1
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
2
|
Sertbas M, Ulgen KO. Uncovering the Effect of SARS-CoV-2 on Liver Metabolism via Genome-Scale Metabolic Modeling for Reprogramming and Therapeutic Strategies. ACS OMEGA 2024; 9:15535-15546. [PMID: 38585079 PMCID: PMC10993323 DOI: 10.1021/acsomega.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Genome-scale metabolic models (GEMs) are promising computational tools that contribute to elucidating host-virus interactions at the system level and developing therapeutic strategies against viral infection. In this study, the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on liver metabolism was investigated using integrated GEMs of human hepatocytes and SARS-CoV-2. They were generated for uninfected and infected hepatocytes using transcriptome data. Reporter metabolite analysis resulted in significant transcriptional changes around several metabolites involved in xenobiotics, drugs, arachidonic acid, and leukotriene metabolisms due to SARS-CoV-2 infection. Flux balance analysis and minimization of metabolic adjustment approaches unraveled possible virus-induced hepatocellular reprogramming in fatty acid, glycerophospholipid, sphingolipid cholesterol, and folate metabolisms, bile acid biosynthesis, and carnitine shuttle among others. Reaction knockout analysis provided critical reactions in glycolysis, oxidative phosphorylation, purine metabolism, and reactive oxygen species detoxification subsystems. Computational analysis also showed that administration of dopamine, glucosamine, D-xylose, cysteine, and (R)-3-hydroxybutanoate contributes to alleviating viral infection. In essence, the reconstructed host-virus GEM helps us understand metabolic programming and develop therapeutic strategies to battle SARS-CoV-2.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
3
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NJ, FitzGerald GA. Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis. Clin Transl Med 2023; 13:e1440. [PMID: 37948331 PMCID: PMC10637636 DOI: 10.1002/ctm2.1440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.
Collapse
Affiliation(s)
- Hu Meng
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Antonijo Mrčela
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liudmila L. Mazaleuskaya
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Soumita Ghosh
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas G. Brooks
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexandra P. Turner
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Nicholas F. Lahens
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ashley Woolfork
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Greg Grant
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Katalin Susztak
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew G. Letizia
- Naval Medical Research CenterSilver SpringMarylandUSA
- Naval Medical Research Unit TWOSingaporeSingapore
| | - Stuart C. Sealfon
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical CarePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim M. Weljie
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nuala J. Meyer
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Patrignani P, Ballerini P, Jakobsson PJ, Steinhilber D. Editorial: Insights in inflammation pharmacology: 2022. Front Pharmacol 2023; 14:1223761. [PMID: 37342595 PMCID: PMC10277858 DOI: 10.3389/fphar.2023.1223761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Paola Patrignani
- Department of Neuroscience, Imaging, and Clinical Science, School of Medicine, and CAST, G. d’Annunzio” University, Chieti, Italy
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging, and Clinical Science, School of Medicine, and CAST, G. d’Annunzio” University, Chieti, Italy
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune-mediated diseases, CIMD, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NB, FitzGerald GA. Deep Phenotyping of the Lipidomic Response in COVID and non-COVID Sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543298. [PMID: 37398323 PMCID: PMC10312560 DOI: 10.1101/2023.06.02.543298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.
Collapse
|
6
|
Reina-Couto M, Roboredo-Madeira M, Pereira-Terra P, Silva-Pereira C, Martins S, Teixeira-Santos L, Pinho D, Dias A, Cordeiro G, Dias CC, Sarmento A, Tavares M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Evaluation of urinary cysteinyl leukotrienes as biomarkers of severity and putative therapeutic targets in COVID-19 patients. Inflamm Res 2023; 72:475-491. [PMID: 36617343 PMCID: PMC9826622 DOI: 10.1007/s00011-022-01682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. METHODS Blood and spot urine were collected in "severe" (n = 26), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. RESULTS U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. CONCLUSIONS U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal.
| | - Mariana Roboredo-Madeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | | | - Luísa Teixeira-Santos
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Andreia Dias
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal
| | | | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Porto, Portugal
- CINTESIS-Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - Margarida Tavares
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina-Unidade de Bioquímica, FMUP, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
| |
Collapse
|
7
|
Serezani CH, Divangahi M, Peters-Golden M. Leukotrienes in Innate Immunity: Still Underappreciated after All These Years? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:221-227. [PMID: 36649580 PMCID: PMC11749155 DOI: 10.4049/jimmunol.2200599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase pathway of arachidonate metabolism. Though best known for their role in asthma, they have broad actions that touch on virtually every aspect of mammalian biology. In a Brief Review published in the journal in 2005, we presented the existing evidence supporting a role for LTs in host defense. In this updated Brief Review, we focus on selected advances since then. We detail new insights into mechanisms and regulation of LT biosynthesis; the protective roles of LTs in the host response to diverse classes of pathogens, with an emphasis on viruses, including SARS-CoV-2; the phagocyte signal transduction mechanisms by which LTs exert their antimicrobial actions; the capacity for overexuberant LT production to promote tissue damage; and roles of LTs in the noninfectious immune-relevant conditions neuroinflammation and cancer.
