1
|
Liao Y, Niu L, Ling J, Cui Y, Huang Z, Xu J, Jiang Y, Yu P, Liu X. Turning sour into sweet: Lactylation modification as a promising target in cardiovascular health. Metabolism 2025; 168:156234. [PMID: 40113080 DOI: 10.1016/j.metabol.2025.156234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Lactylation, a recently identified posttranslational modification (PTM), has emerged as a critical regulatory mechanism in cardiovascular diseases (CVDs). This PTM involves the addition of lactyl groups to lysine residues on histones and nonhistone proteins, influencing gene expression and cellular metabolism. The discovery of lactylation has revealed new directions for understanding metabolic and immune processes, particularly in the context of CVDs. This review describes the intricate roles of specific lactylated proteins and enzymes, such as H3K18, HMGB1, MCT1/4, and LDH, in the regulation of cardiovascular pathology. This study also highlights the unique impact of lactylation on myocardial hypertrophy and distinguishes it from other PTMs, such as SUMOylation and acetylation, underscoring its potential as a therapeutic target. Emerging drugs targeting lactate transporters and critical enzymes involved in lactylation offer promising avenues for novel CVD therapies. This review calls for further research to elucidate the mechanisms linking lactylation to CVDs, emphasizing the need for comprehensive studies at the molecular, cellular, and organismal levels to pave the way for innovative preventive, diagnostic, and treatment strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Yajie Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuzhen Cui
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Zixuan Huang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jingdong Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiao Liu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Yuan Y, Lai S, Hu T, Hu F, Zou C, Wang X, Fang M, Liu J, Huang H. Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1. Sci Rep 2025; 15:794. [PMID: 39755744 PMCID: PMC11700218 DOI: 10.1038/s41598-024-84808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality. Additionally, Pue significantly alleviated histopathological damage in MIRI-treated myocardium, as evidenced by HE staining and TUNEL assay. In vitro, Pue pretreatment significantly alleviated A/R-induced damage by decreasing LDH levels, increasing cellular activity, inhibiting autophagic lysosomal overactivation, inhibiting oxidative stress (ROS, LIP ROS, MDA), increasing antioxidant defense (SOD, GSH-Px), and increasing P62 protein expression while decreasing LC3II/I ratio. Furthermore, Pue inhibited apoptosis and maintained mitochondrial homeostasis by up-regulating the expression of Hairy and Enhancer of Split-1 (HES1) protein, which was crucial for its cardioprotective effects. Nevertheless, the cardioprotective efficacy of Pue pretreatment was negated via the knockdown of HES1 protein expression via pAD/HES1-shRNA transfection. In conclusion, Pue effectively ameliorated HES1-mediated MIRI-induced autophagy, apoptosis, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Chenchao Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiuqi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ming Fang
- Department of Emergency, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Huang C, Zhang X, Wu SX, Chang Q, Zheng ZK, Xu J. METTL3, m6A modification, and EGR1: interplay affecting myocardial I/R injury outcomes. Cell Biol Toxicol 2024; 41:7. [PMID: 39707117 PMCID: PMC11662061 DOI: 10.1007/s10565-024-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI. Cardiomyocyte hypoxia/reoxygenation (H/R) injury models and mouse models of myocardial I/R injury were used to investigate the involvement of EGR1 in regulating mitophagy-mediated myocardial cell pyroptosis in myocardial I/R injury. The research outcomes demonstrated that under H/R conditions, EGR1 expression was upregulated and inhibited the JAK2/STAT3 pathway, leading to enhanced mitophagy and disrupted mitochondrial fusion/fission dynamics, ultimately resulting in myocardial cell pyroptosis. Further research revealed that the upregulation of EGR1 expression was mediated by methyltransferase like 3 (METTL3)-mediated m6A modification of EGR1 mRNA and depended on the binding of insulin like growth factor 2 mrna binding protein 2 (IGF2BP2) to the N6-methyladenosine (m6A) modification site to enhance mRNA stability. In vivo animal experiments confirmed that METTL3 upregulated EGR1 expression through IGF2BP2 and suppressed activation of the janus kinase 2 (JAK2) /signal transducer and activator of transcription 3 (STAT3) pathway, thereby inhibiting mitophagy, disrupting mitochondrial dynamics, promoting myocardial cell pyroptosis, and exacerbating I/R injury.