1
|
Sung JS, Ko IG, Hwang L, Kim SH, Han JH, Jeon JW, Kim SR, Lee JM, Choi CW. Pirfenidone Alleviates Against Fine Particulate Matter-Induced Pulmonary Fibrosis Modulating via TGF-β1/TAK1/MKK3/p38 MAPK Signaling Pathway in Rats. Biomedicines 2025; 13:989. [PMID: 40299673 PMCID: PMC12025220 DOI: 10.3390/biomedicines13040989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Increased exposure to particulate matter (PM) from air pollution causes lung inflammation and increases morbidity and mortality due to respiratory diseases. Pirfenidone is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis. Background/Objectives: In this experiment, we studied the therapeutic effects of pirfenidone on PM-induced pulmonary fibrosis. Methods: Pulmonary fibrosis was induced by the intratracheal application of 100 μg/kg PM10 mixed with 200 μL saline. After 42 days of PM10 infusion, 0.2 mL of distilled water with pirfenidone was orally administered to the pirfenidone-treated groups (200 and 400 mg/kg) every other day for a total of 15 times over 30 days. Results: The intratracheal administration of PM resulted in lung injury and a significant decrease in the number of bronchoalveolar lavage fluid cells. PM administration increased the lung injury score, level of lung fibrosis, and production of pro-inflammatory cytokines. Pirfenidone treatment effectively suppressed transforming growth factor-β-activated kinase 1 in PM-induced pulmonary fibrosis. The present changes inhibited the expressions of mitogen-activated protein kinase kinase 3 and p38, which suppressed transforming growth factor-β, ultimately alleviating lung fibrosis. PM exposure upregulated the expressions of fibronectin and type 1 collagen. PM exposure enhanced connective tissue growth factor and hydroxyproline levels in the lung tissue. The levels of these fibrosis-related factors were inhibited by pirfenidone treatment. Conclusions: These results suggest that pirfenidone is therapeutically effective against PM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun-Seok Sung
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-S.S.); (L.H.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-S.S.); (L.H.)
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The Stat University of New Jersey, Piscataway, NJ 08901, USA;
| | - Jin Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee Medical Center, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Sae Rom Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (S.R.K.); (J.M.L.)
| | - Jeong Mi Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (S.R.K.); (J.M.L.)
| | - Cheon Woong Choi
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (S.R.K.); (J.M.L.)
| |
Collapse
|
2
|
Patil VS, Patil CR, Patel HM, Kumar A. Exploring disulfiram mechanisms in renal fibrosis: insights from biological data and computational approaches. Front Pharmacol 2025; 16:1480732. [PMID: 40170735 PMCID: PMC11958968 DOI: 10.3389/fphar.2025.1480732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Disulfiram (DSF) is an anti-alcoholic drug that has been reported to inhibit the epithelial-to-mesenchymal transition and crosslinking during fibrosis, pyroptosis, and inflammatory NF-κB and Nrf-2 signaling pathways. However, there is insufficient evidence to support the mechanisms of DSF in preventing renal fibrosis (RF). Therefore, the current study aimed to elucidate the DSF-modulated targets and pathways in renal fibrosis. Methods The common proteins between DSF and RF were screened for protein-protein interaction, pathway enrichment, cluster, and gene ontology analysis. Molecular docking was executed for core genes using AutoDock Vina through the POAP pipeline. Molecular dynamics (MD) simulation (100 ns) was performed to infer protein-ligand stability, and conformational changes were analyzed by free energy landscape (FEL). Results A total of 78 targets were found to be common between DSF and RF, of which NFKB, PIK3CA/R1, MTOR, PTGS2, and MMP9 were the core genes. PI3K-Akt signaling followed by JAK-STAT, TNF, Ras, ErbB, p53, phospholipase D, mTOR, IL-17, NF-κB, AMPK, VEGF, and MAPK signaling pathways were modulated by DSF in RF. DSF showed a direct binding affinity with active site residues of core genes, and except for DSF with NF-κB, all other complexes, including the standard, were found to be stable during 100 ns MD simulation with minimal protein-ligand root mean squared deviation and residual fluctuations and higher compactness with broad conformational changes. Conclusion DSF protects against renal fibrosis, and this study paves the way for experimental investigation to repurpose DSF for treating RF.