Collapse
Affiliation(s)
- C. Henrique Serezani
- Department of Medicine, Division of Infectious Diseases; Department of Pathology, Microbiology, and Immunology; and Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maziar Divangahi
- Departments of Medicine, Pathology, Microbiology & Immunology; Meakins-Christie Laboratories; and McGill International TB Centre, McGill University Health Centre, Montreal, Canada
| | - Marc Peters-Golden
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, and Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Pawelzik SC, Arnardottir H, Sarajlic P, Mahdi A, Vigor C, Zurita J, Zhou B, Kolmert J, Galano JM, Religa D, Durand T, Wheelock CE, Bäck M. Decreased oxidative stress and altered urinary oxylipidome by intravenous omega-3 fatty acid emulsion in a randomized controlled trial of older subjects hospitalized for COVID-19. Free Radic Biol Med 2023; 194:308-315. [PMID: 36509313 PMCID: PMC9733960 DOI: 10.1016/j.freeradbiomed.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Proinflammatory bioactive lipid mediators and oxidative stress are increased in coronavirus disease 2019 (COVID-19). The randomized controlled single-blind trial COVID-Omega-F showed that intravenous omega-3 polyunsaturated fatty acids (n-3 PUFA) shifted the plasma lipid signature of COVID-19 towards increased proresolving precursor levels and decreased leukotoxin diols, associated with a beneficial immunodulatory response. The present study aimed to determine the effects of n-3 PUFA on the urinary oxylipidome and oxidative stress in COVID-19. From the COVID-Omega-F trial, 20 patients hospitalized for COVID-19 had available serial urinary samples collected at baseline, after 24-48 h, and after completing 5 days treatment with one daily intravenous infusion (2 mL/kg) of either placebo (NaCl; n = 10) or a lipid emulsion containing 10 g of n-3 PUFA per 100 mL (n = 10). Urinary eicosanoids and isoprostanes were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Erythrocytes obtained at the different time-points from n = 10 patients (n = 5 placebo and n = 5 n-3 PUFA) were used for determination of reactive oxygen species. Intravenous n-3 PUFA emulsion administration altered eicosanoid metabolites towards decreased levels for mediators of inflammation and thrombosis, and increased levels of the endothelial function mediator prostacyclin. Furthermore, non-enzymatic metabolism was skewed towards n-3 PUFA-derived metabolites with potential anti-inflammatory and pro-resolving effects. The oxidative stress marker 15-F2t-isoprostane was significantly lower in patients receiving n-3 PUFA treatment, who also exhibited significantly decreased erythrocyte oxidative stress compared with placebo-treated patients. These findings point to additional beneficial effects of intravenous n-3 PUFA emulsion treatment through a beneficial oxylipin profile and decreased oxidative stress in COVID-19.
Collapse
Affiliation(s)
- Sven-Christian Pawelzik
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Hildur Arnardottir
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Philip Sarajlic
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Johan Kolmert
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Dorota Religa
- Department of Neurobiology, Karolinska Institutet and Theme Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293, Cedex 5, Montpellier, France
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
10
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
Synergistic interactions of repurposed drugs that inhibit Nsp1, a major virulence factor for COVID-19. Sci Rep 2022; 12:10174. [PMID: 35715434 PMCID: PMC9204075 DOI: 10.1038/s41598-022-14194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nsp1 is one of the first proteins expressed from the SARS-CoV-2 genome and is a major virulence factor for COVID-19. A rapid multiplexed assay for detecting the action of Nsp1 was developed in cultured lung cells. The assay is based on the acute cytopathic effects induced by Nsp1. Virtual screening was used to stratify compounds that interact with two functional Nsp1 sites: the RNA-binding groove and C-terminal helix-loop-helix region. Experimental screening focused on compounds that could be readily repurposed to treat COVID-19. Multiple synergistic combinations of compounds that significantly inhibited Nsp1 action were identified. Among the most promising combinations are Ponatinib, Rilpivirine, and Montelukast, which together, reversed the toxic effects of Nsp1 to the same extent as null mutations in the Nsp1 gene.