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xiong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhi-Kun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Hu T, Hu FJ, Huang H, Zhang ZY, Qiao YM, Huang WX, Wang YC, Tang XY, Lai SQ. Epigallocatechin-3-gallate confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis, apoptosis, and autophagy via modulation of 14-3-3η. Biomed Pharmacother 2024; 174:116542. [PMID: 38574620 DOI: 10.1016/j.biopha.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ya-Mei Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wen-Xiong Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yi-Cheng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xin-Yi Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
5
|
Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, Zhang Z, Yin M, Chen C, Li L, Wei M, Meng X, Liang X, Huang Z, Cao RY, Wang L, Li G, Cretoiu D, Xiao J. Exercise-Induced miR-210 Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced Cardiac Protection against Ischemia/Reperfusion Injury. RESEARCH (WASHINGTON, D.C.) 2024; 7:0327. [PMID: 38410280 PMCID: PMC10895486 DOI: 10.34133/research.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Exercise can stimulate physiological cardiac growth and provide cardioprotection effect in ischemia/reperfusion (I/R) injury. MiR-210 is regulated in the adaptation process induced by exercise; however, its impact on exercise-induced physiological cardiac growth and its contribution to exercise-driven cardioprotection remain unclear. We investigated the role and mechanism of miR-210 in exercise-induced physiological cardiac growth and explored whether miR-210 contributes to exercise-induced protection in alleviating I/R injury. Here, we first observed that regular swimming exercise can markedly increase miR-210 levels in the heart and blood samples of rats and mice. Circulating miR-210 levels were also elevated after a programmed cardiac rehabilitation in patients that were diagnosed of coronary heart diseases. In 8-week swimming model in wild-type (WT) and miR-210 knockout (KO) rats, we demonstrated that miR-210 was not integral for exercise-induced cardiac hypertrophy but it did influence cardiomyocyte proliferative activity. In neonatal rat cardiomyocytes, miR-210 promoted cell proliferation and suppressed apoptosis while not altering cell size. Additionally, miR-210 promoted cardiomyocyte proliferation and survival in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and AC16 cell line, indicating its functional roles in human cardiomyocytes. We further identified miR-210 target genes, cyclin-dependent kinase 10 (CDK10) and ephrin-A3 (EFNA3), that regulate cardiomyocyte proliferation and apoptosis. Finally, miR-210 KO and WT rats were subjected to swimming exercise followed by I/R injury. We demonstrated that miR-210 crucially contributed to exercise-driven cardioprotection against I/R injury. In summary, this study elucidates the role of miR-210, an exercise-responsive miRNA, in promoting the proliferative activity of cardiomyocytes during physiological cardiac growth. Furthermore, miR-210 plays an essential role in mediating the protective effects of exercise against cardiac I/R injury. Our findings suggest exercise as a potent nonpharmaceutical intervention for inducing miR-210, which can alleviate I/R injury and promote cardioprotection.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Yang Liu
- Department of Cardiology, Shanghai Tongji Hospital,
Tongji University School of Medicine, Shanghai 200065, China
| | - Zhuhua Su
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xinpeng Li
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering,
Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Xiangmin Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
| | - Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Richard Yang Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital,
Fudan University/Shanghai Clinical Research Center, Shanghai 200031, China
| | - Lei Wang
