1
|
Jia X, Dou Z, Zhang Y, Yu C, Yang M, Xie H, Lin Y, Liu Z. Application of a novel thermal/pH-responsive antibacterial paeoniflorin hydrogel crosslinked with amino acids for accelerated diabetic foot ulcers healing. Mater Today Bio 2025; 32:101736. [PMID: 40255581 PMCID: PMC12008599 DOI: 10.1016/j.mtbio.2025.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
Diabetic foot ulcers (DFUs), a severe and common complication of diabetes, present significant treatment challenges due to the limitations of conventional dressings, such as poor mechanical properties, bioactivity, and limited functionality, which hinder fast and effective wound healing. To address these issues, we developed a novel natural amino acid-based hydrogel loaded with paeoniflorin (PF@PNMA1) and comprehensively evaluated its properties and functions. The nanogel particles (NGs) were synthesized via emulsion polymerization using N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and chemically modified arginine (MArg). The poly(NIPAM-co-MAA) (PNM) and poly(NIPAM-co-MAA-co-MArg) (PNMA) gels were prepared by functionalizing the NGs with glycidyl methacrylate (GMA). The different concentrations of amino acids were added to explore the optimal mechanical properties of the gel. Through the rheological measurement, we found that PNMA1 gel has good ductile properties with a critical strain up to about 63 %. At the same time, we also verified its antibacterial activity and found that the viability of bacteria decreased to 47.46 % after 3 h. Preliminary tests using network pharmacology and molecular docking confirmed the therapeutic potential of PF for DFUs. The PF@PNMA1 gel demonstrated excellent biocompatibility, and in vivo experiments revealed its effectiveness in promoting angiogenesis and wound healing. After 10 days, the wound healing rate was 25.6 % higher than that of the control group. The PF@PNMA1 shows great potential as an effective therapy for DFUs treatment.
Collapse
Affiliation(s)
- Xintao Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Zixuan Dou
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Changxiang Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Mengru Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haonan Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yun Lin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Zhidong Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Yang N, Hua R, Lai Y, Zhu P, Ding J, Ma X, Yu G, Xia Y, Liang C, Gao W, Wang Z, Zhang H, Yang L, Zhou K, Ge L. Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis. J Nanobiotechnology 2025; 23:282. [PMID: 40197477 PMCID: PMC11978011 DOI: 10.1186/s12951-025-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti3C2TX (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.
Collapse
Affiliation(s)
- Ningning Yang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongrong Hua
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Peijun Zhu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Ding
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xianhui Ma
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yiheng Xia
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Chao Liang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Liangliang Yang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Kailiang Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Lu Ge
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| |
Collapse
|
3
|
Li M, Wang Q, Zhu S, Sun W, Ren X, Xu Z, Li X, Wang S, Liu Q, Chen L, Wang H. Paeoniflorin Attenuates Limb Ischemia by Promoting Angiogenesis Through ERα/ROCK-2 Pathway. Pharmaceuticals (Basel) 2025; 18:272. [PMID: 40006085 PMCID: PMC11859641 DOI: 10.3390/ph18020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Peripheral artery disease (PAD) is a high-risk vascular condition, and vascular remodeling has become a promising therapeutic approach. Paeoniflorin (PF) is the main bioactive compound in the roots of Paeonia lactiflora Pall, which is commonly used to treat a range of cardiovascular disorders. However, the mechanisms underlying the ameliorating effects of PF on PAD remain unclear. Therefore, the purpose of this study was to explore the therapeutic efficiency of PF on PAD and determine its mechanisms. Methods: The blood flow of mice was detected with a laser Doppler dot scanning imaging system. HE staining was used to observe the morphological changes of ischemic muscle. The changes in the serologic indexes were detected with an automatic biochemical assay, and the capillary density of ischemic gastrocnemius was detected with a Lectin immunofluorescence assay. The expression of angiogenesis-related proteins in ischemic gastrocnemius was detected with Western blotting, and the proportion of macrophages and neutrophils in total cells was detected with flow cytometry. Results: PF significantly increased blood flow, capillary density and protein expressions of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 2 (MMP9), and estrogen receptor α (ERα) in mouse ischemic tissue in a PAD model. PF enhances the migration of endothelial cells and promotes the formation of tubular structures, involving the ERα/ROCK2 signaling pathway. Furthermore, PF was found to promote the phenotypic transformation of macrophages and alleviated grave inflammatory responses during vascular remodeling. Conclusions: We determined that PF as a potent compound in promoting angiogenesis and mitigating inflammatory responses during revascularization.
Collapse
Affiliation(s)
- Mengyao Li
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Qianyi Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Sinan Zhu
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Wei Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Xiuyun Ren
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Zhenkun Xu
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xinze Li
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Shaoxia Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Qi Liu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Lu Chen
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| |
Collapse
|
4
|
Yu W, Lu J, Huang X, Zhuang H, An Y, Zhang M. Exendin-4 promotes ischemia-reperfusion flap survival by upregulating Gpx4 to inhibit ferroptosis. Eur J Pharmacol 2024; 984:177029. [PMID: 39366501 DOI: 10.1016/j.ejphar.2024.177029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Effective drugs for preventing or treating skin flap necrosis remain elusive. In this study, we investigated the potential protective effect of exendin-4 against skin flap ischemia-reperfusion injury (IRI) through the inhibition of ferroptosis. METHOD A rat abdomen was constructed with an island skin flap, and the superficial vascular pedicle of the abdominal wall was closed using a vascular clamp, which was removed after 8 h. Before surgery, RSL3 and ferrostatin-1 solutions were intraperitoneally injected. After the surgery, subcutaneous injections of exendin-4 were administered daily. The number of inflammatory cells, mean vascular density, collagen fiber content, and apoptosis and ferroptosis indicators were quantified 24 h after reperfusion. Survival, contraction rate, and blood perfusion of the skin flap were evaluated on days 1, 3, 5, and 7 after reperfusion. RESULTS The flap survival rate was significantly higher in the exendin-4 group than that in the injury group, whereas the contraction rate was lower. Compared with the injury group, the exendin-4 group showed less inflammatory cell infiltration, higher vascular density, and less collagen fiber loss. At the molecular level, the exendin-4 group demonstrated opposite or elevated expression of apoptosis and ferroptosis indicators than those in the injury group, with significantly increased glutathione peroxidase 4 (Gpx4). Ferroptosis inhibitors and agonists enhanced and reversed the protective effects of exendin-4, respectively. CONCLUSION Exendin-4 alleviates skin flap IRI by upregulating Gpx4 expression to inhibit ferroptosis. Therefore, exendin-4 may serve as a novel clinical treatment for skin flap IRI.