Collapse
|
12
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis C, O'Mahony L, Jesenak M, Pfaar O, Torres MJ, Sanak M, Dahlén S, Woszczek G. Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. Allergy 2022; 77:2337-2354. [PMID: 35174512 PMCID: PMC9111413 DOI: 10.1111/all.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G Enrico Rovati
- Department of Pharmaceutical Sciences Section of Pharmacology and Biosciences University of Milan Milano Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden
- Department Microbiology Immunology and Transplantation Ku Leuven, Catholic University of Leuven Belgium
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jürgen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- VIB Center for Inflammation Research Ghent University Ghent Belgium
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandUniversity College Cork Cork Ireland
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology Department of Allergology and Clinical Immunology Department of Pediatrics Jessenius Faculty of Medicine in Martin Comenius University in BratislavaUniversity Teaching Hospital in Martin Slovakia
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - María José Torres
- Allergy Unit Málaga Regional University Hospital‐IBIMA‐UMA Málaga Spain
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlén
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institute, and the Department of Respiratory Medicine Karolinska University Hospital Stockholm Sweden
| | - Grzegorz Woszczek
- Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology and Microbial Sciences King's College London London UK
| |
Collapse
|
13
|
Camera M, Canzano P, Brambilla M, Rovati GE. Montelukast Inhibits Platelet Activation Induced by Plasma From COVID-19 Patients. Front Pharmacol 2022; 13:784214. [PMID: 35211011 PMCID: PMC8863130 DOI: 10.3389/fphar.2022.784214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Leukotrienes are important pro-inflammatory lipid mediators derived from the arachidonic acid metabolism. In particular, cysteinyl leukotrienes, namely LTC4, LTD4, and LTE4 are involved in many of the principal features of asthma, while more recently they have also been implicated in cardiovascular diseases. COVID-19 is characterized by an overwhelming state of inflammation, sometimes resulting in an acute respiratory distress syndrome. Furthermore, severe COVID-19 patients present an endothelial cell damage characterized by a hyperinflammatory/procoagulant state and a widespread thrombotic disease. Leukotriene receptor antagonists, such as montelukast, have long been proven to have an efficacy in asthma, while more recently they have been suggested to have a protective role also in cardiovascular diseases. As elevated levels of LTE4 have been detected in bronchoalveolar lavage of COVID-19 patients, and montelukast, in addition to its anti-inflammatory properties, has been suggested to have a protective role in cardiovascular diseases, we decided to investigate whether this drug could also affect the platelet activation characteristic of COVID-19 syndrome. In this contribution, we demonstrate that montelukast inhibits platelet activation induced by plasma from COVID-19 patients by preventing the surface expression of tissue factor (TF) and P-selectin, reducing the formation of circulating monocyte- and granulocyte-platelet aggregates, and, finally, in completely inhibiting the release of TFpos-circulating microvesicles. These data suggest the repurposing of montelukast as a possible auxiliary treatment for COVID-19 syndrome.
Collapse
Affiliation(s)
- Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | - G. Enrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Urda L, Kreuter MH, Drewe J, Boonen G, Butterweck V, Klimkait T. The Petasites hybridus CO 2 Extract (Ze 339) Blocks SARS-CoV-2 Replication In Vitro. Viruses 2022; 14:v14010106. [PMID: 35062310 PMCID: PMC8781559 DOI: 10.3390/v14010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 μg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 μM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 μM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lorena Urda
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| | | | - Jürgen Drewe
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Georg Boonen
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Veronika Butterweck
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Thomas Klimkait
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| |
Collapse
|
15
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
16
|
Metabolomics Signatures of SARS-CoV-2 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:45-59. [PMID: 34735713 DOI: 10.1007/5584_2021_674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For a very long time, viral infections have been considered as one of the most important causes of death and disability around the world. Through the viral infection, viruses as small pathogens enter the host cells and use hosts' biosynthesis machinery to replicate and collect infectious lineages. Moreover, they can modify hosts' metabolic pathways in order to their own purposes. Nowadays (in 2019-2020), the most famous type of viral infection which was caused by a novel type of coronavirus is called COVID-19 disease. It has claimed the lives of many people around the world and is a very serious threat to health. Since investigations of the effects of viruses on host metabolism using metabolomics tools may have given focuses on novel appropriate treatments, in the current review the authors highlighted the virus-host metabolic interactions and metabolomics perspective in COVID-19.