- Department of Rehabilitation Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics,
Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Xing N, Long XT, Zhang HJ, Fu LD, Huang JY, Chaurembo AI, Chanda F, Xu YJ, Shu C, Lin KX, Yang K, Lin HB. Research progress on effects of traditional Chinese medicine on myocardial ischemia-reperfusion injury: A review. Front Pharmacol 2022; 13:1055248. [PMID: 36561346 PMCID: PMC9763941 DOI: 10.3389/fphar.2022.1055248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease (IHD) is a high-risk disease in the middle-aged and elderly population. The ischemic heart may be further damaged after reperfusion therapy with percutaneous coronary intervention (PCI) and other methods, namely, myocardial ischemia-reperfusion injury (MIRI), which further affects revascularization and hinders patient rehabilitation. Therefore, the investigation of new therapies against MIRI has drawn great global attention. Within the long history of the prevention and treatment of MIRI, traditional Chinese medicine (TCM) has increasingly been recognized by the scientific community for its multi-component and multi-target effects. These multi-target effects provide a conspicuous advantage to the anti-MIRI of TCM to overcome the shortcomings of single-component drugs, thereby pointing toward a novel avenue for the treatment of MIRI. However, very few reviews have summarized the currently available anti-MIRI of TCM. Therefore, a systematic data mining of TCM for protecting against MIRI will certainly accelerate the processes of drug discovery and help to identify safe candidates with synergistic formulations. The present review aims to describe TCM-based research in MIRI treatment through electronic retrieval of articles, patents, and ethnopharmacology documents. This review reported the progress of research on the active ingredients, efficacy, and underlying mechanism of anti-MIRI in TCM and TCM formulas, provided scientific support to the clinical use of TCM in the treatment of MIRI, and revealed the corresponding clinical significance and development prospects of TCM in treating MIRI.
Collapse
Affiliation(s)
- Na Xing
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Tong Long
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Southern Medical University, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital Affiliated with Guangzhou University of Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke Yang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,*Correspondence: Ke Yang, ; Han-Bin Lin,
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Ke Yang, ; Han-Bin Lin,
| |
Collapse
|
9
|
Zhang F, Li Z, Gao P, Zou J, Cui Y, Qian Y, Gu R, Xu W, Hu J. HJ11 decoction restrains development of myocardial ischemia-reperfusion injury in rats by suppressing ACSL4-mediated ferroptosis. Front Pharmacol 2022; 13:1024292. [PMID: 36483736 PMCID: PMC9723372 DOI: 10.3389/fphar.2022.1024292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
HJ11 is a novel traditional Chinese medicine developed from the appropriate addition and reduction of Si-Miao-Yong-An decoction, which has been commonly used to treat ischemia-reperfusion (I/R) injury in the clinical setting. However, the mechanism of action of HJ11 components remains unclear. Ferroptosis is a critical factor that promotes myocardial I/R injury, and the pathophysiological ferroptosis-mediated lipid peroxidation causes I/R injury. Therefore, this study explored whether HJ11 decoction ameliorates myocardial I/R injury by attenuating ACSL4-mediated ferroptosis. This study also explored the effect of ACSL4 expression on iron-dependent programmed cell death by preparing a rat model of myocardial I/R injury and oxygen glucose deprivation/reperfusion (OGD/R)-induced H9c2 cells. The results showed that HJ11 decoction improved cardiac function; attenuated I/R injury, apoptosis, oxidative stress, mitochondrial damage, and iron accumulation; and reduced infarct size in the myocardial I/R injury rat model. Additionally, HJ11 decoction suppressed the expression of ferroptosis-promoting proteins [Acyl-CoA synthetase long-chain family member 4 (ACSL4) and cyclooxygenase-2 (COX2)] but promoted the expression of ferroptosis-inhibiting proteins [ferritin heavy chain 1 (FTH1) and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4)] in the myocardial tissues of the I/R injury rat model. Similar results were found with the OGD/R-induced H9c2 cells. Interestingly, ACSL4 knockdown attenuated iron accumulation, oxidative stress, and ferroptosis in the OGD/R-treated H9c2 cells. However, ACSL4 overexpression counteracted the inhibitory effect of the HJ11 decoction on OGD/R-triggered oxidative stress and ferroptosis in H9c2 cells. These findings suggest that HJ11 decoction restrained the development of myocardial I/R injury by regulating ACSL4-mediated ferroptosis. Thus, HJ11 decoction may be an effective medication to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxi Zou
