1
|
Yuan Y, Zhou J, Zhang Y, Zhong W, Xi G, Ma H, Wang X. Penehyclidine for postoperative nausea and vomiting in patients receiving general anesthesia: A systematic review and meta-analysis protocol. PLoS One 2025; 20:e0318093. [PMID: 39883748 DOI: 10.1371/journal.pone.0318093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Postoperative nausea and vomiting (PONV) is a common complication of general anesthesia. This affects 30-80% of patients, and leads to discomfort and extended hospital stays. The effectiveness of penehyclidine for preventing PONV remains a subject of debate in the literature. Therefore, the present systematic review and meta-analysis will evaluate the efficacy of penehyclidine in preventing PONV in patients who received general anesthesia. METHODS The present systematic review and meta-analysis is registered in PROSPERO (CRD42024523798). The present study will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and the A Measurement Tool to Assess Systematic Reviews (AMSTAR) guidelines. The search will be conducted across multiple databases, including MEDLINE, PubMed, Cochrane Library, Embase, Scopus, Web of Science, and CQVIP. This will comprise articles published from the inception of the databases to April 1, 2024. Eligible randomized controlled trials (RCTs) that meet the inclusion criteria would be searched. The main outcome measure is the incidence of PONV. The secondary outcome measures include the incidence of postoperative nausea, incidence of postoperative vomiting, severity of nausea, severity of vomiting, patient satisfaction, length of hospital stay and adverse effects. Two researchers will independently evaluate the quality of the selected literature, and extract the data. The quality assessment of each RCT will be independently conducted by two researchers using the GRADE approach, as recommended in the Cochrane Handbook for Risk of Bias Assessment. The meta-analysis will be conducted using RevMan 5.4. RESULTS A series of studies on the use of penehyclidine to prevent PONV in patients who received general anesthesia will be included in the systematic review and meta-analysis. CONCLUSION The results of the systematic review will offer valuable insights to clinicians and researchers on the use of penehyclidine as a prophylactic intervention against PONV in patients who receive general anesthesia.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junhui Zhou
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjiao Zhang
- Big Data Center for Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhong
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gaoyuan Xi
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxia Ma
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Wang
- Department of Anesthesiology, Henan Provincial Chest Hospital & Chest Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zeiss R, Schönfeldt-Lecuona C, Connemann BJ, Hafner S, Gahr M. Hepatotoxicity of antipsychotics: an exploratory pharmacoepidemiologic and pharmacodynamic study integrating FAERS data and in vitro receptor-binding affinities. Front Psychiatry 2024; 15:1479625. [PMID: 39469476 PMCID: PMC11513306 DOI: 10.3389/fpsyt.2024.1479625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Antipsychotic psychopharmacotherapy is associated with the risk of drug-induced liver injury (DILI). However, understanding specific risk factors remains challenging due to limited data. This study investigates the relationship between receptor binding affinities and occupancies of antipsychotics and their associated hepatotoxic risks. Methods A disproportionality analysis with calculation of the Reporting Odds Ratio (ROR) and the Information Component (IC) was conducted using data from the FDA Adverse Event Reporting System (FAERS) to identify signals related to the Standardised MedDRA Query "drug-related hepatic disorders", which served as a proxy for drug-induced hepatotoxicity. This was followed by a pharmacoepidemiologic-pharmacodynamic approach to investigate the relationship between the ROR and substance-related receptor binding affinities and occupancy, which was estimated based on in vitro receptor-binding profiles. Results Significant signals were identified for several antipsychotics, including chlorpromazine, loxapine, olanzapine, and quetiapine, with chlorpromazine and loxapine showing the highest RORs for DILI. Gender-specific analysis revealed a higher frequency of signals in female patients. Statistically significant negative correlations were identified between the ROR for drug-related hepatic disorders and the affinity for serotonin receptor 5-HT1A (r (17) = -0.68, p = 0.0012), while a positive correlation was observed for cholinergic receptors (r (17) = 0.46, p = 0.048). No significant correlations were found related to other receptors or drug properties. Conclusion Our findings suggest that the serotonin and probably the cholinergic system may play a role in the development of DILI related to antipsychotic medications. The identification of antipsychotics with a higher association with DILI, such as chlorpromazine, underscores the need for careful monitoring in clinical practice. However, our findings need further longitudinal studies to confirm causality. A better understanding of the associations may inform clinical decision-making, particularly in patients with an increased susceptibility to liver damage.