Collapse
|
17
|
Verduci E, Risé P, Di Profio E, Fiori L, Vizzuso S, Dilillo D, Mannarino S, Zoia E, Calcaterra V, Pinna C, Sala A, Zuccotti G. Blood Fatty Acids Profile in MIS-C Children. Metabolites 2021; 11:721. [PMID: 34822379 PMCID: PMC8624489 DOI: 10.3390/metabo11110721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
MIS-C (multisystem inflammatory syndrome in children) linked to SARS-CoV-2 infection, is a pathological state observed in subjects younger than 21 years old with evidence of either current SARS-CoV-2 infection or exposure within the 4 weeks prior to the onset of symptoms, the presence of documented fever, elevated markers of inflammation, at least two signs of multisystem involvement, and, finally, lack of an alternative diagnosis. They share with adult COVID-19 patients the presence of altered markers of inflammation, but unlike most adults the symptoms are not pulmonary but are affecting several organs. Lipid mediators arising from polyunsaturated fatty acids (PUFA) play an important role in the inflammatory response, with arachidonic acid-derived compounds, such as prostaglandins and leukotrienes, mainly pro-inflammatory and ω3 PUFA metabolites such as resolvins and protectins, showing anti-inflammatory and pro-resolution activities. In order to assess potential alterations of these FA, we evaluated the blood fatty acid profile of MIS-C children at admission to the hospital, together with biochemical, metabolic and clinical assessment. All the patients enrolled showed altered inflammatory parameters with fibrinogen, D-dimer, NT-proBNP, ferritin, aspartate aminotransferase (AST), C-reactive protein (CRP) and TrygIndex levels over the reference values in all the subjects under observation, while albumin and HDL-cholesterol resulted below the normal range. Interestingly, linoleic acid (LA), arachidonic acid (AA) and the ω3 PUFA docosahexaenoic acid (DHA) results were lower in our study when compared to relative amounts reported in the other studies, including from our own laboratory. This significant alteration is pointing out to a potential depletion of these PUFA as a result of the systemic inflammatory condition typical of these patients, suggesting that LA- and AA-derived metabolites may play a critical role in this pathological state, while ω3 PUFA-derived pro-resolution metabolites in these subjects may not be able to provide a timely, physiological counterbalance to the formation of pro-inflammatory lipid mediators. In conclusion, this observational study provides evidence of FA alterations in MIS-C children, suggesting a significant contribution of ω6 FA to the observed inflammatory state, and supporting a potential dietary intervention to restore an appropriate balance among the FAs capable of promoting the resolution of the observed inflammatory condition.
Collapse
Affiliation(s)
- Elvira Verduci
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
- Department of Health Sciences, University of Milano, 20142 Milano, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy; (P.R.); (C.P.)
| | - Elisabetta Di Profio
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Laura Fiori
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
| | - Sara Vizzuso
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
| | - Dario Dilillo
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
| | - Savina Mannarino
- Pediatric Cardiology Unit, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy;
| | - Elena Zoia
- Anesthesia and Intensive Care Unit, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy;
| | - Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Christian Pinna
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy; (P.R.); (C.P.)
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy; (P.R.); (C.P.)
- IRIB, C.N.R., 90146 Palermo, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (E.V.); (E.D.P.); (L.F.); (S.V.); (D.D.); (V.C.); (G.Z.)
