1
|
Martínez-Montiel M, Arrighi G, Begines P, González-Bakker A, Puerta A, Fernandes MX, Merino-Montiel P, Montiel-Smith S, Nocentini A, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Multifaceted Sulfonamide-Derived Thiosemicarbazones: Combining Metal Chelation and Carbonic Anhydrases Inhibition in Anticancer Therapy. Int J Mol Sci 2025; 26:1225. [PMID: 39940992 PMCID: PMC11818225 DOI: 10.3390/ijms26031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The selective inhibition of key enzymes, such as carbonic anhydrases (CAs IX and XII), which are overexpressed in cancer tissues, has emerged as a promising strategy in cancer research. However, a multitarget approach is often preferred to achieve enhanced therapeutic outcomes. In this study, aryl sulfonamides were conjugated with a thiosemicarbazone moiety to enable dual functionality: the inhibition of CAs and the chelation of metal cations. Several structural factors were systematically modified, including the position of the sulfonamido group, the length of the linker, the nature of the aromatic residue, and the type of substituents. Tumor-associated CAs IX and XII inhibition was evaluated using the stopped-flow CO2 hydrase assay, and the inhibition constants (Ki) were determined. The most promising compounds were further analyzed through molecular docking simulations. Metal chelation capabilities were evaluated using UV-Vis spectroscopy, while antiproliferative activities were measured using the sulforhodamine B (SBR) assay. Additionally, holotomographic 3D microscopy was employed to investigate the mechanisms of cell death. Sulfonamido-derived Schiff bases were synthesized through a three-step procedure that did not require column chromatography purification: (1) isothiocyanation of amino-sulfonamides, (2) nucleophilic addition of hydrazine, and (3) acid-promoted condensation with different aldehydes (benzaldehydes or pyridine-2-carboxaldehyde). The synthesized compounds exhibited inhibition of CAs in the low nanomolar to submicromolar range, with selectivity largely influenced by structural features. Notably, the m-sulfonamide derivative 5b, bearing a pyridin-2-yl residue, demonstrated potent and selective inhibition of CA IX (Ki = 4.9 nM) and XII (Ki = 5.6 nM). Additionally, it efficiently chelated Fe2+, Fe3+, and Cu2+ and showed promising antiproliferative activity (GI50 4.5-10 µM). Mechanistic studies revealed that apoptosis was involved in its mode of action. Therefore, the synergistic integration of sulfonamides and thiosemicarbazones represents an effective strategy for the development of multimodal anticancer agents.
Collapse
Affiliation(s)
- Mónica Martínez-Montiel
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Giulia Arrighi
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Paloma Begines
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Miguel X. Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
| |
Collapse
|
2
|
El-Sayed DS, Hassan SS, Jassim LS, Issa AA, Al-Oqaili F, Albayaty MK, Hasoon BA, Jabir MS, Rasool KH, Elbadawy HA. Structural and topological analysis of thiosemicarbazone-based metal complexes: computational and experimental study of bacterial biofilm inhibition and antioxidant activity. BMC Chem 2025; 19:24. [PMID: 39856776 PMCID: PMC11762858 DOI: 10.1186/s13065-024-01338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 01/27/2025] Open
Abstract
The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni (II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic susceptibility, molar conductivity, FTIR, and UV-Vis spectroscopy, the computational path helped with further structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic solvents. DFT computational analysis was performed, and quantum reactivity parameters of the octahedral optimized complexes were calculated to describe the reactivity via the stability states of the synthesized complexes. FMOs map was generated to confirm similar findings and MEP analysis was applied to elaborate the important electrophilic and nucleophilic sites on the studied surfaces. Also, other important topological analyses such as electron localization function and reduced density gradient, to establish the favorable noncovalent interactions, were studied. In silico molecular docking approach was studied against the gram-positive bacteria Bacillus cereus to predict the potent inhibition behavior of the studied complexes. The findings summarized the inhibition prediction of the most interactive [NiL2Cl2], then [FeL2Cl2] complexes as confirmed by the binding energy values (- 7.1 kacl/mol and - 6.4 kacl/mol, respectively). Another In silico results, with gram-positive bacteria (S. aureus), estimated similar results of the experimental finding, where [MnL2Cl2] (- 9.2 kcal/mol) is the more effective predicted antibacterial inhibitor. Fluorescence microscopy was used to examine the inhibition of bacterial biofilm, and the DPPH assay was used to measure antioxidant activity, followed by an understanding of the behavior of the current complexes toward free radicals' removal. The findings observed less aggregated bacterial strains covered with the studied complexes leading to less dense biofilm covering.