Collapse
Affiliation(s)
- René Zeiss
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | | | - Susanne Hafner
- Institute of Experimental and Clinical Pharmacology, Toxicity and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - Maximilian Gahr
- District Hospital for Psychiatry, Psychotherapy and Psychosomatic Medicine Schloss Werneck, Werneck, Germany
| |
Collapse
|
3
|
Cai M, Gan L, Li J, Lei X, Yu J. CHRM3 (rs2165870) gene polymorphism is related to postoperative vomiting in female patients undergoing laparoscopic surgery. Prospective observational study. PLoS One 2024; 19:e0309136. [PMID: 39163289 PMCID: PMC11335095 DOI: 10.1371/journal.pone.0309136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Postoperative nausea and vomiting are common complications after surgery, and female patients are more likely to experience these adverse events. The goal of this study was to explore the relationship between the CHRM3 rs2165870 polymorphism and postoperative vomiting incidence in female patients who underwent laparoscopic surgery. METHODS Two hundred female patients who underwent elective laparoscopic surgery with subsequent patient-controlled intravenous analgesia using dexmedetomidine and sufentanil were prospectively enrolled. The CHRM3 rs2165870 and KCNB2 rs349358 polymorphisms were genotyped using MassARRAY SNP typing technology. Demographic data and preoperative laboratory results of all patients were recorded. Postoperative analgesia-related information, incidence of postoperative nausea and vomiting, and other adverse events were followed up and recorded for analysis. RESULTS No significant differences were observed in any of the demographic characteristics of these patients among the different genotype carriers (P>0.05). The percentages of patients with each genotype of CHRM3 were 67% (GG), 28.5% (GA) and 4.5% (AA). We found that the AA or A allele of the CHRM3 rs2165870 polymorphism elevated the risk of postoperative vomiting (AA versus GG; OR, 6.94; 95% CI, 1.49-32.46; P = 0.014; A versus G; OR, 2.52; 95% CI, 1.22-5.19; P = 0.012). The percentages of patients with each genotype of KCNB2 were 84.5% (TT), 15.5% (CT) and 0% (CC). There were no significant differences in the postoperative nausea or vomiting rate across the KCNB2 rs349358 polymorphisms (P>0.05). CONCLUSION The CHRM3 rs2165870 polymorphism is associated with the occurrence of postoperative vomiting in female patients who have undergone laparoscopic surgery. The AA genotype or A allele of the CHRM3 rs2165870 polymorphism elevates the risk of postoperative vomiting. TRIAL REGISTRATION www.chictr.org.cn, registration number: ChiCTR2200062425.
Collapse
Affiliation(s)
- Meng Cai
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Gan
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Lei
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Su Y, Cao C, Chen S, Lian J, Han M, Liu X, Deng C. Olanzapine Modulate Lipid Metabolism and Adipose Tissue Accumulation via Hepatic Muscarinic M3 Receptor-Mediated Alk-Related Signaling. Biomedicines 2024; 12:1403. [PMID: 39061977 PMCID: PMC11274235 DOI: 10.3390/biomedicines12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Olanzapine is an atypical antipsychotic drug and a potent muscarinic M3 receptor (M3R) antagonist. Olanzapine has been reported to cause metabolic disorders, including dyslipidemia. Anaplastic lymphoma kinase (Alk), a tyrosine kinase receptor well known in the pathogenesis of cancer, has been recently identified as a key gene in the regulation of thinness via the regulation of adipose tissue lipolysis. This project aimed to investigate whether Olanzapine could modulate the hepatic Alk pathway and lipid metabolism via M3R. Female rats were treated with Olanzapine and/or Cevimeline (an M3R agonist) for 9 weeks. Lipid metabolism and hepatic Alk signaling were analyzed. Nine weeks' treatment of Olanzapine caused metabolic disturbance including increased body mass index (BMI), fat mass accumulation, and abnormal lipid metabolism. Olanzapine treatment also led to an upregulation of Chrm3, Alk, and its regulator Ptprz1, and a downregulation of Lmo4, a transcriptional repressor of Alk in the liver. Moreover, there were positive correlations between Alk and Chrm3, Alk and Ptprz1, and a negative correlation between Alk and Lmo4. However, cotreatment with Cevimeline significantly reversed the lipid metabolic disturbance and adipose tissue accumulation, as well as the upregulation of the hepatic Alk signaling caused by Olanzapine. This study demonstrates evidence that Olanzapine may cause metabolic disturbance by modulating hepatic Alk signaling via M3R, which provides novel insight for modulating the hepatic Alk signaling and potential interventions for targeting metabolic disorders.