| |
Collapse
|
18
|
Durdagi S, Avsar T, Orhan MD, Serhatli M, Balcioglu BK, Ozturk HU, Kayabolen A, Cetin Y, Aydinlik S, Bagci-Onder T, Tekin S, Demirci H, Guzel M, Akdemir A, Calis S, Oktay L, Tolu I, Butun YE, Erdemoglu E, Olkan A, Tokay N, Işık Ş, Ozcan A, Acar E, Buyukkilic S, Yumak Y. The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies. Mol Ther 2021; 30:963-974. [PMID: 34678509 PMCID: PMC8524809 DOI: 10.1016/j.ymthe.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Serhatli
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Bertan Koray Balcioglu
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Hasan Umit Ozturk
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Seyma Aydinlik
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Saban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli; Department of Basic Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Lalehan Oktay
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ilayda Tolu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Yasar Enes Butun
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Erdemoglu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Alpsu Olkan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Nurettin Tokay
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Şeyma Işık
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Aysenur Ozcan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Acar
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sehriban Buyukkilic
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Yesim Yumak
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
19
|
Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res 2021; 62:100129. [PMID: 34599996 PMCID: PMC8480132 DOI: 10.1016/j.jlr.2021.100129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Oral Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
AbdelMassih A, Hassan AA, Abou-Zeid AS, Hassan A, Hussein E, Gadalla M, Hussein M, Eid MA, Elahmady M, El Nahhas N, Emad N, Zahra N, Aboushadi N, Ibrahim N, Mokhtar S, Ismail HA, El-Husseiny N, Moharam RK, Menshawey E, Menshawey R. Salivary markers and coronavirus disease 2019: insights from cross-talk between the oral microbiome and pulmonary and systemic low-grade inflammation and implications for vascular complications. Cardiovasc Endocrinol Metab 2021; 10:162-167. [PMID: 34386717 PMCID: PMC8352626 DOI: 10.1097/xce.0000000000000242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
To date, coronavirus disease 2019 (COVID-19) has affected over 6.2 million individuals worldwide, including 1.46 million deaths. COVID-19 complications are mainly induced by low-grade inflammation-causing vascular degeneration. There is an increasing body of evidence that suggests that oral dysbiotic taxa are associated with worse prognosis in COVID-19 patients, especially the Prevotella genus, which was retrieved from nasopharyngeal and bronchoalveolar lavage samples in affected patients. Oral dysbiosis may act by increasing the likelihood of vascular complications through low-grade inflammation, as well as impairing respiratory mucosal barrier mechanisms against SARS-CoV-2. Salivary markers can be used to reflect this oral dysbiosis and its subsequent damaging effects on and the lungs and vasculature. Salivary sampling can be self-collected, and is less costly and less invasive, and thus may be a superior option to serum markers in risk stratification of COVID-19 patients. Prospective studies are needed to confirm such hypothesis. Video Abstract: http://links.lww.com/CAEN/A28.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Giza
- Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt
| | - Alaa A Hassan
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Aya S Abou-Zeid
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Aya Hassan
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Engy Hussein
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Mahenar Gadalla
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Mahinour Hussein
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Maryam A Eid
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Maryam Elahmady
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Nadine El Nahhas
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Nadine Emad
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Nihal Zahra
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Nour Aboushadi
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Nourhan Ibrahim
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Sherouk Mokhtar
- Research Department, School of Oral and Dental Medicine, New Giza University, New Giza
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | | | - Nadine El-Husseiny
- Research Department, Faculty of Medicine, Cairo University, Cairo
- Department of Oral and Maxillo-facial Surgery, Faculty of Dentistry, Cairo University, Giza
- Department of Scientific Design, Pixagon Graphic Design Agency, Cairo
| | - Reham Khaled Moharam
- Residency Training Program of Plastic Surgery Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Esraa Menshawey
- Research Department, Faculty of Medicine, Cairo University, Cairo
| | - Rahma Menshawey
- Research Department, Faculty of Medicine, Cairo University, Cairo
| |
Collapse
|
21
|
Moolamalla STR, Balasubramanian R, Chauhan R, Priyakumar UD, Vinod PK. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. Microb Pathog 2021; 158:105114. [PMID: 34333072 PMCID: PMC8321700 DOI: 10.1016/j.micpath.2021.105114] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Understanding the pathogenesis of SARS-CoV-2 is essential for developing effective treatment strategies. Viruses hijack the host metabolism to redirect the resources for their replication and survival. The influence of SARS-CoV-2 on host metabolism is yet to be fully understood. In this study, we analyzed the transcriptomic data obtained from different human respiratory cell lines and patient samples (nasopharyngeal swab, peripheral blood mononuclear cells, lung biopsy, bronchoalveolar lavage fluid) to understand metabolic alterations in response to SARS-CoV-2 infection. We explored the expression pattern of metabolic genes in the comprehensive genome-scale network model of human metabolism, Recon3D, to extract key metabolic genes, pathways, and reporter metabolites under each SARS-CoV-2-infected condition. A SARS-CoV-2 core metabolic interactome was constructed for network-based drug repurposing. Our analysis revealed the host-dependent dysregulation of glycolysis, mitochondrial metabolism, amino acid metabolism, nucleotide metabolism, glutathione metabolism, polyamine synthesis, and lipid metabolism. We observed different pro- and antiviral metabolic changes and generated hypotheses on how the host metabolism can be targeted for reducing viral titers and immunomodulation. These findings warrant further exploration with more samples and in vitro studies to test predictions.