Collapse
Affiliation(s)
- Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianghuiwen Lu
- Department of Medical Aesthetic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Xinqi Huang
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China
| | - Huiru Zhuang
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yumei An
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, School of Basic Medicine, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Gong XS, Wang HX, Yang XD, Yu ZY, Lin SJ, Zou ZT, Lv JN, Qian LY, Ruan YE, Si ZZ, Zhou Y, Liu Y. The effect of paeoniflorin on the rewarding effect of methamphetamine and the associated cognitive impairment in mice. Metab Brain Dis 2024; 40:27. [PMID: 39565442 DOI: 10.1007/s11011-024-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic exposure to methamphetamine (METH) has been suggested to cause METH use disorder and severe cognitive impairment. Paeoniflorin (PF) is a monoterpenoid glycoside with various beneficial effects, including anti-inflammatory, antioxidant and antidepressant. The current study was designed to investigate the effect of PF (30 mg/kg, i.p.) on the rewarding effect of METH (2.5 mg/kg, i.p.) and the associated cognitive impairment, using the animal model of conditioned place preference, new location reorganization test, new object reorganization test and Y-maze test. METH induced conditioned place preference, accompanied by increased expression of synapse-associated proteins in the ventral target areas (VTA) and nucleus accumbens (NAc). In addition, METH induced significant cognitive impairment and decreased the expression of synapse-associated proteins in the hippocampus (Hip). Administration of PF decreased the rewarding effect of METH and the expression of synapse-associated proteins in the VTA or NAc. PF was also effective to improve METH-induced cognitive impairment by upregulating the expression of synapse-associated proteins in the Hip. Therefore, PF could be a potential agent for the treatment of METH use disorder and the associated cognitive impairment.
Collapse
Affiliation(s)
- Xin-Shuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hai-Xing Wang
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Xiang-Dong Yang
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhao-Ying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shu-Jun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhi-Ting Zou
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Jia-Nan Lv
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Li-Yin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yu-Er Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zi-Zhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yi Zhou
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Yu W, Jiang H. Paeoniflorin alleviates high glucose-induced endothelial cell apoptosis in diabetes mellitus by inhibiting HRAS-activated RAS pathway. Endocr J 2024; 71:1045-1053. [PMID: 39085078 PMCID: PMC11778359 DOI: 10.1507/endocrj.ej24-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Paeoniflorin (Pae) can improve diabetes mellitus (DM), especially endothelial dysfunction induced by high glucose (HG). Molecularly, the mechanism pertinent to Pae and DM lacks further in-depth research. Hence, this study determined the molecular mechanism of Pae in treating DM through network pharmacology. The target of Pae was analyzed by TCMSP database, and DM-related genes were dissected by Genecards database and Omim database. PPI network was constructed for cross targets through Cytoscape 3.9.1 and STRING platform. GO and KEGG analyses were carried out on the cross targets. Protein molecular docking verification was completed by AutoDockTools and Pymol programs. Human umbilical vein endothelial cells (HUVECs) were separately treated with HG, Pae (5, 10, 20 μM) and/or HRAS overexpression plasmids (oe-HRAS). The cell viability, apoptosis and the protein expressions of HRAS and Ras-GTP were evaluated. There were 50 cross targets between Pae and DM, and VEGFA, EGFR, HRAS, SRC and HSP90AA1 were the key genes identified by PPI network analysis. GO and KEGG analyses revealed signal paths such as Rap1 and Ras. Molecular docking results confirmed that Pae had a good binding ability with key genes. In HG-treated HUVECs, Pae dose-dependently facilitated cell viability, attenuated cell apoptosis, and dwindled the expressions of HRAS and Ras-GTP, but these effects of Pae were reversed by oe-HRAS. In conclusion, Pae regulates the viability and apoptosis of HG-treated HUVECs by inhibiting the expression of HRAS.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Infection Control, Red Flag Hospital Affiliated to Mudanjiang Medical College, Heilongjiang 157011, China
| | - Hongchun Jiang
- The Third Department of Ophthalmology, Mudanjiang Medical College Affiliated Hongqi Hospital First Branch, Heilongjiang 157099, China
| |
Collapse
|
7
|
Chen Y, Cheng R, Lu W, Fan Y, Yu Y, Huang L, Wan Z, Zheng S. Metformin promotes the survival of random skin flaps via the activation of Nrf2/HO-1 signaling. Chem Biol Interact 2024; 401:111188. [PMID: 39121897 DOI: 10.1016/j.cbi.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Haikou, 571199, China
| | - Ruxin Cheng
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China
| | - Wenyan Lu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Haikou, 571199, China
| | - Yonghao Fan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Haikou, 571199, China
| | - Ye Yu
- Hainan Medical University, Haikou, 571199, China
| | - Ling Huang
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China; School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, 571199, China.
| | - Zhenling Wan
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
8
|
Ni J, Yang M, Zheng X, Wang M, Xiao Q, Han H, Dong P. Synthesis, Antioxidant Activity, and Molecular Docking of Novel Paeoniflorin Derivatives. Chem Biol Drug Des 2024; 104:e14629. [PMID: 39327238 DOI: 10.1111/cbdd.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.