Collapse
Affiliation(s)
- Yueqing Su
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou 350005, China;
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Chenyun Cao
- Department of Brain Science, Faculty of Medicine, Imperial College London, London SW7 2BX, UK;
| | - Shiyan Chen
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Mei Han
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| | - Xuemei Liu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; (S.C.); (J.L.); (M.H.)
| |
Collapse
|
5
|
Zheng P, Li XY, Yang XY, Wang H, Ding L, He C, Wan JH, Ke HJ, Lu NH, Li NS, Zhu Y. Comparative transcriptomic analysis reveals the molecular changes of acute pancreatitis in experimental models. World J Gastroenterol 2024; 30:2038-2058. [PMID: 38681131 PMCID: PMC11045495 DOI: 10.3748/wjg.v30.i14.2038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.
Collapse
Affiliation(s)
- Pan Zheng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xue-Yang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Huan Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Jing Ke
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
6
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Patil SA, Raufman JP. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front Oncol 2024; 13:1325095. [PMID: 38288108 PMCID: PMC10824561 DOI: 10.3389/fonc.2023.1325095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality. Therapeutic approaches for advanced CRC are limited and rarely provide long-term benefit. Enzymes comprising the 24-member matrix metalloproteinase (MMP) family of zinc- and calcium-dependent endopeptidases are key players in extracellular matrix degradation, a requirement for colon tumor expansion, invasion, and metastasis; hence, MMPs are an important research focus. Compared to sporadic CRC, less is known regarding the molecular mechanisms and the role of MMPs in the development and progression of colitis-associated cancer (CAC) - CRC on a background of chronic inflammatory bowel disease (IBD) - primarily ulcerative colitis and Crohn's disease. Hence, the potential of MMPs as biomarkers and therapeutic targets for CAC is uncertain. Our goal was to review data regarding the role of MMPs in the development and progression of CAC. We sought to identify promising prognostic and therapeutic opportunities and novel lines of investigation. A key observation is that since MMPs may be more active in early phases of CAC, using MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets for adjuvant therapy in those with advanced stage primary CAC rather than overt metastases may yield more favorable outcomes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A. Patil
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Medical Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Zhang X, Yao S, Bao P, Du M, Hu G, Chu C, Wang D, Chen C, Ma Q, Jia H, Sun Y, Yan Y, Liao Y, Niu Z, Man Z, Wang L, Gao W, Li H, Zhang J, Luo W, Wang X, Wang Y, Mu J. Associations of genetic variations in the M3 receptor with salt sensitivity, longitudinal changes in blood pressure and the incidence of hypertension in Chinese adults. J Clin Hypertens (Greenwich) 2024; 26:36-46. [PMID: 38010846 PMCID: PMC10795080 DOI: 10.1111/jch.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Recent studies have reported the role of the M3 muscarinic acetylcholine receptor (M3R), a member of the G-protein coupled receptor superfamily, encoded by the CHRM3 gene, in cardiac function and the regulation of blood pressure (BP). The aim of this study was to investigate the associations of CHRM3 genetic variants with salt sensitivity, longitudinal BP changes, and the development of hypertension in a Chinese population. We conducted a chronic dietary salt intervention experiment in a previously established Chinese cohort to analyze salt sensitivity of BP. Additionally, a 14-year follow-up was conducted on all participants in the cohort to evaluate the associations of CHRM3 polymorphisms with longitudinal BP changes, as well as the incidence of hypertension. The single nucleotide polymorphism (SNP) rs10802811 within the CHRM3 gene displayed significant associations with low salt-induced changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), while rs373288072, rs114677844, and rs663148 exhibited significant associations with SBP and MAP responses to a high-salt diet. Furthermore, the SNP rs58359377 was associated with changes in SBP and pulse pressure (PP) over the course of 14 years. Additionally, the 14-year follow-up revealed a significant association between the rs619288 polymorphism and an increased risk of hypertension (OR = 1.74, 95% CI: 1.06-2.87, p = .029). This study provides evidence that CHRM3 may have a role in salt sensitivity, BP progression, and the development of hypertension.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and BiotherapySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peng Bao
- Department of General PracticeXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingfei Du
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Guilin Hu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chao Chu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Dan Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Chen Chen
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qiong Ma
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Hao Jia
