1
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
2
|
Li P, Liu J, Wang R, Cao F, Li J, Wang H. Myricetin Mitigated Sevoflurane-induced Cognitive Dysfunction in Aged-mice Through Inhibiting Histone Deacetylase 2/nuclear Factor Erythroid 2-related Factor 2/heme Oxygenase-1 Signalling-mediated Ferroptosis and Mitochondrial Dysfunction. Mol Neurobiol 2025:10.1007/s12035-025-04703-0. [PMID: 39937417 DOI: 10.1007/s12035-025-04703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Sevoflurane anaesthesia induces neurotoxicity and postoperative cognitive dysfunction (POCD) after surgery. This study investigated the roles and potential mechanisms of the natural flavonoid myricetin in sevoflurane-induced cognitive dysfunction. Primary hippocampal neurons were treated with 3% sevoflurane to establish a neuron injury model. Neurons was pre-treated with different concentrations of myricetin, and ferroptosis inhibitor ferrostatin-1 (Fer-1) was used as a positive control. Moreover, mice were anaesthetised with 3% sevoflurane to establish an in-vivo model, and they were pre-treated with 50 or 100 m/kg myricetin. Cell viability and death were determined. Ferroptosis-related markers, including intracellular iron content, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), 4-hydroxy-2-nonenal (4-HNE), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein levels were measured. Myricetin treatment enhanced cell viability and mitigated sevoflurane-induced cell death in the hippocampal neurons. Sevoflurane exposure increased the ROS, MDA and 4-HNE levels and reduced the GSH level, whereas myricetin treatment abrogated these effects. Meanwhile, myricetin treatment restrained sevoflurane-induced increase in intracellular iron content and GPX4 and SLC7A11 protein levels. A high dose of myricetin showed distinct protective effects. Mechanistic studies demonstrated that myricetin treatment reversed sevoflurane-induced histone deacetylase 2 (HDAC2) upregulation and nuclear factor erythroid 2-related factor 2 (Nrf2) deacetylation, thus activating the Nrf2/heme oxygenase-1 (HO-1) signalling. Myricetin treatment mitigated sevoflurane-induced cognitive dysfunction in aged mice by inhibiting hippocampal ferroptosis and mitochondrial dysfunction via the HDAC2/Nrf2/HO-1 signalling pathway. Myricetin may be a treatment option for POCD after surgery.
Collapse
Affiliation(s)
- Peng Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jingjing Liu
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100037, China
| | - Rui Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fuyang Cao
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiannan Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Henglin Wang
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Li J, Yu Y, Zhang Y, Zhou Y, Ding S, Dong S, Jin S, Li Q. Flavonoids Derived from Chinese Medicine: Potential Neuroprotective Agents. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1613-1640. [PMID: 39343989 DOI: 10.1142/s0192415x24500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
Collapse
Affiliation(s)
- Jinhua Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Ye Yu
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yanjie Zhang
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yilin Zhou
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuxian Ding
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuze Dong
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Sainan Jin
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Qin Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| |
Collapse
|
4
|
Roy A, Sen S, Das R, Shard A, Kumar H. Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury. Neurospine 2024; 21:878-889. [PMID: 39363468 PMCID: PMC11456951 DOI: 10.14245/ns.2448546.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Spinal cord injury (SCI), one of the major disabilities concerning central nervous system injury, results in permanent tissue loss and neurological impairment. The existing therapeutic options for SCI are limited and predominantly consist of chemical compounds. In this study, we delved into the neuroprotective effects of myricetin, a natural flavonoid compound, and the underlying mechanisms, specifically in the context of SCI, utilizing an in vivo model. Previously, our investigations revealed an elevation in the phosphorylated form of Lin-11, Isl-1, and Mec-3 kinase1 (LIMK1) at chronic time points postinjury, coinciding with neuronal loss and scar formation. Our primary objective here was to assess the potential neuroprotective properties of myricetin in SCI and to ascertain if these effects were linked to LIMK inhibition, a hitherto unexamined pathway to date. METHODS Computational docking and molecular dynamics simulation studies were performed to assess myricetin's potential to bind with LIMK. Then, using a rat contusion model, SCI was induced and different molecular techniques (Western blot, Evans Blue assay, quantitative reverse transcription polymerase chain reaction and immunohistochemistry) were performed to determine the effects of myricetin. RESULTS Remarkably, computational docking models identified myricetin as having a better interaction profile with LIMK than standard. Subsequent to myricetin treatment, a significant downregulation in phosphorylated LIMK expression was observed at chronic time points. This reduction correlated with a notable decrease in glial and fibrotic scar formation, and enhanced neuroprotection indicating a positive outcome in vivo. CONCLUSION In summary, our findings underscore myricetin's potential as a bioactive compound capable of attenuating SCI-induced injury cascades by targeting the LIMK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
5
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
6
|
Wang L, Tang Z, Li B, Peng Y, Yang X, Xiao Y, Ni R, Qi XL. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer's disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed Pharmacother 2024; 177:116963. [PMID: 38889642 DOI: 10.1016/j.biopha.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by abnormal β-amyloid (Aβ) plaque accumulation, tau hyperphosphorylation, reactive oxidative stress, mitochondrial dysfunction and synaptic loss. Myricetin, a dietary flavonoid, has been shown to exert neuroprotective effects in vitro and in vivo. Here, we aimed to elucidate the mechanism and pathways involved in the protective effect of myricetin. METHODS The effect of myricetin was assessed on Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. Behavioral tests were performed to assess the cognitive effects of myricetin (14 days, ip) in 3×Tg mice. The levels of beta-amyloid precursor protein (APP), synaptic and mitochondrial proteins, glycogen synthase kinase3β (GSK3β) and extracellular regulated kinase (ERK) 2 were assessed via Western blotting. Flow cytometry assays, immunofluorescence staining, and transmission electron microscopy were used to assess mitochondrial dysfunction and reactive oxidative stress. RESULTS We found that, compared with control treatment, myricetin treatment improved spatial cognition and learning and memory in 3×Tg mice. Myricetin ameliorated tau phosphorylation and the reduction in pre- and postsynaptic proteins in Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. In addition, myricetin reduced reactive oxygen species generation, lipid peroxidation, and DNA oxidation, and rescued mitochondrial dysfunction via the associated GSK3β and ERK 2 signalling pathways. CONCLUSIONS This study provides new insight into the neuroprotective mechanism of myricetin in vitro in cell culture and in vivo in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Xi Yang
- Guiyang Healthcare Vocational University, Guizhou ERC for Medical Resources & Healthcare Products (Guizhou Engineering Research Center for Medical Resources and Healthcare Products), Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and Ministry, Guiyang, China.