Collapse
Affiliation(s)
- Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Yang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Zheng
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingtao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Xiao
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Chen X, Zhu X, Chen Y, Ruan Z, Zhang Y, Wu H, Zhang X, Gao W. Erastin promotes random-pattern skin flaps survival by inducing mTORC1-TFEB mediated autophagy. Biomed Pharmacother 2024; 177:116918. [PMID: 38878639 DOI: 10.1016/j.biopha.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
Random-pattern skin flaps are important method for skin reconstruction after defect; however, the distal end of flaps is not easily viable due to inadequate nutrient supply. Erastin is a well-established ferroptosis inducer, but our study found that low-dose of erastin (2 μM) may reduce nutrient deficiency induced cell death in human umbilical vein endothelial cells (HUVECs). RNA-seq analysis suggested that its role was related to autophagy regulation. Follow-up studies have shown that the use of autophagy inhibitors or the knockdown of TFEB in HUVECs can both reduce the anti-apoptotic effect of erastin in HUVECs. Mechanism study demonstrated that erastin can suppress mTORC1 and promote TFEB activity in HUVECs, suggesting that the effect of erastin on the survival of HUVECs under nutrient deprivation conditions is regulated by mTORC1/TFEB. Subsequently, we evaluated the effect of erastin on the survival of random-pattern skin flaps in mice in vivo. On the postoperative day 7, we observed a significant increase in flap survival area, blood perfusion, and microvascular density after erastin treatment; also, erastin treatment showed enhanced autophagy within the ischemic region. In summary, our study demonstrates that low-dose of erastin may suppress cell death in endothelial cells under nutrient deficiency condition, and its effects may relate to the mTORC1-TFEB medicated autophagy regulation, erastin treatment may be a potential therapy for random-pattern skin flaps.
Collapse
Affiliation(s)
- Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xuwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zihang Ruan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China.
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Xi H, Wang Z, Li M, Duan X, Li Y. Paeoniflorin Promotes Ovarian Development in Mice by Activating Mitophagy and Preventing Oxidative Stress. Int J Mol Sci 2024; 25:8355. [PMID: 39125927 PMCID: PMC11313479 DOI: 10.3390/ijms25158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
During the development of animal organs, various adverse stimuli or toxic environments can induce oxidative stress and delay ovarian development. Paeoniflorin (PF), the main active ingredient of the traditional Chinese herb Paeonia lactiflora Pall., has protective effects on various diseases by preventing oxidative stress. However, the mechanism by which PF attenuates oxidative damage in mouse ovaries remains unclear. We evaluated the protective effects of PF on ovaries in an H2O2-induced mouse oxidative stress model. The H2O2-induced mouse ovarian oxidative stress model was used to explore the protective effect of PF on ovarian development. Histology and follicular development were observed. We then detected related indicators of cell apoptosis, oxidative stress, and autophagy in mouse ovaries. We found that PF inhibited H2O2-induced ovarian cell apoptosis and ferroptosis and promoted granulosa cell proliferation. PF prevented oxidative stress by increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression levels. In addition, the autophagic flux of ovarian cells was activated and was accompanied by increased lysosomal biogenesis. Moreover, PF-mediated autophagy was involved in clearing mitochondria damaged by H2O2. Importantly, PF administration significantly increased the number of primordial follicles, primary follicles, secondary follicles, and antral follicles. PF administration improved ovarian sizes compared with the H2O2 group. The present study suggested that PF administration reversed H2O2-induced ovarian developmental delay and promoted follicle development. PF-activated mitophagy is crucial for preventing oxidative stress and improving mitochondrial quality.
Collapse
Affiliation(s)
| | | | | | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| |
Collapse
|
11
|
Lu Y, Yin L, Yang W, Wu Z, Niu J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed Pharmacother 2024; 176:116772. [PMID: 38810407 DOI: 10.1016/j.biopha.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Paeoniflorin (PF), which is the main component of the Paeonia lactiflora Pall extract, is one of the traditional Chinese medicines. The pharmacological effects associated with PF include antioxidant, immunomodulatory, anti-inflammatory, anticancer, antidepressant-like and neuroprotective effects. Our previous studies had revealed that PF protected melanocytes and inhibited photodamage through the suppression of oxidative stress (OS). As OS plays a vital role in the progression of a variety of diseases, the capacity for PF to suppress OS may exert important effects upon them. However, no review exists on these antioxidant effects of PF as related to various diseases. Therefore, in this review we summarized studies involved with examining the antioxidant effects and molecular mechanisms of PF. Through its capacity to inhibit OS, PF has been shown to exert beneficial effects upon several systems including nervous, cardiac/vascular, digestive, and respiratory as well as specific diseases such as diabetes, autoimmune, pregnancy related, ocular, kidney, dermatology, along with suppression of distal flap necrosis, postoperative adhesions, and hearing loss. Such findings provide new insights and directions for future research directed at the development of PF as a natural antioxidant for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lu Yin
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
12
|
Yu G, Ding J, Yang N, Ge L, Chen N, Zhang X, Wang Q, Liu X, Zhang X, Jiang X, Geng Y, Zhang C, Pan J, Wang X, Gao W, Li Z, Zhang H, Ni W, Xiao J, Zhou K, Yang L. Evaluating the pro-survival potential of apoptotic bodies derived from 2D- and 3D- cultured adipose stem cells in ischaemic flaps. J Nanobiotechnology 2024; 22:333. [PMID: 38877492 PMCID: PMC11177420 DOI: 10.1186/s12951-024-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024] Open
Abstract
In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.
Collapse
Affiliation(s)
- Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuchen Wang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuanlong Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiaoqiong Jiang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenxi Zhang
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jiadong Pan
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Zhu X, Yu G, Lv Y, Yang N, Zhao Y, Li F, Zhao J, Chen Z, Lai Y, Chen L, Wang X, Xiao J, Cai Y, Feng Y, Ding J, Gao W, Zhou K, Xu H. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. BURNS & TRAUMA 2024; 12:tkae035. [PMID: 38855574 PMCID: PMC11162832 DOI: 10.1093/burnst/tkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Background Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.