Collapse
Affiliation(s)
- Vishal S. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
3
|
Chen Z, Yun X, Tian J, Li F, Zhang Z, Meng J, Li N, Bian H, Duan S, Zhang L. Engineering Macrophage-Derived Exosome to Deliver Pirfenidone: A Novel Approach to Combat Silicotic Pulmonary Fibrosis. Adv Healthc Mater 2025; 14:e2403227. [PMID: 39382242 DOI: 10.1002/adhm.202403227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Silicosis is a severe lung disease characterized by diffuse pulmonary fibrosis, for which there is currently no effective treatment. Pirfenidone (PFD) shows great antifibrotic potential but is clinically hindered by low bioavailability and gastrointestinal side effects. To address these limitations, this study develops a PFD delivery system (PFD-Exo) using J774A.1 macrophage-derived exosomes. Firstly, PFD is loaded via sonication, then PFD-Exo is characterized using Raman spectral imaging and UV absorption spectroscopy. Finally, in vitro and in vivo silicosis models are established to evaluate its antifibrotic effects. Results show that PFD-Exo outperforms free PFD in inhibiting TGF-β1-induced transdifferentiation of primary lung fibroblasts in vitro. In a mouse model of silicosis, PFD-Exo is found to be accumulated in the lungs following intratracheal administration and significantly ameliorates pulmonary inflammation and fibrosis while minimizing gastrointestinal side effects. Mechanistic studies reveal that PFD-Exo modulates the TGF-β signaling pathway by downregulating SMAD3 and upregulating SMAD7 and NOGGIN. In conclusion, this study provides the first evidence of macrophage-derived exosomes as an effective PFD delivery system for silicosis treatment and offers a promising strategy for other refractory pulmonary diseases.
Collapse
Affiliation(s)
- Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Xiang Yun
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Fei Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| |
Collapse
|
4
|
Yang Y, Wang X, Zhang J. Pirfenidone and nintedanib attenuate pulmonary fibrosis in mice by inhibiting the expression of JAK2. J Thorac Dis 2024; 16:1128-1140. [PMID: 38505034 PMCID: PMC10944717 DOI: 10.21037/jtd-23-1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/29/2023] [Indexed: 03/21/2024]
Abstract
Background Pirfenidone and nintedanib were approved by the Food and Drug Administration (FDA) for the treatment of idiopathic pulmonary fibrosis (IPF). These two drugs can slow the progression of the disease, but the specific mechanisms are not fully understood. In the current study, bleomycin (BLM) induced pulmonary fibrosis in mice was accompanied by high p-JAK2 expression in lung tissue, mainly in the nucleus. The expression of p-JAK2 significantly decreased after intragastric administration of pirfenidone and nintedanib. p-JAK2 is reportedly expressed mainly in the cytoplasm and exerts its effect by activating downstream p-STAT3 in the nucleus. Methods In vivo experiments, pulmonary fibrosis was induced in mice with BLM and then treated with pirfenidone and nintedanib. The levels of transforming growth factor-β (TGF-β1), SP-A, SP-D and KL-6 in serum were measured by enzyme-linked immunosorbent assay (ELISA). Pathological staining was performed to assess lung fibrosis in mice, Western blot was performed to detect the expression levels of relevant proteins, and immunofluorescence was performed to observe the fluorescence expression of p-JAK2. In cellular experiments, MLE12 was stimulated with TGF-β1 and intervened with TGF-β1 receptor inhibitor and si-JAK2, pirfenidone and nintedanib, respectively, and the related protein expression levels were detected by Western blot. Results In both in vivo and in vitro experiments, pirfenidone and nintedanib were found to attenuate the expression of lung fibrosis markers by inhibiting the expression of JAK2, which may reduce the entry of p-JAK2 into the nucleus by downregulating JAK2 phosphorylation through inhibition of the TGF-β receptor. In contrast, inhibition of JAK2 expression greatly reduced the expression of TGF-β receptor and α-smooth muscles actin (a myofibroblast activation marker). Conclusions In both in vivo and in vitro experiments, the present study demonstrated that TGF-β1 promotes JAK2 phosphorylation through a non-classical pathway, and conversely, inhibition of JAK2 expression affects the TGF-β1 signalling pathway. Therefore, we speculate that TGF-β1 and JAK2 signaling pathways interact with each other and participate in fibrosis.