Collapse
Affiliation(s)
- S T R Moolamalla
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Rami Balasubramanian
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Ruchi Chauhan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
22
|
Dey M, Singh RK. Possible Therapeutic Potential of Cysteinyl Leukotriene Receptor Antagonist Montelukast in Treatment of SARS-CoV-2-Induced COVID-19. Pharmacology 2021; 106:469-476. [PMID: 34350893 DOI: 10.1159/000518359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The coronavirus disease-19 (COVID-19) pandemic is a serious devastating disease and has posed a global health emergency. So far, there is not any specific therapy approved till date to control the clinical symptoms of the disease. Remdesivir has been approved by the FDA as an emergency clinical therapy. But it may not be effective alone to control the disease as it can only control the viral replication in the host. SUMMARY This article summarizes the possible therapeutic potential and benefits of using montelukast, a cysteinyl leukotriene 1 (CysLT1) receptor antagonist, to control COVID-19 pathophysiology. Montelukast has shown anti-inflammatory effects, reduced cytokine production, improvement in post-infection cough production and other lung complications. Key Messages: Recent reports clearly indicate a distinct role of CysLT-regulated cytokines and immunological signaling in COVID-19. Thus, montelukast may have a clinical potential to control lung pathology during COVID-19.
Collapse
Affiliation(s)
- Mangaldeep Dey
- National Institute of Pharmaceutical Education and Research, Department of Pharmacology and Toxicology, Raebareli, Transit campus, Lucknow, India
| | - Rakesh Kumar Singh
- National Institute of Pharmaceutical Education and Research, Department of Pharmacology and Toxicology, Raebareli, Transit campus, Lucknow, India
| |
Collapse
|
23
|
da Cunha LNOL, Tizziani T, Souza GB, Moreira MA, Neto JSS, Dos Santos CVD, de Carvalho MG, Dalmarco EM, Turqueti LB, Scotti MT, Scotti L, de Assis FF, Braga A, Sandjo LP. Natural Products with tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 effects: A Drug Discovery Perspective against SARS-CoV-2. Curr Med Chem 2021; 29:2530-2564. [PMID: 34313197 DOI: 10.2174/0929867328666210726094955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHOD The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
Collapse
Affiliation(s)
- Luana N O Leal da Cunha
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriella B Souza
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Monalisa A Moreira
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José S S Neto
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carlos V D Dos Santos
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maryelle G de Carvalho
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo M Dalmarco
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo B Turqueti
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marcus Tullius Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Francisco F de Assis
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio Braga
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
24
|
Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021; 12:688946. [PMID: 34366882 PMCID: PMC8339726 DOI: 10.3389/fphys.2021.688946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca K Masanetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Röhn TA, Numao S, Otto H, Loesche C, Thoma G. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 2021; 16:1483-1495. [PMID: 34191664 DOI: 10.1080/17460441.2021.1948998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IntroductionLeukotriene A4 hydrolase (LTA4H) is the final and rate limiting enzyme regulating the biosynthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid mediator implicated in a large number of inflammatory pathologies. Inhibition of LTA4H not only prevents LTB4 biosynthesis but also induces a lipid mediator class-switch within the 5-lipoxygenase pathway, elevating biosynthesis of the anti-inflammatory lipid mediator Lipoxin A4. Ample preclinical evidence advocates LTA4H as attractive drug target for the treatment of chronic inflammatory diseases.Areas coveredThis review covers details about the biochemistry of LTA4H and describes its role in regulating pro- and anti-inflammatory mediator generation. It summarizes recent efforts in medicinal chemistry toward novel LTA4H inhibitors, recent clinical trials testing LTA4H inhibitors in pulmonary inflammatory diseases, and potential reasons for the discontinuation of former development programs.Expert opinionGiven the prominent role of LTB4 in initiating and perpetuating inflammation, LTA4H remains an appealing drug target. The reason former attempts targeting this enzyme have not met with success in the clinic can be attributed to compound-specific liabilities of first-generation inhibitors and/or choice of target indications to test this mode of action. A new generation of highly potent and selective LTA4H inhibitors is currently undergoing clinical testing in indications with a strong link to LTB4 biology.