- School·of·Basic·Medical·Sciences Chengdu·University·of Traditional·Chinese Medicine, Chengdu, China
| | - Yuting Cui
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yi Qian
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Xu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- The First Affilliated Hospital of Henan University of CM, Zhengzhou, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Ma Q, Zhou J, Yang Z, Xue Y, Xie X, Li T, Yang Y. Mingmu Xiaoyao granules regulate the PI3K/Akt/mTOR signaling pathway to reduce anxiety and depression and reverse retinal abnormalities in rats. Front Pharmacol 2022; 13:1003614. [PMID: 36278192 PMCID: PMC9579374 DOI: 10.3389/fphar.2022.1003614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: To investigate the effects of Mingmu Xiaoyao granules (MMXY) on the morphology and function of the retina and the mechanism of PI3K/Akt/mTOR pathway-related proteins in rats with anxiety and depression induced by chronic unpredictable mild stress (CUMS). Methods: Fifty-two male Sprague Dawley rats were randomly allocated to either a control (n = 14) or a simulated CUMS group (n = 38). The CUMS model was established successfully at 4 weeks. Six rats in each group were randomly selected to be sacrificed and their retinas isolated for histological examination. At 5 weeks, rats in the CUMS group were randomly allocated to the following groups: Model (CUMS + pure water), MMXY-H (CUMS + MMXY 7.2 g/kg/d), MMXY-L (CUMS + MMXY 3.6 g/kg/d), and CBZ (CUMS + Carbamazepine 20 mg/kg/d), with eight rats in each group. All rats were given the relevant intervention once a day. At 12 weeks, sucrose preference and open field tests were performed to evaluate the anxiety and depression status of rats. In live rats, optical coherence tomography angiography was used to measure retinal thickness and blood flow, while electroretinograms (ERGs) and visual evoked potentials (VEPs) were used to evaluate retinal function. The next day, the specimens were sacrificed for serological, histological, immunofluorescence, Western blot and transmission electron microscopy examinations to explore the mechanism of MMXY in CUMS rats. Results: MMXY improved the anxiety and depression-like behavior of rats. Results of optical coherence tomography angiography showed that MMXY improved retinal inner thickness and blood flow in CUMS rats. MMXY improved the amplitude of a- and b-waves in the scotopic and photopic ERG, as well as N2 and P2 peak time and amplitude in the flash-VEP in CUMS rats. Retinal histological staining and transmission electron microscopy showed that MMXY reversed retinal morphology and ultrastructure in CUMS rats. MMXY reduced the expression of Beclin1 and LC3I/II proteins, regulated the PI3K/Akt/mTOR pathway, inhibited autophagy, and had a protective effect on the retina in CUMS rats. Conclusion: MMXY may effectively improve retinal morphology and function as well as anxiety and depression-like behaviors in CUMS rats by regulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qiuyan Ma
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Zhou
- Ophthalmology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinran Xie
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Tiejun Li
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingxin Yang
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Yingxin Yang,
| |
Collapse
|
11
|