Collapse
Affiliation(s)
- Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Shaymaa S Hassan
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Liblab S Jassim
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ali Abdullah Issa
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Firas Al-Oqaili
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mustafa K Albayaty
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, AL-Jadriya, Baghdad, Iraq
| | - Buthenia A Hasoon
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Khetam H Rasool
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Hemmat A Elbadawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
de Araujo Fernandes AG, Lafratta AE, Luz CP, Levy D, de Paula Faria D, Buchpiguel CA, Abram U, Deflon VM, Navarro Marques FL. [ 99mTc]Technetium and Rhenium Dithiocarbazate Complexes: Chemical Synthesis and Biological Assessment. Pharmaceutics 2025; 17:100. [PMID: 39861748 PMCID: PMC11768621 DOI: 10.3390/pharmaceutics17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (H2bdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[99mTc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies. METHODS Re complex was prepared by a reaction of H2bdtc and (NBu4)[ReOCl4], the final product was characterized by IR, 1H NMR, CHN, and MS-ESI. 99mTc complex was prepared by the reaction of H2bdtc and [[99mTc]TcO4- and analyzed by planar and HPLC radiochromatography, and the stability was evaluated against amino acids and plasma. Biodistribution was performed in C57B/6 mice with B16F10 and TM1M implanted tumor. RESULTS Re is asymmetric coordinated by two dithiocarbazate ligands, one with O,N,S chelation, and the other with N,S chelation; [[99mTc]TcO(bdtc)(Hbdtc)] was prepared with a radiochemical yield of around 93%. The radioactive complex is hydrophobic (LogP = 1.03), stable for 6 h in PBS and L-histidine solution; stable for 1 h in plasma, but unstable in the presence of L-cysteine. Ex vivo biodistribution demonstrated that the compound has a fast and persistent (until 2 h) uptake by the spleen (55.46%), and tumor B16F10 and TM1M uptake is lower than 1%. In vivo SPECT/CT imaging confirmed ex vivo biodistribution, except by heterogenous TM1M accumulation but not in the B16-F10 lineage. CONCLUSIONS H2bdtc proved to be an interesting chelator for rhenium or [99mTc]technetium. The right spleen uptake opened the opportunity to deepen the study of the molecule in this tissue and justifies future studies to identify the reason of heterogenous uptake in TM1M tumor uptake.
Collapse
Affiliation(s)
- André Gustavo de Araujo Fernandes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
- Departamento de Ciências Exatas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil
| | - Alyne Eloise Lafratta
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carolina Portela Luz
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Debora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Germany;
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| |
Collapse
|
4
|
Mashkoor NR, Abed SA, Davoudi A, Jassim ZAA, Faraj ZY, Akbari F, Bajgiran FA, Hedayati M, Salehzadeh A. Synthesis of platinum nanoparticles functionalized with glutamine and conjugated with thiosemicarbazone and their cytotoxic effects on MDA-MB-231 breast cancer cell line and evaluation of CASP-8 gene expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03629-z. [PMID: 39665983 DOI: 10.1007/s00210-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is the most prevalent form of cancer among women and is a major contributor to cancer-related fatalities. Nanotechnology has provided novel approaches to drug delivery to cancer cells. In this work, we synthesized platinum (Pt) nanoparticles, functionalized them with glutamine, conjugated them with thiosemicarbazone (TSC), and characterized their anticancer effects on the MDA-MB-231 breast cancer cell line. Characteristics of the nanoparticles were assessed by FT-IR, XRD, EDS mapping, SEM, TEM, DLS, and zeta potential measurement. Cell viability was characterized by MTT assay, and cell necrosis/apoptosis levels were determined by flow cytometry. The expression level of the CASP-8 gene was investigated by real-time PCR. Pt@Gln-TSC nanoparticles are spherical, 20-70 nm in diameter in dry form, 662 nm after hydration, and their zeta potential was - 6.6 mV. The 50% inhibitory concentration (IC50) for MDA-MB-231 (breast cancer) and HDF (normal) cell lines was 170 and 348µg/ml, respectively. Also, the IC50 of oxaliplatin drug and TSC on MDA-MB-231 cells was 184 µg/ml and 307 µg/ml, respectively. Treatment with Pt@Gln-TSC nanoparticles caused an increase in cell necrosis and primary apoptosis and elevated the expression of the CASP-8 gene by 2.54 folds. This study shows that Pt@Gln-TSC nanoparticles are significantly more toxic to breast cancer cells than to normal cells and can inhibit MDA-MB-231 cells by activating extrinsic apoptosis.