Collapse
Affiliation(s)
- Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Shin Numao
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Heike Otto
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gebhard Thoma
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
26
|
Ripon MAR, Bhowmik DR, Amin MT, Hossain MS. Role of arachidonic cascade in COVID-19 infection: A review. Prostaglandins Other Lipid Mediat 2021; 154:106539. [PMID: 33592322 PMCID: PMC7882227 DOI: 10.1016/j.prostaglandins.2021.106539] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The World Health Organization has described the 2019 Coronavirus disease caused by an influenza-like virus called SARS-CoV-2 as a pandemic. Millions of people worldwide are already infected by this virus, and severe infection causes hyper inflammation, thus disrupting lung function, exacerbating breath difficulties, and death. Various inflammatory mediators bio-synthesized through the arachidonic acid pathway play roles in developing cytokine storms, injuring virus-infected cells. Since pro-inflammatory eicosanoids, including prostaglandins, and leukotrienes, are key brokers for physiological processes such as inflammation, fever, allergy, and pain but, their function in COVID-19 is not well defined. This study addresses eicosanoid's crucial role through the arachidonic pathway in inflammatory cascading and recommends using bioactive lipids, NSAIDs, steroids, cell phospholipase A2 (cPLA2) inhibitors, and specialized pro-resolving mediators (SPMs) to treat COVID-19 disease. The role of soluble epoxide hydrolase inhibitors (SEHIs) in promoting the activity of epoxyeicosatrienoic acids (EETs) and 17-hydroxide-docosahexaenoic acid (17-HDHA) is also discussed. Additional research that assesses the eicosanoid profile in COVID-19 patients or preclinical models generates novel insights into coronavirus-host interaction and inflammation regulation.
Collapse
Affiliation(s)
- Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
27
|
Archambault AS, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, Dubuc I, Martin C, Flamand O, Amar Y, Cheikh A, Fares H, El Hassani A, Tijani Y, Côté A, Laviolette M, Boilard É, Flamand L, Flamand N. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB J 2021; 35:e21666. [PMID: 34033145 PMCID: PMC8206770 DOI: 10.1096/fj.202100540r] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Younes Zaid
- Biology Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Caroline Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Étienne Doré
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Olivier Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Youssef Amar
- Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Amine Cheikh
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Hakima Fares
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Amine El Hassani
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Andréanne Côté
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Éric Boilard
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| |
Collapse
|
28
|
Al-Kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz-Martins N, El-Saber Batiha G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur J Pharmacol 2021; 904:174196. [PMID: 34004207 PMCID: PMC8123523 DOI: 10.1016/j.ejphar.2021.174196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the responsible agent for the coronavirus disease 2019 (Covid-19), has its entry point through interaction with angiotensin converting enzyme 2 (ACE2) receptors, highly expressed in lung type II alveolar cells and other tissues, like heart, pancreas, brain, and vascular endothelium. This review aimed to elucidate the potential role of leukotrienes (LTs) in the pathogenesis and clinical presentation of SARS-CoV-2 infection, and to reveal the critical role of LT pathway receptor antagonists and inhibitors in Covid-19 management. A literature search was done in PubMed, Scopus, Web of Science and Google Scholar databases to find the potential role of montelukast and other LT inhibitors in the management of pulmonary and extra-pulmonary manifestations triggered by SARS-CoV-2. Data obtained so far underline that pulmonary and extra-pulmonary manifestations in Covid-19 are attributed to a direct effect of SARS-CoV-2 in expressed ACE2 receptors or indirectly through NF-κB dependent induction of a cytokine storm. Montelukast can ameliorate extra-pulmonary manifestations in Covid-19 either directly through blocking of Cys-LTRs in different organs or indirectly through inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Yaaser Q Almulaiky
- University of Jeddah, College of Sciences and Arts at Khulis, Department of Chemistry, Jeddah, Saudi Arabia.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
29
|
Amere Subbarao S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting. Inflammopharmacology 2021; 29:343-366. [PMID: 33723711 PMCID: PMC7959277 DOI: 10.1007/s10787-021-00796-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is an intrinsic defence mechanism triggered by the immune system against infection or injury. Chronic inflammation allows the host to recover or adapt through cellular and humoral responses, whereas acute inflammation leads to cytokine storms resulting in tissue damage. In this review, we present the overlapping outcomes of cancer inflammation with virus-induced inflammation. The study emphasises how anti-inflammatory drugs that work against cancer inflammation may work against the inflammation caused by the viral infection. It is established that the cytokine storm induced in response to SARS-CoV-2 infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, we review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them. We also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2 induced cytokine storm. In this review, we emphasise on various possibilities to reduce SARS-CoV-2 induced cytokine storm.
Collapse
|
30
|
Gebremeskel S, Schanin J, Coyle KM, Butuci M, Luu T, Brock EC, Xu A, Wong A, Leung J, Korver W, Morin RD, Schleimer RP, Bochner BS, Youngblood BA. Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation: Implications for an Anti-Siglec-8 Antibody. Front Immunol 2021; 12:650331. [PMID: 33777047 PMCID: PMC7988091 DOI: 10.3389/fimmu.2021.650331] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production—effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.
