pathway, specifically by binding to IkB and releasing NF-κβ. METHODS Aptamer selection was performed at Aptus Biotech (www.aptusbiotech.es), using ikB human recombinant protein with His tag bound to Ni-NTA agarose resin using the SELEX procedure. Activation of NF-κβ was measured by SEAP Assay. HIV reactivation was measured in JLat cells using a BD FACS-Canto™ II flow cytometer. All flow cytometry data were analyzed using Kaluza analyzing software. RESULTS Clones that had equivalent or greater activation than the positive control in the SEAP assay were regarded as potential reactivators of the NF-κβ pathway and were sequenced. The three ikb clones namely R6-1F, R6-2F, and R6-3F were found to potentially activate the NF-κβ pathway. Toxicity was determined by exposing lymphocytes to serial dilutions of the aptamers; the highest concentration of the aptamers that did not decrease viability by > 20% was used for the reactivation experiments. The three novel aptamers R6-1F, R6-2F, and R6-3F resulted in 4,07%, 6,72% and 3,42% HIV reactivation, respectively, while the untreated control showed minimal (<0.18%) fluorescence detection. CONCLUSION This study demonstrated the reactivation of latent HIV by aptamers that act via the NF-κβ pathway. Although the effect was modest and unlikely to be of clinical benefit, future studies are warranted to explore ways of enhancing reactivation.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban4091, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- National Health Laboratory Service/University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
da Costa LC, Bomfim LM, Dittz UVT, Velozo CDA, da Cunha RD, Tanuri A. Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models. Retrovirology 2022; 19:12. [PMID: 35733180 PMCID: PMC9215058 DOI: 10.1186/s12977-022-00600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Despite antiretroviral treatment efficacy, it does not lead to the complete eradication of HIV infection. Consequently, reactivation of the virus from latently infected cell reservoirs is a major challenge toward cure efforts. Two strategies targeting viral latency are currently under investigation: the “shock and kill” and the “block and lock.” The “Block and Lock” methodology aims to control HIV-1 latency reactivation, promoting a functional cure. We utilized the CRISPR/dCas9-KRAB platform, which was initially developed to suppress cellular genes transcription, to block drug-induced HIV-1 reactivation in latently infected T cells and myeloid cells. Results We identified a set of five sgRNAs targeting the HIV-1 proviral genome (LTR1-LTR5), having the lowest nominated off-target activity, and transduced them into the latently infected lymphoid (J-Lat 10.6) and myeloid (U1) cell lines. One of the sgRNAs (LTR5), which binds specifically in the HIV-1 LTR NFκB binding site, was able to promote robust repression of HIV-1 reactivation in latently infected T cells stimulated with Phorbol 12-Myristate 13-Acetate (PMA) and Ingenol B (IngB), both potent protein kinase C (PKC) stimulators. Reactivation with HDAC inhibitors, such as SAHA and Panobinostat, showed the same strong inhibition of reactivation. Additionally, we observed a hundred times reduction of HIV-1 RNA expression levels in the latently infected myeloid cell line, U1 induced with IngB. Conclusion Taken together, our results show that the KRAB fused CRISPR/dCas9 system can robustly prevent the HIV-1 latency reactivation process, mediated by PMA or IngB and SAHA or Panobinostat, both in myeloid and lymphoid HIV-1 latently infected cells. In addition, we demonstrated that KRAB repressor protein is crucial to reactivation resistance phenotype, and we have identified some useful hotspots sequences in HIV-1 LTR for the design sgRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00600-9.
Collapse
Affiliation(s)
- Lendel Correia da Costa
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Larissa Maciel Bomfim
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Uilla Victoria Torres Dittz
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Camila de Almeida Velozo
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodrigo Delvecchio da Cunha
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
13
|
Larragoite ET, Nell RA, Martins LJ, Barrows LR, Planelles V, Spivak AM. Histone deacetylase inhibition reduces deleterious cytokine release induced by ingenol stimulation. Biochem Pharmacol 2022; 195:114844. [PMID: 34801521 PMCID: PMC8712404 DOI: 10.1016/j.bcp.2021.114844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.