Collapse
Affiliation(s)
- Yan Yang
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
| | - Xinmeng Wang
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
5
|
Zhang Z, Song J, Kwon SH, Wang Z, Park SG, Piao X, Ryu JH, Kim N, Kim OS, Kim SH, Koh JT. Pirfenidone Inhibits Alveolar Bone Loss in Ligature-Induced Periodontitis by Suppressing the NF-κB Signaling Pathway in Mice. Int J Mol Sci 2023; 24:ijms24108682. [PMID: 37240020 DOI: 10.3390/ijms24108682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
There has been increasing interest in adjunctive use of anti-inflammatory drugs to control periodontitis. This study was performed to examine the effects of pirfenidone (PFD) on alveolar bone loss in ligature-induced periodontitis in mice and identify the relevant mechanisms. Experimental periodontitis was established by ligating the unilateral maxillary second molar for 7 days in mice (n = 8 per group), and PFD was administered daily via intraperitoneal injection. The micro-computed tomography and histology analyses were performed to determine changes in the alveolar bone following the PFD administration. For in vitro analysis, bone marrow macrophages (BMMs) were isolated from mice and cultured with PFD in the presence of RANKL or LPS. The effectiveness of PFD on osteoclastogenesis, inflammatory cytokine expression, and NF-κB activation was determined with RT-PCR, Western blot, and immunofluorescence analyses. PFD treatment significantly inhibited the ligature-induced alveolar bone loss, with decreases in TRAP-positive osteoclasts and expression of inflammatory cytokines in mice. In cultured BMM cells, PFD also inhibited RANKL-induced osteoclast differentiation and LPS-induced proinflammatory cytokine (IL-1β, IL-6, TNF-a) expression via suppressing the NF-κB signal pathway. These results suggest that PFD can suppress periodontitis progression by inhibiting osteoclastogenesis and inflammatory cytokine production via inhibiting the NF-κB signal pathway, and it may be a promising candidate for controlling periodontitis.
Collapse
Affiliation(s)
- Zijiao Zhang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Juhan Song
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Hee Kwon
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Suk-Gyun Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xianyu Piao
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Nacksung Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ok-Su Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun-Hun Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
AbouSamra MM, Elgohary R, Mansy SS. Innovated pirfenidone loaded lecithin nanocapsules for targeting liver fibrosis: Formulation, characterization and in vivo study. Int J Pharm 2023; 631:122539. [PMID: 36572266 DOI: 10.1016/j.ijpharm.2022.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Increasing interest in developing antifibrotic therapies became a paramount priority due to the globally raised incidence of deaths secondary to hepatic cirrhosis. This work deals with the development of innovative antifibrotic pirfenidone -loaded lecithin core nanocapsules. This with the intention to target the liver and to increase the drug bioavailability, reducing drug liver toxicity, and studying the associated hepatic microenvironment changes. PFD-loaded lecithin nanocapsules (PFD-LENCs) were prepared using the natural lipoid S45 for its dual benefits of being both a lipid and an amphiphilic surfactant. The selected formulation exhibited in vitro sustained drug release up to 24 h compared to free PFD, which is consistent with the studied pharmacokinetic profile. The studied cytotoxicity of PFD as well as PFD-LENCs exhibited negligible cytotoxicity in normal oral epithelial cells. For exploring the capability of the PFD-LENCs in reaching the liver; in vivo tracing using CLSM, in vivo biodistribution to the vital organs were conducted and electron microscopic examination for depicting nanoparticles in liver tissue was performed. Results revealed the capability of the prepared fluorescent LENC2 in reaching the liver, PFD-LENCs detection in the Disse space of the liver and the significant accumulation of PFD-LENCs in liver tissue compared to the other tested organs. The assessment of the necro-inflammatory, antioxidant and the anti-fibrotic effect of PFD-LENCs (50 & 100 mg/kg) exhibited a significant decrease of liver enzymes, TNF-α, TGF-β, Col-1, α-SMA, and TIMP-1, and a significant increase of catalase enzyme and MMP2 compared to free PFD. EM studies, revealed often detection of dendritic cells in PFD-LENCs (100 mg/kg) treated mice and abnormal collagen structure which can represent an adjunct contribution to the antifibrotic mechanism of PFD-LENCs. In conclusion, the development of this innovative PFD loaded lecithin nanocapsules achieved a targeting ability to the liver, controlled drug release, thereby increase the PFD therapeutic value in downregulating hepatic fibrosis in adjunct with the reduction of liver toxicity.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Egypt.
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Egypt
| | - Soheir S Mansy
- Electron Microscopy Research Department, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|