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yue Sun
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yu Yan
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yueyuan Liao
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Zejiaxin Niu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ziyue Man
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Lan Wang
- Department of Critical Care MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weihua Gao
- Department of CardiologyXi'an International Medical Center HospitalXi'anChina
| | - Hao Li
- Department of CardiologyXi'an No.1 HospitalXi'anChina
| | - Jie Zhang
- Department of CardiologyXi'an People's HospitalXi'anChina
| | - Wenjing Luo
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xin Wang
- Department of Science and TechnologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yang Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Jianjun Mu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| |
Collapse
|
8
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
9
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
10
|
Larabee SM, Cheng K, Raufman JP, Hu S. Muscarinic receptor activation in colon cancer selectively augments pro-proliferative microRNA-21, microRNA-221 and microRNA-222 expression. PLoS One 2022; 17:e0269618. [PMID: 35657974 PMCID: PMC9165902 DOI: 10.1371/journal.pone.0269618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Overexpression of M3 subtype muscarinic receptors (M3R) hastens colon cancer progression. As microRNA (miRNA) expression is commonly dysregulated in cancer, we used microarrays to examine miRNA profiles in muscarinic receptor agonist-treated human colon cancer cells. We used quantitative RT-PCR (qPCR) to validate microarray results and examine miRNA expression in colon cancers and adjacent normal colon. These assays revealed that acetylcholine (ACh) treatment robustly induced miR-222 expression; miR-222 levels were three-fold higher in cancer compared to normal colon. In kinetic studies, ACh induced a 4.6-fold increase in pri-miR-222 levels within 1 h, while mature miR-222 increased gradually to 1.8-fold within 4 h. To identify post-M3R signaling mediating these actions, we used chemical inhibitors and agonists. ACh-induced increases in pri-miR-222 were attenuated by pre-incubating cells with atropine and inhibitors of protein kinase C (PKC) and p38 MAPK. Treatment with a PKC agonist, phorbol 12-myristate 13-acetate, increased pri-miR-222 levels, an effect blocked by PKC and p38 MAPK inhibitors, but not by atropine. Notably, treatment with ACh or transfection with miR-222 mimics increased cell proliferation; atropine blocked the effects of ACh but not miR-222. These findings identify a novel mechanism whereby post-M3R PKC/p38 MAPK signaling stimulates miR-222 expression and colon cancer cell proliferation.
Collapse
Affiliation(s)
- Shannon M. Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kunrong Cheng
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- VA Maryland Healthcare System, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- VA Maryland Healthcare System, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Alizadeh M, Schledwitz A, Cheng K, Raufman JP. Mechanistic Clues Provided by Concurrent Changes in the Expression of Genes Encoding the M 1 Muscarinic Receptor, β-Catenin Signaling Proteins, and Downstream Targets in Adenocarcinomas of the Colon. Front Physiol 2022; 13:857563. [PMID: 35370785 PMCID: PMC8966224 DOI: 10.3389/fphys.2022.857563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Muscarinic receptors (MRs) in the G protein-coupled receptor superfamily are recipients and mediators of parasympathetic neural transmission within the central and enteric nervous systems. MR subtypes, M1R-M5R, encoded by CHRM1-CHRM5, expressed widely throughout the gastrointestinal (GI) tract, modulate a range of critical, highly regulated activities in healthy tissue, including secretion, motility, and cellular renewal. CHRM3/M3R overexpression in colon cancer is associated with increased cell proliferation, metastasis, and a worse outcome, but little is known about the role of the other four muscarinic receptor subtypes. To address this gap in knowledge, we queried the NCI Genomic Data Commons for publicly available TCGA-COAD samples collected from colon tissue. RNA-seq data were collected and processed for all available primary adenocarcinomas paired with adjacent normal colon. In this unbiased analysis, 78 paired samples were assessed using correlation coefficients and univariate linear regressions; gene ontologies were performed on a subset of correlated genes. We detected a consistent pattern of CHRM1 downregulation across colorectal adenocarcinomas. CHRM1 expression levels were positively associated with those for APC and SMAD4, and negatively associated with CTNNB1, the gene for β-catenin, and with coordinate changes in the expression of β-catenin target genes. These findings implicating CHRM1/M1R as an important deterrent of colon cancer development and progression warrant further exploration.
Collapse
Affiliation(s)
- Madeline Alizadeh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,VA Maryland Healthcare System, Baltimore, MD, United States,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Jean-Pierre Raufman,
| |
Collapse
|