Collapse
Affiliation(s)
- Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Racheal A. Nell
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Adam M. Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States, Corresponding Author: Adam M. Spivak, 50 North Medical Drive, Division of Infectious Diseases, Room 4B319, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, Phone: 801-587-1964, Fax: 801-585-3377,
| |
Collapse
|
14
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
15
|
Prasad H. Protons to Patients: targeting endosomal Na + /H + exchangers against COVID-19 and other viral diseases. FEBS J 2021; 288:5071-5088. [PMID: 34490733 PMCID: PMC8646450 DOI: 10.1111/febs.16163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
While there is undeniable evidence to link endosomal acid‐base homeostasis to viral pathogenesis, the lack of druggable molecular targets has hindered translation from bench to bedside. The recent identification of variants in the interferon‐inducible endosomal Na+/H+ exchanger 9 associated with severe coronavirus disease‐19 (COVID‐19) has brought a shift in the way we envision aberrant endosomal acidification. Is it linked to an increased susceptibility to viral infection or a propensity to develop critical illness? This review summarizes the genetic and cellular evidence linking endosomal Na+/H+ exchangers and viral diseases to suggest how they can act as a broad‐spectrum modulator of viral infection and downstream pathophysiology. The review also presents novel insights supporting the complex role of endosomal acid‐base homeostasis in viral pathogenesis and discusses the potential causes for negative outcomes of clinical trials utilizing alkalinizing drugs as therapies for COVID‐19. These findings lead to a pathogenic model of viral disease that predicts that nonspecific targeting of endosomal pH might fail, even if administered early on, and suggests that endosomal Na+/H+ exchangers may regulate key host antiviral defence mechanisms and mediators that act to drive inflammatory organ injury.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
16
|
Ortore G, Poli G, Martinelli A, Tuccinardi T, Rizzolio F, Caligiuri I. From Anti-infective Agents to Cancer Therapy: a Drug Repositioning Study Revealed a New Use for Nitrofuran Derivatives. Med Chem 2021; 18:249-259. [PMID: 33992059 DOI: 10.2174/1573406417666210511001241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The progression of ovarian cancer seems to be related to HDAC1, HDAC3 and HDAC6 activity. A possible strategy for improving therapies for treating ovarian carcinoma, minimizing the preclinical screenings, is the repurposing of already approved pharmaceutical products as inhibitors of these enzymes. OBJECTIVE This work was aimed to implement a computational strategy for identifying new HDAC inhibitors for ovarian carcinoma treatment among approved drugs. METHOD The CHEMBL database was used to construct training, test and decoys sets for performing and validating HDAC1, HDAC3 and HDAC6 3D-QSAR models obtained by using FLAP program. Docking and MD simulations were used in combination with the generated models to identify novel potential HDAC inhibitors. Cell viability assays and Western blot analyses were performed on normal and cancer cells for a direct evaluation of the anti-proliferative activity and an in vitro estimation of HDAC inhibition of the compounds selected through in silico screening. RESULT The best quantitative prediction was obtained for the HDAC6 3D-QSAR model. The screening of approved drugs highlighted a new potential use as HDAC inhibitors for some compounds, in particular nitrofuran derivatives, usually known for their antibacterial activity, and frequently used as antimicrobial adjuvant therapy in cancer treatment. Experimental evaluation of these derivatives highlighted a significant antiproliferative activity against cancer cell lines overexpressing HDAC6, and an increase in acetylated alpha-tubulin levels. CONCLUSION Experimental results support the hypothesis of a potential direct interaction of nitrofuran derivatives with HDACs. In addition to the possible repurposing of already approved drugs, this work suggests the nitro group as a new zinc binding group, able to interact with the catalytic zinc ion of HDACs.
Collapse
Affiliation(s)
| | - Giulio Poli
- Department of Pharmacy, Pisa University, Pisa, Italy
| | | | | | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico (CRO) IRCCS, Aviano, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
17
|
Díaz-Carballo D, Saka S, Acikelli AH, Homp E, Erwes J, Demmig R, Klein J, Schröer K, Malak S, D'Souza F, Noa-Bolaño A, Menze S, Pano E, Andrioff S, Teipel M, Dammann P, Klein D, Nasreen A, Tannapfel A, Grandi N, Tramontano E, Ochsenfarth C, Strumberg D. Enhanced antitumoral activity of TLR7 agonists via activation of human endogenous retroviruses by HDAC inhibitors. Commun Biol 2021; 4:276. [PMID: 33658617 PMCID: PMC7930250 DOI: 10.1038/s42003-021-01800-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
In this work, we are reporting that "Shock and Kill", a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies.