Li M, Wang Y, Qi Z, Yuan Z, Lv S, Zheng Y, Yan Z, Wang M, Fu H, Fan X, Ji N, Liu M, Fang Z. QishenYiqi dripping pill protects against myocardial ischemia/reperfusion injury via suppressing excessive autophagy and NLRP3 inflammasome based on network pharmacology and experimental pharmacology. Front Pharmacol 2022; 13:981206. [PMID: 36164369 PMCID: PMC9507923 DOI: 10.3389/fphar.2022.981206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Myocardial ischemia/reperfusion (I/R) injury is associated with multiple serious clinical manifestations. Autophagy is upregulated in a short period of ischemia and further enhanced during reperfusion phase, which was considered as a “double-edged sword” in the pathological process of myocardial I/R injury. In addition, NLRP3 inflammasome triggers myocardial inflammatory response, which leads to cardiomyocyte death via pyroptosis and promotes subsequent myocardial remodelling. Qishen Yiqi Dripping Pill (QSYQ) has been recognized as a potential protective agent of cardiovascular diseases. Objective: We predicted the bioactive compounds, targets and pathways of OSYQ intervening on myocardial I/R injury by network pharmacology. Furthermore, we investigated the effect of QSYQ on myocardial I/R injury and explored its underlying mechanism via autophagy and NLRP3 Inflammasome. Methods: Bioactive compounds, targets of QSYQ and relevant targets of myocardial I/R injury were collected from public databases. The protein-protein interaction network, Gene ontology and KEGG pathway enrichment analysis were carried out to screen the key compounds, target genes, functional annotation and pivotal pathways. Molecular docking was used to validate the binding association between target genes and key bioactive ingredients. Furthermore, sixty SD rats were randomized into four groups: 1) sham, 2) model, 3) captopril and 4) QSYQ pretreatment (14 days before and after surgery). Each arm was subjected to ischemia/reperfusion surgery except sham arm (30 min coronary ligation, then reperfusion). Left ventricular (LV) function were evaluated and the hearts were used to evaluate size of myocardial infarction, cardiomyocyte fibrosis, and myocardial autophagosomes. Results: The network pharmacology revealed the mechanism of QSYQ intervening on myocardial I/R injury might be related to NOD-like receptor signaling pathway, PI3K-Akt signaling pathway, autophagy-animal, etc., Molecular-docking suggested the core target proteins had good binding association with bioactive compounds of QSYQ. The experiment confirmed that QSYQ attenuated myocardial infarct size, decreased inflammatory infiltration and collagen fiber deposition and alleviated the autophagosome and myocardium ultrastructure injury, leading to LV systolic function improvement. The possible mechanism of cardioprotection was due to regulating autophagy-related proteins, activating PI3K/Akt-mTOR signaling pathway, and inhibiting activation and assembly of NLRP3 inflammasome. Conclusion: QSYQ ameliorated myocardial I/R injury via suppressing excessive autophagy and NLRP3 Inflammasome.
Collapse
Affiliation(s)
- Meng Li
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueyao Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuo Yuan
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shichao Lv
- Geriatric Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yawei Zheng
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ming Liu
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Zhuyuan Fang, ; Ming Liu,
| | - Zhuyuan Fang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Zhuyuan Fang, ; Ming Liu,
| |
Collapse
|
12
|
Zhou Y, Suo W, Zhang X, Lv J, Liu Z, Liu R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed Pharmacother 2022; 153:113447. [DOI: 10.1016/j.biopha.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
13
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
14
|
Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway. J Adv Res 2022; 47:151-162. [PMID: 35842187 PMCID: PMC10173194 DOI: 10.1016/j.jare.2022.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The anti-cancer medication doxorubicin (Dox) is largely restricted in clinical usage due to its significant cardiotoxicity. The only medication approved by the FDA for Dox-induced cardiotoxicity is dexrazoxane, while it may reduce the sensitivity of cancer cells to chemotherapy and is restricted for use. There is an urgent need for the development of safe and effective medicines to alleviate Dox-induced cardiotoxicity. OBJECTIVES The objective of this study was to determine whether Paeonol (Pae) has the ability to protect against Dox-induced cardiotoxicity and if so, what are the underlying mechanisms involved. METHODS Sprague-Dawley rats and primary cardiomyocytes were used to create Dox-induced cardiotoxicity models. Pae's effects on myocardial damage, mitochondrial