Collapse
Affiliation(s)
- Xuwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Ya Lv
- The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Science of Zhejiang Chinese Medical University, NO. 548 Binwen Road, Binjiang District, Hangzhou 310000, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | | | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| |
Collapse
|
14
|
Zhou W, Zuo H, Qian Y, Miao W, Chen C. Paeoniflorin attenuates particulate matter-induced acute lung injury by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis through activation of the Nrf2 signaling pathway. Chem Biol Interact 2024; 395:111032. [PMID: 38705442 DOI: 10.1016/j.cbi.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 μM PAE before exposure to 200 μg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wanting Zhou
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hao Zuo
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Qian
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqi Miao
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengshui Chen
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
15
|
Lai Y, Yang N, Chen X, Ma X, Chen Z, Dong C, Yu G, Huang Y, Shi D, Fang P, Fu K, Jiang R, Mao C, Ding J, Gao W. Dihydrocapsaicin suppresses the STING-mediated accumulation of ROS and NLRP3 inflammasome and alleviates apoptosis after ischemia-reperfusion injury of perforator skin flap. Phytother Res 2024; 38:2539-2559. [PMID: 38459660 DOI: 10.1002/ptr.8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Avascular necrosis frequently occurs as a complication following surgery involving the distal perforator flap. Dihydrocapsaicin (DHC) can protect tissue from ischemia-reperfusion (I/R) injury, but its specific role in multizone perforator flaps remains unclear. In this study, the prospective target of DHC in the context of I/R injury was predicted using network pharmacology analysis. Flap viability was determined through survival area analysis, laser Doppler blood flow, angiograms, and histological examination. The expressions of angiogenesis, apoptosis, NLR family pyrin domain containing 3 (NLRP3) inflammasome, oxidative stress, and molecules related to cyclic guanosine monophosphate (GMP)-adenosine monophosphate synthase (cGAS)-interferon gene stimulant (STING) pathway were assessed using western blotting, immunofluorescence, TUNEL staining, and dihydroethidium (DHE) staining. Our finding revealed that DHC promoted the perforator flap survival, which involves the cGAS-STING pathway, oxidative stress, NLRP3 inflammasome, apoptosis, and angiogenesis. DHC induced oxidative stress resistance and suppressed the NLRP3 inflammasome, preventing apoptosis in vascular endothelial cells. Through regulation of STING pathway, DHC controlled oxidative stress in endothelial cells and NLRP3 levels in ischemic flaps. However, activation of the cGAS-STING pathway led to the accumulation of reactive oxygen species (ROS) and NLRP3 inflammasome, thereby diminishing the protective role of DHC. DHC enhanced the survival of multidomain perforator flaps by suppressing the cGAS-STING pathway, oxidative stress, and the formation of NLRP3 inflammasome. These findings unveil a potentially novel mechanism with clinical significance for promoting the survival of multidomain perforator flaps.
Collapse
Affiliation(s)
- Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xuankuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yingying Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Donghao Shi
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kejian Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Cong Mao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Li C, Yang Y, Chen G, Yin X, Deng B, Wei W, Zhang H, Yuan M, Xu Y, Cao Z, Zhang H. Cuttlefish ink nanoparticles against oxidative stress: Alleviation of TBHP-induced oxidative damage in Caco-2 cells and DSS-induced ulcerative colitis in C57BL/6. J Funct Foods 2024; 112:105989. [DOI: 10.1016/j.jff.2023.105989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] Open
|
17
|
Xu Q, Cao Y, Zhong X, Qin X, Feng J, Peng H, Su Y, Ma Z, Zhou S. Riboflavin protects against heart failure via SCAD-dependent DJ-1-Keap1-Nrf2 signalling pathway. Br J Pharmacol 2023; 180:3024-3044. [PMID: 37377111 DOI: 10.1111/bph.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies have shown that flavin adenine dinucleotide (FAD) exerts cardiovascular protective effects by supplementing short-chain acyl-CoA dehydrogenase (SCAD). The current study aimed to elucidate whether riboflavin (the precursor of FAD) could improve heart failure via activating SCAD and the DJ-1-Keap1-Nrf2 signalling pathway. EXPERIMENTAL APPROACH Riboflavin treatment was given to the mouse transverse aortic constriction (TAC)-induced heart failure model. Cardiac structure and function, energy metabolism and apoptosis index were assessed, and relevant signalling proteins were analysed. The mechanisms underlying the cardioprotection by riboflavin were analysed in the cell apoptosis model induced by tert-butyl hydroperoxide (tBHP). KEY RESULTS In vivo, riboflavin ameliorated myocardial fibrosis and energy metabolism, improved cardiac dysfunction and inhibited oxidative stress and cardiomyocyte apoptosis in TAC-induced heart failure. In vitro, riboflavin ameliorated cell apoptosis in H9C2 cardiomyocytes by decreasing reactive oxygen species (ROS). At the molecular level, riboflavin significantly restored FAD content, SCAD expression and enzymatic activity, activated DJ-1 and inhibited the Keap1-Nrf2/HO1 signalling pathway in vivo and in vitro. SCAD knockdown exaggerated the tBHP-induced DJ-1 decrease and Keap1-Nrf2/HO1 signalling pathway activation in H9C2 cardiomyocytes. The knockdown of SCAD abolished the anti-apoptotic effects of riboflavin on H9C2 cardiomyocytes. DJ-1 knockdown hindered SCAD overexpression anti-apoptotic effects and regulation on Keap1-Nrf2/HO1 signalling pathway in H9C2 cardiomyocytes. CONCLUSIONS AND IMPLICATIONS Riboflavin exerts cardioprotective effects on heart failure by improving oxidative stress and cardiomyocyte apoptosis via FAD to stimulate SCAD and then activates the DJ-1-Keap1-Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhong Cao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Feng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
18
|
Tong X, Xiao Z, Li P, Liu X, Wang M, Wen S, Wang N, Liao S, Zhou J. Angiogenesis and flap-related research: A bibliometric analysis. Int Wound J 2023; 20:3057-3072. [PMID: 37312275 PMCID: PMC10502283 DOI: 10.1111/iwj.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023] Open
Abstract