Collapse
Affiliation(s)
- David Díaz-Carballo
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany.
| | - Sahitya Saka
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Ali H Acikelli
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Ekaterina Homp
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Julia Erwes
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Rebecca Demmig
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Jacqueline Klein
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Katrin Schröer
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Sascha Malak
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Flevy D'Souza
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Adrien Noa-Bolaño
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Saskia Menze
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Emilio Pano
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Swetlana Andrioff
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Marc Teipel
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| | - Philip Dammann
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology, Cancer Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amber Nasreen
- Visceral Surgery Department, Marien Hospital Herne, Ruhr University Bochum Medical School, Herne, Germany
| | | | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Crista Ochsenfarth
- Department of Anesthesia, Intensive Care, Pain and Palliative Medicine, Marien Hospital Herne, Ruhr-University Bochum Medical School, Herne, Germany
| | - Dirk Strumberg
- Ruhr University Bochum, Faculty of Medicine, Department of Haematology and Oncology, Institute of Molecular Oncology and Experimental Therapeutics, Marien Hospital Herne, Herne, Germany
| |
Collapse
|
18
|
Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem Pharmacol 2021; 186:114462. [PMID: 33577894 DOI: 10.1016/j.bcp.2021.114462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) durably suppresses HIV replication, virus persists in CD4+ T-cells that harbor latent but spontaneously inducible and replication-competent provirus. One strategy to inactivate these viral reservoirs involves the use of agents that continue to reinforce HIV latency even after their withdrawal. To identify new chemical leads with such properties, we investigated a series of naturally-occurring flavones (chrysin, apigenin, luteolin, and luteolin-7-glucoside (L7G)) and functionally-related cyclin dependent kinase 9 (CDK9) inhibitors (flavopiridol and atuveciclib) which are reported or presumed to suppress HIV replication in vitro. We found that, while all compounds inhibit provirus expression induced by latency-reversing agents in vitro, only aglycone flavonoids (chrysin, apigenin, luteolin, flavopiridol) and atuveciclib, but not the glycosylated flavonoid L7G, inhibit spontaneous latency reversal. Aglycone flavonoids and atuveciclib, but not L7G, also inhibit CDK9 and the HIV Tat protein. Aglycone flavonoids do not reinforce HIV latency following their in vitro withdrawal, which corresponds with their ability to also inhibit class I/II histone deacetylases (HDAC), a well-established mechanism of latency reversal. In contrast, atuveciclib and flavopiridol, which exhibit little or no HDAC inhibition, continue to reinforce latency for 9 to 14+ days, respectively, following their withdrawal in vitro. Finally, we show that flavopiridol also inhibits spontaneous ex vivo viral RNA production in CD4+ T cells from donors with HIV. These results implicate CDK9 inhibition (in the absence of HDAC inhibition) as a potentially favorable property in the search for compounds that durably reinforce HIV latency.
Collapse
|
19
|
Hennessy EJ, FitzGerald GA. Battle for supremacy: nucleic acid interactions between viruses and cells. J Clin Invest 2021; 131:144227. [PMID: 33290272 PMCID: PMC7843224 DOI: 10.1172/jci144227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the COVID-19 pandemic swept across the globe, researchers have been trying to understand its origin, life cycle, and pathogenesis. There is a striking variability in the phenotypic response to infection with SARS-CoV-2 that may reflect differences in host genetics and/or immune response. It is known that the human epigenome is influenced by ethnicity, age, lifestyle, and environmental factors, including previous viral infections. This Review examines the influence of viruses on the host epigenome. We describe general lessons and methodologies that can be used to understand how the virus evades the host immune response. We consider how variation in the epigenome may contribute to heterogeneity in the response to SARS-CoV-2 and may identify a precision medicine approach to treatment.
Collapse
|
20
|
Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules 2020; 25:molecules25122903. [PMID: 32599753 PMCID: PMC7356874 DOI: 10.3390/molecules25122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.
Collapse
|