Collapse
Affiliation(s)
| | | | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Research Centre, Simon Fraser University, Vancouver, BC, Canada
| | | | - Thuy Luu
- Allakos Inc., Redwood City, CA, United States
| | | | - Alan Xu
- Allakos Inc., Redwood City, CA, United States
| | - Alan Wong
- Allakos Inc., Redwood City, CA, United States
| | - John Leung
- Allakos Inc., Redwood City, CA, United States
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Research Centre, Simon Fraser University, Vancouver, BC, Canada
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | |
Collapse
|
31
|
Delijewski M, Haneczok J. AI drug discovery screening for COVID-19 reveals zafirlukast as a repurposing candidate. MEDICINE IN DRUG DISCOVERY 2021; 9:100077. [PMID: 33521623 PMCID: PMC7836294 DOI: 10.1016/j.medidd.2020.100077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
AIMS Over the past few years, AI has been considered as potential important area for improving drug development and in the current urgent need to fight the global COVID-19 pandemic new technologies are even more in focus with the hope to speed up this process. The purpose of our study was to identify the best repurposing candidates among FDA-approved drugs, based on their predicted antiviral activity against SARS-CoV-2. MATERIALS AND METHODS This article describes a drug discovery screening based on a supervised machine learning model, trained on in vitro data encoded in chemical fingerprints, representing particular molecular substructures. Predictive performance of our model has been evaluated using so-called scaffold splits offering a state-of-the-art setup for assessing model's ability to generalize to new chemical spaces, critical for drug repurposing applications. KEY FINDINGS Our study identified zafirlukast as the best repurposing candidate for COVID-19. SIGNIFICANCE Zafirlukast could be potent against COVID-19 both due to its predicted antiviral properties and its ability to attenuate the so called cytokine storm. Thus, these two critical mechanisms of action may be combined in one drug as a novel and promising pharmacotherapy in the current pandemic.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
32
|
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Vorobjeva NV, Sud'ina GF, Chernyak BV. Mitochondria Are Potential Targets for the Development of New Drugs Against Neutrophilic Inflammation in Severe Pneumonia Including COVID-19. Front Pharmacol 2021; 12:609508. [PMID: 33584318 PMCID: PMC7878366 DOI: 10.3389/fphar.2021.609508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nina V Vorobjeva
- Biology Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Doğan HO, Şenol O, Bolat S, Yıldız ŞN, Büyüktuna SA, Sarıismailoğlu R, Doğan K, Hasbek M, Hekim SN. Understanding the pathophysiological changes via untargeted metabolomics in COVID-19 patients. J Med Virol 2020; 93:2340-2349. [PMID: 33300133 DOI: 10.1002/jmv.26716] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease caused by a new strain of the coronavirus. There is limited data on the pathogenesis and the cellular responses of COVID-19. In this study, we aimed to determine the variation of metabolites between healthy control and COVID-19 via the untargeted metabolomics method. Serum samples were obtained from 44 COVID-19 patients and 41 healthy controls. Untargeted metabolomics analyses were performed by the LC/Q-TOF/MS (liquid chromatography quadrupole time-of-flight mass spectrometry) method. Data acquisition, classification, and identification were achieved by the METLIN database and XCMS. Significant differences were determined between patients and healthy controls in terms of purine, glutamine, leukotriene D4 (LTD4), and glutathione metabolisms. Downregulations were determined in R-S lactoglutathione and glutamine. Upregulations were detected in hypoxanthine, inosine, and LTD4. Identified metabolites indicate roles for purine, glutamine, LTD4, and glutathione metabolisms in the pathogenesis of the COVID-19. The use of selective leukotriene D4 receptor antagonists, targeting purinergic signaling as a therapeutic approach and glutamine supplementation may decrease the severity and mortality of COVID-19.
Collapse
Affiliation(s)
- Halef O Doğan
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Serkan Bolat
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Şeyma N Yıldız
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Seyit A Büyüktuna
- Department of Infectious Diseases, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | | | - Kübra Doğan
- Department of Biochemistry, Sivas Numune Hospital, Sivas, Turkey
| | - Mürşit Hasbek
- Department of Microbiology, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Süleyman N Hekim
- Department of Biochemistry, School of Medicine, University of Biruni, İstanbul, Turkey
| |
Collapse
|