function, mitochondrial dynamics and signaling pathways were studied using a range of experimental methods. RESULTS Pae enhanced Mfn2-mediated mitochondrial fusion, restored mitochondrial function and cardiac performance both in vivo and in vitro under the Dox conditions. The protective properties of Pae were blunted when Mfn2 was knocked down or knocked out in Dox-induced cardiomyocytes and hearts respectively. Mechanistically, Pae promoted Mfn2-mediated mitochondria fusion by activating the transcription factor Stat3, which bound to the Mfn2 promoter in a direct manner and up-regulated its transcriptional expression. Furthermore, molecular docking, surface plasmon resonance and co-immunoprecipitation studies showed that Pae's direct target was PKCε, which interacted with Stat3 and enabled its phosphorylation and activation. Pae-induced Stat3 phosphorylation and Mfn2-mediated mitochondrial fusion were inhibited when PKCε was knocked down. Furthermore, Pae did not interfere with Dox's antitumor efficacy in several tumor cells. CONCLUSION Pae protects the heart against Dox-induced damage by stimulating mitochondrial fusion via the PKCε-Stat3-Mfn2 pathway, indicating that Pae might be a promising therapeutic therapy for Dox-induced cardiotoxicity while maintaining Dox's anticancer activity.
Collapse
|
15
|
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH. Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis. Front Cardiovasc Med 2022; 9:695004. [PMID: 35865382 PMCID: PMC9294229 DOI: 10.3389/fcvm.2022.695004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundThis study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury.MethodsDOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors.ResultsPaeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2.ConclusionPaeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis.
Collapse
Affiliation(s)
- Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Yang Hu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Kai Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
- *Correspondence: Kai Hang Yiu,
| |
Collapse
|
16
|
L-Borneol 7-O-[β-D-Apiofuranosyl-(1 6)]-β-D-Glucopyranoside Alleviates Myocardial Ischemia-Reperfusion Injury in Rats and Hypoxic/Reoxygenated Injured Myocardial Cells via Regulating the PI3K/AKT/mTOR Signaling Pathway. J Immunol Res 2022; 2022:5758303. [PMID: 35600046 PMCID: PMC9119761 DOI: 10.1155/2022/5758303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) is a primary cause of morbidity and mortality in acute myocardial infarction (AMI). L-Borneol 7-O-[β-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside (LBAG), extracted from the Radix Ophiopogonis, is the main bioactive component that may be exerting cardiovascular protection in AMI. The purpose was to examine the effects of LBAG on myocardial I/R injury (MIRI) in rats and H9c2 cells treated with hypoxia/reoxygenation (H/R). MIRI was induced through the combination of ischemia with reperfusion for 30 min and 24 h, respectively. LBAG was administered 7 days before vascular ligation. Myocardial function was detected by an electrocardiograph, histological, TTC, and TUNEL staining analyses. The influences of LBAG on the content concentration of cardiac enzymes in the serum were measured by ELISA. Moreover, H9c2 cells were exposed to LBAG or combined with AKT inhibitor (perifosine) and then exposed to H/R for simulating the cardiac injury process. Afterward, cell viability, LDH, CD-KM release, apoptosis, and autophagy were evaluated by CCK-8 and ELISA assays, flow cytometry, TUNEL, and immunofluorescence staining, respectively. Additionally, the proteins of apoptosis, autophagy, and PI3K/mTOR pathway were determined by western blotting. In I/R rats, LBAG pretreatment significantly ameliorated cardiac function, as illustrated by reducing the infarct size, myocardial autophagy, and apoptosis levels. In H/R-induced H9c2 cells, LBAG pretreatment significantly decreased cell apoptosis, LC3 II/I, and Beclin 1 levels, elevated the Bcl-2 levels, attenuated LDH, and CD-KM production. Moreover, LBAG pretreatment markedly increased the PI3K/mTOR pathway activation, and the protective influences of LBAG were partly abolished with the AKT inhibitor perifosine treatment. These findings demonstrated the protective functions of LBAG on I/R by regulating apoptosis and autophagy in vitro and in vivo by activating the PI3K/mTOR pathway.