Adequate blood supply, a prerequisite for flap survival after grafting, makes angiogenesis of the flap the biggest problem to be solved. Researches have been conducted around vascularisation in correlation with flap grafting. However, bibliometric analyses systematically examining this research field are lacking. As such, we herein sought to conduct comprehensive comparative analyses of the contributions of different researchers, institutions, and countries to this research space in an effort to identify trends and hotspots in angiogenesis and vascularisation in the context of flap grafting. Publications pertaining to angiogenesis and vascularisation in the context of flap grafting were retrieved from the Web of Science Core Collection. References were then analysed and plotted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. In total, 2234 papers that were cited 40 048 times (17.63 citations/paper) were included in this analysis. The greatest number of studies were from the United States, with these studies exhibiting both the highest number of citations (13 577) and the greatest overall H-index (60). For The institutions that published the greatest number of studies were WENZHOU MEDICAL UNIVERSITY (681), while UNIVERSITY OF ERLANGEN NUREMBERG has the highest number of citations (1458), and SHANGHAI JIAO TONG UNIVERSITY holds the greatest overall H-index (20). The greatest number of studies in this research space were published by Gao WY, while Horch RE was the most commonly cited researcher in the field. The VOS viewer software clustered relevant keywords into three clusters, with clusters 1, 2, 3, and 4 corresponding to studies in which the keywords 'anatomy', 'survival', 'transplantation', 'therapy' most frequently appeared. The most promising research hotspot-related terms in this field included 'autophagy', 'oxidative stress', 'ischemia/reperfusion injury', which exhibited a most recent average appearing year (AAY) of 2017 and after. Generally speaking, the results of this analysis indicate that the number of articles exploring angiogenesis and flap-related research has risen steadily, with the United States and China being the two countries publishing the greatest proportion of studies in this field. The overall focus of these studies has shifted away from 'infratest and tissue engineering' towards 'mechanisms'. In the future, particular attention should be paid to emerging research hotspots, which include 'ischemia/reperfusion injury' and treatments for promoting vascularization, such as 'platelet-rich plasma'. In light of these findings, funding agencies should continue increasing their investment in the exploration of the concrete mechanisms and interventional therapeutic relevance of angiogenesis during flap transplantation.
Collapse
Affiliation(s)
- Xiao‐Fei Tong
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhen‐Yang Xiao
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Pei‐Ting Li
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xin Liu
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Ming‐Zhu Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shi‐Yi Wen
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Na Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Jian‐Da Zhou
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
19
|
Ren S, Wang Y, Zhang Y, Yan P, Xiao D, Zhao Y, Jia W, Ding L, Dong H, Wei C, Lin S, Lin Y. Paeoniflorin alleviates AngII-induced cardiac hypertrophy in H9c2 cells by regulating oxidative stress and Nrf2 signaling pathway. Biomed Pharmacother 2023; 165:115253. [PMID: 37542855 DOI: 10.1016/j.biopha.2023.115253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Cardiac hypertrophy is frequently associated with ventricular dysfunction and heart failure. Paeoniflorin, has been widely used to treat cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of paeoniflorin on oxidative stress of cardiac hypertrophy induced by angiotensin II (AngII) in vitro. Using MTS assay, qRT-PCR, WGA staining assay, and western blot, different dosages (50-400 μM) of paeoniflorin were utilized to examine the antihypertrophy effects on H9c2 cells. Western blot examination revealed the presence of apoptosis-related proteins Bax, Bcl2, and Cytc, antioxidative stress-related proteins Nrf2, HO-1, SOD, and CAT, and mitophagy-related proteins PINK1 and Parkin. qRT-PCR was used to detect the mRNA expression of Bax, Bcl2, Nrf2, and HO-1. TUNEL, caspase3/9 enzyme viability, and MDA, T-AOC, and superoxide levels were all evaluated using commercial kits.The fluorescent probes DCFH-DA and JC-1 were employed to measure cellular ROS and MMP levels. Nrf2 siRNA was utilized to investigate Nrf2's role in paeoniflorin-treated cardiac hypertrophy. Paeoniflorin dramatically reduced cell section area (CSA) and hypertrophic marker (ANP, BNP) expression while inhibiting oxidative stress by modulating ROS and MDA, CAT, SOD, and T-AOC levels. Furthermore, in AngII-induced cardiomyocyte hypertrophy, paeoniflorin restores H9c2 apoptosis by restoring Bax, Bcl-2 Cyt-C, Caspase 3, and Caspase 9 levels. Paeoniflorin also restored Nrf2/HO-1 and PINK1/Parkin expression, and its anti-AngII activities were mediated by Nrf2, which was regulated by Nrf2 knockdown. In conclusion, Our data confirm that paeoniflorin alleviates cardiac hypertrophy through modulating oxidative stress and Nrf2 signaling pathway in vitro.
Collapse
Affiliation(s)
- Shan Ren
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuge Wang
- Department of Physiology, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yanyan Zhang
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Peimei Yan
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150000, China
| | - Yu Zhao
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Weiwei Jia
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Haiying Dong
- Department of Clinical Pathology Diagnosis, Qiqihar Medical University, Qiqihar 161006, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Song Lin
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yan Lin
- Department of Scientific Research, School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
20
|
Fasipe B, Li S, Laher I. Exercise and vascular function in sedentary lifestyles in humans. Pflugers Arch 2023:10.1007/s00424-023-02828-6. [PMID: 37272982 DOI: 10.1007/s00424-023-02828-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
People with sedentary lifestyles engage in minimal or no physical activity. A sedentary lifestyle promotes dysregulation of cellular redox balance, diminishes mitochondrial function, and increases NADPH oxidase activity. These changes collectively increase cellular oxidative stress, which alters endothelial function by oxidizing LDL-C, reducing NO production, and causing eNOS uncoupling. Reduced levels of nitric oxide (NO) leads to vasoconstriction, vascular remodeling, and vascular inflammation. Exercise modulates reactive oxygen species (ROS) to modify NRF2-KEAP signaling, leading to the activation of NRF2 to alleviate oxidative stress. While regular moderate exercise activates NRF2 through ROS production, high-intensity intermittent exercise stimulates NRF2 activation to a greater degree by reducing KEAP levels, which can be more beneficial for sedentary individuals. We review the damaging effects of a sedentary lifestyle on the vascular system and the health benefits of regular and intermittent exercise.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, Canada.
