1
|
Kim TW, Ko SG. A Novel PPARγ Modulator Falcarindiol Mediates ER Stress-Mediated Apoptosis by Regulating NOX4 and Overcomes Radioresistance in Breast Cancer. Antioxidants (Basel) 2024; 13:1533. [PMID: 39765861 PMCID: PMC11727077 DOI: 10.3390/antiox13121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
The extract of the rhizome of Cnidium officinale Makino has potential anti-cancer and anti-inflammatory effects in many diseases, such as cancer. However, the biological functions of falcarindiol (FAD) in breast cancer are not fully understood. This study proved the anti-inflammatory and anti-cancer effects of FAD in breast cancer. Breast cancer models confirmed that FAD reduces cell viability and decreases the tumor volume of xenograft mouse models in a dose-dependent manner. FAD mediated caspase-3-dependent apoptosis in MDA-MB-231 and MCF-7 cells, whereas Z-VAD-FMK in combination with FAD inhibited caspase-3-induced apoptosis. FAD mediates apoptosis through cytosolic reactive oxygen species (ROS) and calcium (Ca2+) production and ER stress signaling pathways. In addition, FAD combined with thapsigargin (TG) exerts a synergistic apoptotic cell death effect. In the loss-of-function experiments, PERK or CHOP ablation suppressed intracellular ROS and Ca2+ release and ER stress-induced apoptosis in FAD-treated breast cancer models. Since there is a relationship between ROS and NADPH Oxidase 4 (NOX4), Nox4 ablation blocked ER stress-mediated apoptotic cell death by inhibiting ROS release in FAD-induced breast cancer models. Radioresistant models, such as MCF-7R and MDA-MB-231R, were developed to address the cellular radioresistance in clinical radiotherapy. FAD combined with radiation (2 Gy) overcame radioresistance via the inhibition of the epithelial-mesenchymal transition (EMT) phenomenon, such as the upregulation of PPARγ, VIM, and CDH2 and the downregulation of CDH1. Consequently, these results show that FAD may be a novel treatment as a breast cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Cao L, Huang X, Zhu J, Xiao J, Xie L. Falcarindiol improves functional recovery and alleviates neuroinflammation after spinal cord injury by inhibiting STAT/MAPK signaling pathways. Biochem Biophys Res Commun 2024; 736:150860. [PMID: 39454306 DOI: 10.1016/j.bbrc.2024.150860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) is a devastating trauma in the central nervous system (CNS), leading to motor and sensory impairment. Neuroinflammation is one of the critical contributors to the progression of secondary injury. Falcarindiol has been reported to efficaciously mitigate lipopolysaccharide (LPS)-mediated inflammation in RAW 264.7 cells. The role of falcarindiol in SCI recovery remains unclear. In this present study, traumatic SCI mice models and LPS-stimulated murine microglia cell line (BV2 cells) were performed to explore the pharmacological effects and the underlying mechanisms of falcarindiol in improving SCI repair with detection of motor function recovery, morphological changes, numbers of survival neurons and protein expression levels of inflammation or apoptosis-related proteins. Our study found that falcarindiol intervention could promote motor function recovery and reduce spinal cord tissue damage in mice following SCI. Mechanistically, falcarindiol intervention suppressed apoptosis-driven neuronal cell death and mitigated inflammatory reactions following SCI. Additionally, falcarindiol inhibited the activation of signal transducer and activator of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in vivo and in vitro. This suppression of STAT and MAPK activation by falcarindiol was reversed by STAT3 agonist Colivelin TFA and MAPK agonist C16-PAF in BV2 cells, respectively. Moreover, the study further demonstrated that the anti-inflammation role of falcarindiol was obstructed by Colivelin TFA but not by C16-PAF in LPS-stimulated BV2 cells, suggesting that falcarindiol may efficaciously ameliorate neuroinflammation through inhibiting the activation of STAT signaling pathway following SCI. Collectively, our study indicates that falcarindiol may be a novel drug candidate for the treatment and management of SCI.