Collapse
|
17
|
Liu K, Liu D, Cui W. Protective Effect and Mechanism of Traditional Chinese Medicine on Myocardial Ischemia Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6121407. [PMID: 35399643 PMCID: PMC8991389 DOI: 10.1155/2022/6121407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
After acute myocardial infarction, early restoration of myocardial perfusion by thrombolysis or percutaneous coronary intervention is the most effective way to reduce the size of myocardial infarction and improve clinical outcomes. However, recovery of blood flow to the ischemic myocardium may cause ischemia-reperfusion (I/R) injury, a phenomenon that instead reduces the efficacy of myocardial reperfusion. Traditional Chinese medicine (TCM) has long been used for the treatment of cardiovascular diseases and has shown remarkable efficacy. Many studies have shown that some TCMs and their active components can exert protective effects against myocardial I/R injury through different mechanisms. This review summarized the protective mechanisms and current research advances of TCMs in myocardial I/R injury.
Collapse
Affiliation(s)
- Kuo Liu
- Cardiology Department, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Demin Liu
- Cardiology Department, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wei Cui
- Cardiology Department, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
18
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
20
|
Liu J, Chen S, Li H. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C 19H 18O 7. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H18O7, orthorhombic, P21212 (no. 18), a = 12.467(3) Å, b = 39.168(8) Å, c = 7.6005(16) Å, V = 3711.4(14) Å3, Z = 4, R
gt
(F) = 0.0440, wR
ref
(F
2) = 0.1054, T = 296.15 K.
Collapse
Affiliation(s)
- Juan Liu
- Department of Pharmacy , Kangda College of Nanjing Medical University , Lianyungang, 222000 , Jiangsu , P. R. China
| | - Sai Chen
- Department of Pharmacy , Kangda College of Nanjing Medical University , Lianyungang, 222000 , Jiangsu , P. R. China
| | - Honglei Li
- Department of Pharmacy , Kangda College of Nanjing Medical University , Lianyungang, 222000 , Jiangsu , P. R. China
| |
Collapse
|
21
|
Yang D, Hao S, Zhao L, Shi F, Ye G, Zou Y, Song X, Li L, Yin Z, He X, Feng S, Chen H, Zhang Y, Gao Y, Li Y, Tang H. Paeonol Attenuates Quorum-Sensing Regulated Virulence and Biofilm Formation in Pseudomonas aeruginosa. Front Microbiol 2021; 12:692474. [PMID: 34421847 PMCID: PMC8371487 DOI: 10.3389/fmicb.2021.692474] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
With the prevalence of multidrug-resistant bacteria and clinical -acquired pathogenic infections, the development of quorum-sensing (QS) interfering agents is one of the most potential strategies to combat bacterial infections and antibiotic resistance. Chinese herbal medicines constitute a valuable bank of resources for the identification of QS inhibitors. Accordingly, in this research, some compounds were tested for QS inhibition using indicator strains. Paeonol is a phenolic compound, which can effectively reduce the production of violacein without affecting its growth in Chromobacterium violaceum ATCC 12472, indicating its excellent anti-QS activity. This study assessed the anti-biofilm activity of paeonol against Gram-negative pathogens and investigated the effect of paeonol on QS-regulated virulence factors in Pseudomonas aeruginosa. A Caenorhabditis elegans infection model was used to explore the anti-infection ability of paeonol in vivo. Paeonol exhibited an effective anti-biofilm activity against Gram-negative bacteria. The ability of paeonol to interfere with the AHL-mediated quorum sensing systems of P. aeruginosa was determined, found that it could attenuate biofilm formation, and synthesis of pyocyanin, protease, elastase, motility, and AHL signaling molecule in a concentration- and time-dependent manner. Moreover, paeonol could significantly downregulate the transcription level of the QS-related genes of P. aeruginosa including lasI/R, rhlI/R, pqs/mvfR, as well as mediated its virulence factors, lasA, lasB, rhlA, rhlC, phzA, phzM, phzH, and phzS. In vivo studies revealed that paeonol could reduce the pathogenicity of P. aeruginosa and enhance the survival rate of C. elegans, showing a moderate protective effect on C. elegans. Collectively, these findings suggest that paeonol attenuates bacterial virulence and infection of P. aeruginosa and that further research elucidating the anti-QS mechanism of this compound in vivo is warranted.