| |
Collapse
|
21
|
Meng Z, Wang K, Lan Q, Zhou T, Lin Y, Jiang Z, Chen J, Lin Y, Liu X, Lin H, Lin D. Saxagliptin promotes random skin flap survival. Int Immunopharmacol 2023; 120:110364. [PMID: 37224651 DOI: 10.1016/j.intimp.2023.110364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Flap necrosis is a common issue encountered in clinical flap transplantation surgery. Here, we assessed the effects of saxagliptin, a dipeptidyl peptidase-4 inhibitor, on flap survival and explored the underlying mechanisms. METHODS A dorsal McFarlane flap model was established in 36 rats, which were randomly divided into a high-dose saxagliptin (HS) group (saxagliptin, 30 mg/kg/day, n = 12), low-dose saxagliptin (LS) group (saxagliptin, 10 mg/kg/day, n = 12), and control group (n = 12). On day 7, flap survival was examined by eye in six rats from each group, along with determination of blood perfusion by laser Doppler flowmetry and angiogenesis by angiography. The remaining rats were sacrificed for harvesting of flap tissue. The status of the flap tissue was examined histopathologically by staining with hematoxylin and eosin (H&E). Oxidative stress was evaluated by determination of superoxide dismutase (SOD) activity and malonaldehyde (MDA) content. Gasdermin D (GSDMD), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), NOD-like receptor pyrin domain containing 3 (NLRP3), interleukin (IL)-6, IL-18, Toll-like receptor 4 (TLR4), IL-1β, caspase-1, and nuclear factor-κB (NF-κB) expression were detected by immunohistochemical analysis. RESULTS The experimental group exhibited a larger area of flap survival, with more blood perfusion and neovascularization and better histopathological status than the control group. The degree of oxidative stress and the levels of NF-κB, TLR4, proinflammatory cytokines, and pyroptosis-associated protein were decreased in the experimental group, while the VEGF level was increased in a saxagliptin dose-dependent manner. CONCLUSION Saxagliptin promotes random skin flap survival.
Collapse
Affiliation(s)
- Zhefeng Meng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qicheng Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Taotao Zhou
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhikai Jiang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianpeng Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yuting Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuao Liu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
22
|
Xue K, Zhang G, Zhou Y, Wang K, Yao Z, Chen J, Zhang Y, Li Z, Li Z, Zheng Z, Feng Y, Mao C, Lin C, Xia W. Nuciferine improves random skin flap survival via TFEB-mediated activation of autophagy-lysosomal pathway. Int Immunopharmacol 2023; 119:110204. [PMID: 37126988 DOI: 10.1016/j.intimp.2023.110204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Due to their simplicity and reliability, random-pattern skin flaps are commonly utilized in surgical reconstruction to repair cutaneous wounds. However, the post-operative necrosis frequently happens because of the ischemia and high-level of oxidative stress of random skin flaps, which can severely affect the healing outcomes. Earlier evidence has shown promising effect of Nuciferine (NF) on preventing hydrogen peroxide (H2O2)-induced fibroblast senescence and ischemic injury, however, whether it can function on promoting ischemic flap survival remains unknown. In this work, using network pharmacology analysis, it was possible to anticipate the prospective targets of NF in the context of ischemia. The results revealed that NF treatment minimized H2O2-induced cellular dysfunction of human umbilical vein endothelial cells (HUVECs), and also improved flap survival through strengthening angiogenesis and alleviating oxidative stress, inflammation and apoptosis in vivo. These outcomes should be attributed to TFEB-mediated enhancement of autophagy-lysosomal degradation via the AMPK-mTOR signaling pathway, whilst the restriction of autophagy stimulation with 3MA effectively diminished the above advantages of NF treatment. The increased nuclear translocation of TFEB not only restored lysosome function, but also promoted autophagosome-lysosome fusion, eventually restoring the inhibited autophagic flux and filling the high energy levels. The outcomes of our research can provide potent proof for the application of NF in the therapy of vascular insufficiency associated disorders, including random flaps.
Collapse
Affiliation(s)
- Kaikai Xue
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Guojian Zhang
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yiwei Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kangyan Wang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhe Yao
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinghao Chen
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Zhang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zihao Li
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zi Li
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zimin Zheng
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Cong Mao
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Cai Lin
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Weidong Xia
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
23
|
Jiang X, Ma C, Gao Y, Cui H, Zheng Y, Li J, Zong W, Zhang Q. Tongxinluo attenuates atherosclerosis by inhibiting ROS/NLRP3/caspase-1-mediated endothelial cell pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116011. [PMID: 36529253 DOI: 10.1016/j.jep.2022.116011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL) is one of the most common traditional Chinese medicines and plays a vital role in treating atherosclerosis (AS). Endothelial cell (EC) pyroptosis plays a crucial role in the development of AS. Previous research revealed the inhibitory function of TXL in EC apoptosis and autophagy. However, whether TXL can inhibit the pyroptosis of ECs has not been determined. AIM OF THE STUDY To explore the influence of TXL on EC pyroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS The TXL components were determined by ultra-performance liquid chromatography coupled with a photodiode array detector. We used ApoE-/- mice to establish a disease model of AS. After treatment with TXL, we recorded pathological changes in the mice and performed immunofluorescence staining of mice aortas. We also measured protein and gene levels to explore the influence of TXL on pyroptosis in vivo. The model was established by stimulating mouse aortic endothelial cells (MAECs) with oxidized low-density lipoprotein (ox-LDL) and analyzing the effect of TXL on pyroptosis by Western blotting (WB), real-time PCR (RT-PCR), and flow cytometry (FCM). We also investigated the impact of TXL on reactive oxygen species (ROS) by FCM and WB. RESULTS Ten major components of TXL were detected. The vivo results showed that TXL inhibited the development of AS and decreased EC pyroptosis, the activation of caspase-1, and the release of inflammatory cytokines. The vitro experiments showed that TXL significantly reduced the extent of injury to MAECs by oxidized LDL (ox-LDL). TXL reversed the high expression of gasdermin D and other proteins induced by ox-LDL and had a significant synergistic effect with the caspase-1 inhibitor VX-765. We also confirmed that TXL decreased the accumulation of ROS and the expression levels of its essential regulatory proteins Cox2 and iNOS. When ROS accumulation was reduced, EC pyroptotic damage was reduced accordingly. CONCLUSION Our results indicated that TXL inhibited EC pyroptosis in AS. Reducing the accumulation of ROS may be the essential mechanism of AS inhibition by TXL.