Collapse
Affiliation(s)
- Lin Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Jinhua Maternal and Child Health Care Hospital, Jinhua, 321099, China
| | - Xiaoli Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiangwei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Kobaek‐Larsen M, Maschek S, Kolstrup SH, Højlund K, Nielsen DS, Hansen AK, Christensen LP. Effect of carrot intake on glucose tolerance, microbiota, and gene expression in a type 2 diabetes mouse model. Clin Transl Sci 2024; 17:e70090. [PMID: 39625861 PMCID: PMC11613996 DOI: 10.1111/cts.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Type 2 diabetes (T2D) pathophysiology involves insulin resistance (IR) and inadequate insulin secretion. Current T2D management includes dietary adjustments and/or oral medications such as thiazolidinediones (TZDs). Carrots have shown to contain bioactive acetylenic oxylipins that are partial agonists of the peroxisome proliferator-activated receptor γ (Pparg) that mimic the antidiabetic effect of TZDs without any adverse effects. TZDs exert hypoglycemic effects through activation of Pparg and through the regulation of the gut microbiota (GM) producing short-chain fatty acids (SCFAs), which impact glucose and energy homeostasis, promote intestinal gluconeogenesis, and influence insulin signaling pathways. This study investigated the metabolic effects of carrot intake in a T2D mouse model, elucidating underlying mechanisms. Mice were fed a low-fat diet (LFD), high-fat diet (HFD), or adjusted HFD supplemented with 10% carrot powder for 16 weeks. Oral glucose tolerance tests were conducted at weeks 0 and 16. Fecal, cecum, and colon samples, as well as tissue samples, were collected at week 16 during the autopsy. Results showed improved oral glucose tolerance in the HFD carrot group compared to HFD alone after 16 weeks. GM analysis demonstrated increased diversity and compositional changes in the cecum of mice fed HFD with carrot relative to HFD. These findings suggest the potential effect of carrots in T2D management, possibly through modulation of GM. Gene expression analysis revealed no significant alterations in adipose or muscle tissue between diet groups. Further research into carrot-derived bioactive compounds and their mechanisms of action is warranted for developing effective dietary strategies against T2D.
Collapse
MESH Headings
- Animals
- Daucus carota
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/drug therapy
- Mice
- Gastrointestinal Microbiome/drug effects
- Male
- Diet, High-Fat/adverse effects
- Glucose Tolerance Test
- Disease Models, Animal
- Mice, Inbred C57BL
- Insulin Resistance
- Blood Glucose/metabolism
- Gene Expression Regulation/drug effects
- Diet, Fat-Restricted
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/blood
Collapse
Affiliation(s)
| | - Sina Maschek
- Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | | | - Kurt Højlund
- Department of Clinical ResearchUniversity of Southern DenmarkOdense MDenmark
- Steno Diabetes Center OdenseOdense University HospitalOdense CDenmark
| | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | | |
Collapse
|
4
|
Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023; 12:foods12061192. [PMID: 36981118 PMCID: PMC10048309 DOI: 10.3390/foods12061192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polyacetylene phytochemicals are emerging as potentially responsible for the chemoprotective effects of consuming apiaceous vegetables. There is some evidence suggesting that polyacetylenes (PAs) impact carcinogenesis by influencing a wide variety of signalling pathways, which are important in regulating inflammation, apoptosis, cell cycle regulation, etc. Studies have shown a correlation between human dietary intake of PA-rich vegetables with a reduced risk of inflammation and cancer. PA supplementation can influence cell growth, gene expression and immunological responses, and has been shown to reduce the tumour number in rat and mouse models. Cancer chemoprevention by dietary PAs involves several mechanisms, including effects on inflammatory cytokines, the NF-κB pathway, antioxidant response elements, unfolded protein response (UPR) pathway, growth factor signalling, cell cycle progression and apoptosis. This review summarises the published research on falcarinol-type PA compounds and their mechanisms of action regarding cancer chemoprevention and also identifies some gaps in our current understanding of the health benefits of these PAs.