Collapse
Affiliation(s)
- Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, Chengdu, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanze Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021; 8:690116. [PMID: 34368250 PMCID: PMC8333700 DOI: 10.3389/fcvm.2021.690116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
With improvement in living standards and average life expectancy, atherosclerotic cardiovascular disease incidences and mortality have been increasing annually. Paeonia suffruticosa, a natural herb, has been used for the treatment of atherosclerotic cardiovascular disease for thousands of years in Eastern countries. Paeonol is an active ingredient extracted from Paeonia suffruticosa. Previous studies have extensively explored the clinical benefits of paeonol. However, comprehensive reviews on the cardiovascular protective effects of paeonol have not been conducted. The current review summarizes studies reporting on the protective effects of paeonol on the cardiovascular system. This study includes studies published in the last 10 years. The biological characteristics of Paeonia suffruticosa, pharmacological mechanisms of paeonol, and its toxicological and pharmacokinetic characteristics were explored. The findings of this study show that paeonol confers protection against atherosclerotic cardiovascular disease through various mechanisms, including inflammation, platelet aggregation, lipid metabolism, mitochondria damage, endoplasmic reticulum stress, autophagy, and non-coding RNA. Further studies should be conducted to elucidate the cardiovascular benefits of paeonol.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne) 2021; 8:649654. [PMID: 34307396 PMCID: PMC8299366 DOI: 10.3389/fmed.2021.649654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) can help reduce infarct size and injury resulting from myocardial ischemia/reperfusion (I/R); however, the underlying molecular mechanism remains unknown. We previously reported that STAT5 plays a critical role in the cardioprotective effect of remote ischemic preconditioning (RIPC). Here, we assessed the effects of electroacupuncture pretreatment (EAP) on myocardial I/R injury in the presence and/or absence of Stat5 in mice and investigated whether EAP exerts its cardioprotective effects in a STAT5-dependent manner. Adult Stat5fl/fl and Stat5-cKO mice were exposed to EAP at Neiguan (PC6) for 7 days before the induction of I/R injury by left anterior descending (LAD) coronary artery ligation. The myocardial infarct size (IS), area at risk, and apoptotic rate of cardiomyocytes were detected. RT-qPCR and western blotting were used to measure gene and protein expression, respectively, in homogenized heart tissues. RNA-seq was used to identify candidate genes and pathways. Our results showed that EAP decreased IS and the rate of cardiomyocyte apoptosis. We further found that STAT5 was activated by EAP in Stat5fl/fl mice but not in Stat5-cKO mice, whereas the opposite was observed for STAT3. Following EAP, the levels of the antiapoptotic proteins Bcl-xL, Bcl-2, and p-AKT were increased in the presence of Stat5, while that of interleukin 10 (IL-10) was increased in both Stat5fl/fl and Stat5-cKO. The gene expression profile in heart tissues was different between Stat5fl/fl and the Stat5-cKO mice with EAP. Importantly, the top 30 DEGs under EAP in the Stat5-cKO mice were enriched in the IL-6/STAT3 signaling pathway. Our results revealed for the first time that the protective effect of EAP following myocardial I/R injury was attributable to, but not dependent on, STAT5. Additionally, we found that EAP could activate STAT3 signaling in the absence of the Stat5 gene, and could also activate antiapoptotic, survival, and anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Rehabilitation Medicine Department, YE DA Hospital of Yantai, Yantai, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|