Collapse
Affiliation(s)
- Xuejiao Jiang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Chongyang Ma
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yanbin Gao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Hehe Cui
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'An Road, Xicheng District, Beijing, 100050, PR China
| | - Yalin Zheng
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - JinXia Li
- Hunan University of Traditional Chinese Medicine, 113# Xueshi Road, Yuelu District, Changsha, Hunan, 410208, PR China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 South Street, Dongzhimen Nei, Dongcheng District, Beijing, 100700, China.
| | - Qiuyun Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Zhang D, Jin C, Han T, Chen J, Ali Raza M, Li B, Wang L, Yan H. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated autophagy via PI3K/AKT pathway. Int Immunopharmacol 2023; 116:109752. [PMID: 36739833 DOI: 10.1016/j.intimp.2023.109752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
Large skin defects and surgical tissue reconstructions are frequently covered utilizing random flaps. The flap has the advantage of being designed according to the size and shape of a surgical wound. However, the necrosis of the distal part of the flap restricts the clinical application of flaps. Sinomenine (SIN) is the major active component of sinomenium acutum. SIN has been demonstrated to inhibit oxidative stress and stimulate autophagy in a cell, animal, and clinical studies. The protective and proliferative effects of sinomenium on HUVECs were evaluated by scratched test, CCK-8, and EDU assays. For the flap survival, we established a mouse random pattern flap model and observed the effects of SIN injected intraperitoneally. The survival area and blood flow intensity of the flap in sinomenium group were significantly increased compared to the control group. Our results demonstrate that SIN promotes flap survival. Sinomenium enhances eNOS expression in the flap and reduces the level of oxidative stress, promotes autophagy flux increase, reduces apoptosis, and promotes angiogenesis. Having a therapeutic benefit of SIN, Autophagy inhibitor 3-MA shows its critical role by reversing the beneficial effects of SIN, and the nitric oxide synthase inhibitor l-NAME both stimulated HUVECs that explore the relationship between autophagy flux and nitric oxide synthase. Furthermore, the mechanism in our study reveals the changes in the signal pathway of PI3K/AKT, the protective effect of SIN during antioxidant activity, the activation of eNOS through PI3K/AKT signaling pathway affects autophagy through the eNOS system, and promote the random flap survival.
Collapse
Affiliation(s)
- Dupiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Han
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianpeng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
26
|
Guo J, Zhang JX. [Research advances on the role of nuclear factor-erythroid 2-related factor 2 in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:91-95. [PMID: 36740433 DOI: 10.3760/cma.j.cn501225-20220531-00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wound healing is one of the common pathophysiological processes in the body. How to improve the condition of wound healing to promote rapid wound healing has always been a hotspot in research. Oxidative stress is one of the important factors affecting wound healing. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a classic antioxidant stress factor as well as a factor with great potential in facilitating wound healing. The activation of Nrf2 can regulate the downstream antioxidant stress elements and play roles of anti-apoptosis and cell homeostasis maintaining, which improves wound healing environment and promotes wound repair. This paper summarized the common agonists and inhibitors of Nrf2 and reviewed the roles of Nrf2 in promoting skin wound healing including diabetic ulcers, radiation injury, and ischemia-reperfusion injury, etc.
Collapse
Affiliation(s)
- J Guo
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - J X Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
27
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
28
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|
29
|
Huang C, Qing L, Pang X, Fu J, Xiao Y, Tang J, Wu P. Melatonin Improved the Survival of Multi-Territory Perforator Flaps by Promoting Angiogenesis and Inhibiting Apoptosis via the NRF2/FUNDC1 Axis. Front Pharmacol 2022; 13:921189. [PMID: 35685624 PMCID: PMC9170937 DOI: 10.3389/fphar.2022.921189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Multi-territory perforator flaps are a reconstructive measure for repairing large soft tissue defects caused by tumors or trauma. However, the use of these flaps in clinical practice has been restricted due to the uncertain blood supply. Therefore, promoting the survival of the multi-territory perforator flap is critical for clinical repair and reconstruction. In our study, we explored the effects of melatonin (MLT) on multi-territory perforator flaps and the possible molecular mechanisms. Materials and Methods: Seventy-two Sprague–Dawley rats (250–300 g) were randomly divided into 3 groups (n = 24): Control, MLT and MLT + ML385 groups. First, we assessed the survival area of the flap, followed by the micro-vessel density and CD31-positive vessel expression. Apoptosis of the skin flap under immunofluorescence and expression of the apoptosis-related proteins Bcl-2, Bax and Caspase3 were measured. Additionally, angiogenesis of the skin flaps was shown by angiography, and NRF2 and FUNDC1 mRNA and protein expression was detected by real-time PCR and western blotting. Results: The results showed that MLT increased the survival area of the multi-territory perforator flap, which was related to increased angiogenesis and decreased apoptosis. We also found that mRNA and protein of NRF2 and FUNDC1 levels were significantly increased after MLT treatment, and an NRF2 inhibitor reversed the ability of MLT to enhance multi-territory perforator flap survival, promote angiogenesis and inhibit apoptosis and reduced FUNDC1 protein expression. Conclusion: MLT promoted angiogenesis and inhibited apoptosis to promote the survival of multi-territory perforator flaps, which may be regulated via the NRF2/FUNDC1 axis.