Collapse
|
5
|
Kan S, Tan J, Cai Q, An L, Gao Z, Yang H, Liu S, Na R, Yang L. Synergistic activity of the combination of falcarindiol and itraconazole in vitro against dermatophytes. Front Cell Infect Microbiol 2023; 13:1128000. [PMID: 37207188 PMCID: PMC10189107 DOI: 10.3389/fcimb.2023.1128000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Previous studies have shown that natural polyacetylene alcohols, such as falcarindiol (FADOH), have good antifungal effects on plant fungi. While its effect on fungi that infect humans remains to be explored. In our study, checkerboard microdilution, drop-plate assay, and time-growth method were employed to analyze the interactions between FADOH and itraconazole (ITC) in vitro against dermatophytes, including 12 Trichophyton rubrum (T. rubrum), 12 Trichophyton mentagrophytes (T. mentagrophytes), and 6 Microsporum canis (M. canis). The results showed that the combination of FADOH and ITC exhibited synergistic and additive activity against 86.7% of all tested dermatophytes. FADOH had an excellent synergistic effect on ITC against T. rubrum and T. mentagrophytes; the synergistic rates were 66.7% and 58.3%, respectively. On the contrary, FADOH combined with ITC showed poor synergistic inhibitory activity (16.7%) against M. canis. Moreover, the additive rates of these two drugs against T. rubrum, T. mentagrophytes, and M. canis were 25%, 41.7%, and 33.3%, respectively. No antagonistic interactions were observed. The drop-plate assay and time-growth curves confirmed that the combination of FADOH and ITC had a potent synergistic antifungal effect. The in vitro synergistic effect of FADOH and ITC against dermatophytes is reported here for the first time. Our findings suggest the potential use of FADOH as an effective antifungal drug in the combined therapy of dermatophytoses caused especially by T. rubrum and T. mentagrophytes.
Collapse
Affiliation(s)
- Siyue Kan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Cai
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulu An
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqin Gao
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyu Liu
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Risong Na
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lianjuan Yang,
| |
Collapse
|
6
|
Abdelrahman A, Nielsen MMW, Stage MH, Arnspang EC. Nuclear envelope morphology change upon repetitive treatment with modified antisense oligonucleotides targeting Hutchinson-Gilford Progeria Syndrome. Biochem Biophys Rep 2022; 33:101411. [PMID: 36632198 PMCID: PMC9827026 DOI: 10.1016/j.bbrep.2022.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
We present the influence of treating progeroid fibroblasts with two modified antisense oligonucleotides (ONs) on the nuclear envelope. Two modified ONs were designed to block ribosome binding during translation and spliceosome binding at the cryptic splice site. We analysed the changes in the nuclear morphology of progeria cell nuclei after repetitive transfection with modified ONs as a physical analysis tool for estimating alteration of the gene expression at the protein level. Confocal microscopy was used to image the nuclei, and the nuclear lobulations were quantified to study the changes in the morphology of the nuclear envelope upon treatment. PCR was used to identify the changes in the expression of lamin A and progerin after antisense treatment at the RNA level. We found a significant decrease in the number of nuclear envelope lobulations and a lower progerin expression in progeria cells after transfection with modified ONs.
Collapse
Affiliation(s)
- Asmaa Abdelrahman
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Photochemistry, National Research Centre, Dokki, Giza, Egypt
| | - Mette-Marie Wendelboe Nielsen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Mechanical and Electrical Engineering, Faculty of Engineering University of Southern Denmark, Sønderborg, Denmark
| | - Mette Halkjær Stage
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Food Science, Faculty of Science, Copenhagen University, Copenhagen, Denmark
| | - Eva Christensen Arnspang
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Corresponding author.
| |
Collapse
|
7
|
Zhou R, Gao Z, Ju Y. Novel six-gene prognostic signature based on colon adenocarcinoma immune-related genes. BMC Bioinformatics 2022; 23:418. [PMID: 36221049 PMCID: PMC9552517 DOI: 10.1186/s12859-022-04909-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common gastrointestinal tumors worldwide, and immunotherapy is one of the most promising treatments for it. Identifying immune genes involved in the development and maintenance of cancer is key to the use of tumor immunotherapy. This study aimed to determine the prognostic value of immune genes in patients with COAD and to establish an immune-related gene signature. Differentially expressed genes, immune-related genes (DEIGs), and transcription factors (DETFs) were screened using the following databases: Cistrome, The Cancer Genome Atlas (TCGA), the Immunology Database and Analysis Portal, and InnateDB. We constructed a network showing the regulation of DEIGs by DETFs. Using weighted gene co-expression network analysis, we prepared 5 co-expressed gene modules; 6 hub genes (CD1A, CD1B, FGF9, GRP, SERPINE1, and F2RL2) obtained using univariate and multivariate regression analysis were used to construct a risk model. Patients from TCGA database were divided into high- and low-risk groups based on whether their risk score was greater or less than the mean; the public dataset GSE40967, which contains gene expression profiles of 566 colon cancer patients, was used for validation. Results Survival analysis, somatic gene mutations, and tumor-infiltrating immune cells differed significantly between the high- and low-risk groups. Conclusions This immune-related gene signature could play an important role in guiding treatment, making prognoses, and potentially developing future clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04909-2.