| |
Collapse
|
7
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
8
|
Gu SC, Xie ZG, Gu MJ, Wang CD, Xu LM, Gao C, Yuan XL, Wu Y, Hu YQ, Cao Y, Ye Q. Myricetin mitigates motor disturbance and decreases neuronal ferroptosis in a rat model of Parkinson's disease. Sci Rep 2024; 14:15107. [PMID: 38956066 PMCID: PMC11219851 DOI: 10.1038/s41598-024-62910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.
Collapse
Affiliation(s)
- Si-Chun Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Zhi-Guo Xie
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Min-Jue Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Chang-De Wang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Li-Min Xu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Chen Gao
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xiao-Lei Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - You Wu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yu-Qing Hu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yang Cao
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China.
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
10
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
11
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
12
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
14
|
Wang C, Ouyang S, Zhu X, Jiang Y, Lu Z, Gong P. Myricetin suppresses traumatic brain injury-induced inflammatory response via EGFR/AKT/STAT pathway. Sci Rep 2023; 13:22764. [PMID: 38123650 PMCID: PMC10733425 DOI: 10.1038/s41598-023-50144-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a common disease in neurosurgery with a high fatality and disability rate which imposes a huge burden on society and patient's family. Inhibition of neuroinflammation caused by microglia activation is a reasonable strategy to promote neurological recovery after TBI. Myricetin is a natural flavonoid that has shown good therapeutic effects in a variety of neurological disease models, but its therapeutic effect on TBI is not clear. We demonstrated that intraperitoneal injection of appropriate doses of myricetin significantly improved recovery of neurological function after TBI in Sprague Dawley rats and inhibited excessive inflammatory responses around the lesion site. Myricetin dramatically reduced the expression of toxic microglia markers generated by TBI and LPS, according to the outcomes of in vivo and in vitro tests. In particular, the expression of inducible nitric oxide synthase, cyclooxygenase 2, and some pro-inflammatory cytokines was reduced, which protected learning and memory functions in TBI rats. Through network pharmacological analysis, we found that myricetin may inhibit microglia hyperactivation through the EGFR-AKT/STAT pathway. These findings imply that myricetin is a promising treatment option for the management of neuroinflammation following TBI.
Collapse
Affiliation(s)
- Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Siguang Ouyang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yi Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Liu M, Wu S, Wu Y, Zhang J, Chen J, Peng X, Yang Q, Tan Z, Zeng Z. Rubus suavissimus S. Lee Extract Alleviates Oxidative Stress and Inflammation in H 2O 2-Treated Retinal Pigment Epithelial Cells and in High-Fat Diet-Fed Mouse Retinas. FRONT BIOSCI-LANDMRK 2023; 28:279. [PMID: 38062823 DOI: 10.31083/j.fbl2811279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. METHODS In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. RESULTS RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. CONCLUSIONS Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.
Collapse
Affiliation(s)
- Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Jun Chen
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Xucong Peng
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Qiusheng Yang
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| |
Collapse
|
16
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
17
|
Myricetin improves apoptosis after ischemic stroke via inhibiting MAPK-ERK pathway. Mol Biol Rep 2023; 50:2545-2557. [PMID: 36611117 DOI: 10.1007/s11033-022-08238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuronal apoptosis is the main cause for the disabilities and deaths of patients suffered with stroke. Neuroprotectants are clinically used to reduce neuronal apoptosis in ischemic stroke. However, the current neuroprotectants have multiple limitations. Myricetin is beneficial for multiple neurodegenerative diseases, but the role of myricetin as a neuroprotective agent in ischemic stroke is still not fully understood. METHODS AND RESULTS Middle cerebral artery occlusion, Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Western blots were used to explore the anti-apoptotic effects of myricetin in vivo. Flow cytometry, Western blots and Ca2+ staining were used to study the neuroprotective effects of myricetin in vitro. In this study, we first demonstrated that myricetin reduced neuronal apoptosis after ischemia in vivo and in vitro. And, among the factors of apoptosis after ischemic stroke, excitotoxicity, oxidative stress and inflammation-induced apoptosis can be alleviated by myricetin. Moreover, we further demonstrated that myricetin was able to improve neuronal intrinsic apoptosis by inhibiting the phosphorylation of extracellular signal-regulated kinase in the oxygen and glucose deprivation in vitro. CONCLUSIONS Summarily, our results support myricetin as a novel neuroprotectant for the prevention or treatment of ischemic stroke via MAPK-ERK signaling pathway.
Collapse
|
18
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|