Collapse
|
30
|
The Beneficial Role of Nrf2 in the Endothelial Dysfunction of Atherosclerosis. Cardiol Res Pract 2022; 2022:4287711. [PMID: 35600333 PMCID: PMC9119788 DOI: 10.1155/2022/4287711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious public health issue in China, accounting for more than 40% of all mortality, and it is the leading cause of death worldwide. Atherosclerosis is the pathological basis for much CVD, including coronary heart disease, acute myocardial infarction, and stroke. Endothelial dysfunction is an initiating and exacerbating factor in atherosclerosis. Recent research has linked oxidative stress and mitochondrial damage to endothelial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor with antioxidant effects that is strongly connected to several CVDs. However, the mechanism by which Nrf2 reduces CVD is unknown. Research indicates that Nrf2 improves endothelial function by resisting oxidative stress and mitochondrial damage, thereby delaying atherosclerosis. This article examines the mechanisms and potential targets of Nrf2 affecting endothelial cell function to improve atherosclerosis and to provide ideas for the development of new CVD treatments.
Collapse
|
31
|
Guo C, Wu Y, Li W, Wang Y, Kong Q. Development of a Microenvironment-Responsive Hydrogel Promoting Chronically Infected Diabetic Wound Healing through Sequential Hemostatic, Antibacterial, and Angiogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30480-30492. [PMID: 35467827 DOI: 10.1021/acsami.2c02725] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive hydrogels present high potential in treating refractory wounds due to their capability of on-demand drug release. In this study, a specially designed hydrogel with smart targeting of refractory wound characteristics was designed to treat chronically infected diabetic wounds. Aminated gelatin reacted with oxidized dextran, forming a hydrogel cross-linked with a dynamic Schiff base, which is sensitive to the low-pH environment in refractory wounds. Nano-ZnO was loaded into the hydrogel for killing microbes. A Paeoniflorin-encapsulated micelle with a ROS-responsive property was fixed to the skeleton of the hydrogel via a Schiff base bond for low-pH- and ROS-stimulated angiogenic activity. The sequential responsiveness of the novel hydrogel enabled smart rescue of the deleterious microenvironment in refractory wounds. This highly biocompatible hydrogel demonstrated antibacterial and angiogenic abilities in vitro and significantly promoted healing of chronically infected diabetic wounds via sequential hemostatic, microbe killing, and angiogenic activities. This microenvironment-responsive hydrogel loaded with nZnO and Pf-encapsulated micelles holds great potential as a location-specific dual-response delivery platform for curing refractory, chronically infected diabetic wounds.
Collapse
Affiliation(s)
- Chuan Guo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weilong Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
32
|
Gu X, Long Q, Wei W, Tong J, Li Z, Zhang Z, Jiao Y. Number 2 Feibi Recipe Inhibits H 2O 2-Mediated Oxidative Stress Damage of Alveolar Epithelial Cells by Regulating the Balance of Mitophagy/Apoptosis. Front Pharmacol 2022; 13:830554. [PMID: 35370684 PMCID: PMC8968876 DOI: 10.3389/fphar.2022.830554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS)-mediated alveolar epithelial cell (AEC) injury and apoptosis are considered to be the initiating link of idiopathic pulmonary fibrosis (IPF), and protecting AECs can alleviate IPF. This study aimed to explore the protective effect of number 2 Feibi recipe (FBR-2) medicated serum on H2O2-mediated oxidative stress injury in AECs and further explore its mechanism. We found that FBR-2 can regulate downstream antioxidant enzymes expression by activating nuclear factor erythroid 2-related factor 2 (Nrf2), reducing the level of intracellular ROS, protecting mitochondrial function and improving cell survival. FBR-2 can also activate mitophagy through the PINK1/Parkin pathway. Moreover, FBR-2 can inhibit apoptosis by blocking the mitochondrial apoptosis mechanism. In summary, these data indicate that FBR-2 medicated serum can inhibit H2O2-mediated oxidative stress damage in AECs by regulating the balance of mitophagy/apoptosis. This study provides new evidence for the antifibrotic effect of FBR-2 and provides new drug candidates for the clinical treatment of IPF.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Long
- Department of Respiratory and Critical Care Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wan Wei
- Department of Geriatrics, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiahuan Tong
- Department of Respiratory, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Zhipeng Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengju Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Jiao
- Department of Respiratory, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Chen D, Wu Z, Wu LN, Jiang J, Hu GN. Theaflavin Attenuates TBHP-Induced Endothelial Cells Oxidative Stress by Activating PI3K/AKT/Nrf2 and Accelerates Wound Healing in Rats. Front Bioeng Biotechnol 2022; 10:830574. [PMID: 35309982 PMCID: PMC8924520 DOI: 10.3389/fbioe.2022.830574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients’ need for functional and aesthetically pleasing scars. Previous reports have shown that Theaflavin can induce angiogenesis and terminate the progression of ischemic cardiovascular disease, but limited therapy is available for the management of cutaneous wounds. In this study, our in vitro work discovered that human umbilical vein endothelial cells (HUVECs) exposed to Theaflavin can alleviate apoptosis and cell dysfunction induced by tert-butyl hydroperoxide (TBHP). The cellular activity of HUVECs were assessed by cell tube formation, migration and adhesion. Mechanistically, Theaflavin protected HUVECs from TBHP-stimulated cell apoptosis through the activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis, so Nrf2 silencing can partly eliminate the cytoprotective effect of Theaflavin treatment. In in vivo experiments, administering Theaflavin orally can enhance vascularization in regenerated tissues and accelerate wound healing. In summary, our data served as a novel evidence for the wound healing treatment with Theaflavin, and certified the potential mechanism of Theaflavin, which can be used as a potential agent for cutaneous wound therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zhijian Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lu-Ning Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Nv Hu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
- *Correspondence: Gui-Nv Hu,
| |
Collapse
|