Collapse
Affiliation(s)
- Rui Zhou
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Zhuowei Gao
- Medical Department of Traditional Chinese Medicine, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, No. 12, Jinsha Avenue, Shunde District, Foshan, 510006, Guangdong, China
| | - Yongle Ju
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China.
| |
Collapse
|
8
|
Xie Q, Wang C. Polyacetylenes in herbal medicine: A comprehensive review of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014-2021). PHYTOCHEMISTRY 2022; 201:113288. [PMID: 35718132 DOI: 10.1016/j.phytochem.2022.113288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Polyacetylenes are a kind of small active compounds with carbon-carbon triple bond with vast occurrence in plants. Polyacetylenes have attracted considerable attention owing to their diverse biofunctions like tumor suppression, immunity regulation, depression resistance and neural protection. The present review intends to reconstruct data concerning the occurrence, pharmacology, toxicology and pharmacokinetics of polyacetylenes from herbal medicine in a systematic and integrated way, with a view to backing up their curative potential and healthcare properties (2014-2021). The natural polyacetylene-related data were all acquired from the scientific search engines and databases that are globally recognized, such as PubMed, Web of Science, Elsevier, Google Scholar, ResearchGate, SciFindern and CNKI. A total of 183 polyacetylenes were summarized in this paper. Modern pharmacological studies indicated that polyacetylenes possess multiple biological activities including antitumor, immunomodulatory, neuroprotective, anti-depression, anti-obesity, hypoglycemic, antiviral, antibacterial, antifungal, hepatoprotective and renoprotective activities. As important bioactive components of herbal medicine, the pharmacological curative potential of polyacetylenes has been described against carcinomas, inflammatory responses, central nervous system, endocrine disorders and microbial infection in this review. While, further in-depth studies on the aspects of polyacetylenes for toxicity, pharmacokinetics, and molecular mechanisms are still limited, thereby intensive research and assessments should be performed.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Islam MA, Zilani MNH, Biswas P, Khan DA, Rahman MH, Nahid R, Nahar N, Samad A, Ahammad F, Hasan MN. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114900. [PMID: 34896569 DOI: 10.1016/j.jep.2021.114900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are sources of chemical treasures that can be used in treatment of different diseases, including inflammatory disorders. Traditionally, Heritiera littoralis, Ceriops decandra, Ligustrum sinense, and Polyscias scutellaria are used to treat pain, hepatitis, breast inflammation. The present research was designed to explore phytochemicals from the ethanol extracts of H. littoralis, C. decandra, L. sinense, and P. scutellaria to discern the possible pharmacophore (s) in the treatment of inflammatory disorders. MATERIAL AND METHODS The chemical compounds of experimental plants were identified through GC-MS analysis. Furthermore, in-vitro anti-inflammatory activity was assessed in human erythrocytes and an in-silico study was appraised against COX-2. RESULTS The experimental extracts totally revealed 77 compounds in GC-MS analysis and all the extracts showed anti-inflammatory activity in in-vitro assays. The most favorable phytochemicals as anti-inflammatory agents were selected via ADMET profiling and molecular docking with specific protein of the COX-2 enzyme. Molecular dynamics simulation (MDS) confirmed the stability of the selected natural compound at the binding site of the protein. Three phytochemicals exhibited the better competitive result than the conventional anti-inflammatory drug naproxen in molecular docking and MDS studies. CONCLUSION Both experimental and computational studies have scientifically revealed the folklore uses of the experimental medicinal plants in inflammatory disorders. Overall, N-(2-hydroxycyclohexyl)-4-methylbenzenesulfonamide (PubChem CID: 575170); Benzeneethanamine, 2-fluoro-. beta., 3, 4-trihydroxy-N-isopropyl (PubChem CID: 547892); and 3,5-di-tert-butylphenol (PubChem CID: 70825) could be the potential leads for COX-2 inhibitor for further evaluation of drug-likeliness.
Collapse
Affiliation(s)
- Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh.
| | - Ruqayyah Nahid
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Nazmun Nahar
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Abdus Samad
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh.
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh; Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddha, 21589, Saudi Arabia.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|