Collapse
Affiliation(s)
- Nabeel Rahi Mashkoor
- Department of Pathological Analysis, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Salwan Ali Abed
- Environmental Science Department, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Arash Davoudi
- Division of Cytogenetic, Dr. Keshavarz Medical Genetics Lab, Rasht, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Zainab Yousif Faraj
- Scientific Affairs Department, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Fatemeh Akbari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
5
|
Akter R, Maknun Fariha L, Halder S, Sharmin S, Sabet Taki E, Kabir Lihu I, Hamja Tipu A, Rubaiyat Muntasir Meem MM, Alam Ripa F, Sharmin S. GC-MS-employed Phytochemical Characterization and Anticancer, Antidiabetic, and Antioxidant Activity Screening of Lagerstroemia Thorelli. Chem Biodivers 2024; 21:e202400999. [PMID: 39212321 PMCID: PMC11644112 DOI: 10.1002/cbdv.202400999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Lagerstroemia thorelli (L. thorelli) is a member of the Lythraceae family and has not been previously researched. Thus, this study aimed to investigate its unexplored potential and identify novel therapeutic prospects. This research evaluated antioxidant, antidiabetic, and cytotoxic potentials along with compound characterization of the ethanolic leaf extract of L. thorelli. The antioxidant potential was assessed using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical and hydrogen peroxide (H2O2) scavenging assays, total antioxidant capacity (TAC), total phenolic content (TPC), total flavonoid content (TFC) determination, antidiabetic property was assessed using α-amylase inhibition, and the cytotoxic effect was examined on HeLa and Vero cells using MTT colorimetric assay. Chemical characterization was performed using gas chromatography-mass spectrometry (GC-MS). The findings demonstrated strong antioxidant, strong antidiabetic, and moderate cytotoxic activities. Comprehensive phytochemical analysis revealed its abundance in flavonoids, phenols/phenolics, tannins, glycosides, steroids, resin, etc. GC-MS analysis of the L. thorelli extract identified 80 important compounds including cis-11-eicosenamide, beta-D-glucopyranoside, methyl-, alpha-D-glucopyranoside, methyl-, phthalic acid, gamma-sitosterol, phytol, silicic acid, squalene, butanoic acid, cyclobarbital, etc. which are well-documented for their antioxidant, antidiabetic, and anticancer effects. Thus, it can be inferred that L. thorelli could hold new promises in treating diseases like diabetes and free radical-induced conditions, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Raushanara Akter
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Luluel Maknun Fariha
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Shimul Halder
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of DhakaDhaka1000Bangladesh
| | - Shahana Sharmin
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Ehtesham Sabet Taki
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Imanul Kabir Lihu
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Amir Hamja Tipu
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | | | - Farhana Alam Ripa
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| | - Sabrina Sharmin
- School of PharmacyBRAC UniversityKHA 224, Pragati SaraniMerul Badda, Dhaka1212Bangladesh
| |
Collapse
|
6
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
7
|
Jiang M, Li W, Liang J, Pang M, Li S, Xu G, Zhu M, Liang H, Zhang Z, Yang F. Developing a Palladium(II) Agent to Overcome Multidrug Resistance and Metastasis of Liver Tumor by Targeted Multiacting on Tumor Cell, Inactivating Cancer-Associated Fibroblast and Activating Immune Response. J Med Chem 2024; 67:16296-16310. [PMID: 39238096 DOI: 10.1021/acs.jmedchem.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| |
Collapse
|
8
|
Tiwari L, Leach C, Williams A, Lighter B, Heiden Z, Roll MF, Moberly JG, Cornell KA, Waynant KV. Binding Mechanisms and Therapeutic Activity of Heterocyclic Substituted Arylazothioformamide Ligands and Their Cu(I) Coordination Complexes. ACS OMEGA 2024; 9:37141-37154. [PMID: 39246472 PMCID: PMC11375723 DOI: 10.1021/acsomega.4c04216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Finding new sources of biologically active compounds for anticancer or antimicrobial therapies remains an active area of research. Azothioformamides (ATFs) with a 1,3 N=N-C=S heterodiene backbone are a new class of biologically active compounds that chelate metals (e.g., Cu) forming stable ATF metal coordination complexes. In this study, ATF ligands were prepared with pyrrolidine, piperidine, N-methylpiperazine, and morpholine substituents on the formamide as to add more heterocyclic drug-like character for biological studies. Formamide derivatives were then complexed with various Cu(I) salts to form coordination complexes. Cu(I) salts were selected as to create potential bioactive compounds with less toxicity. Binding association constants of each Cu(I) salt to ATF ligands were extrapolated from UV-vis titration studies and were corroborated with DFT calculations using a hybrid functional B3LYP method. It was observed that the smaller pyrrolidine functionalized ATFs bound to the Cu(I) salts had stronger binding than any of the larger six-membered-ring heterocycles with association values in the 104 - 105 M-1 range. The ATF-Cu(I) salt coordination complexes were then evaluated for antimicrobial activity against two bacteria (Staphylococcus aureus, Escherichia coli), one yeast (Candida albicans), four human cancer lines (A-549, K-562, HT-1080, MDA-MB-231), and two normal human lines (MRC-5, HFF). The ATF ligands themselves were inactive against all microbes and most human lines except K-562 cells, which were sensitive to three of the four ligands (IC50's = 7.0-25.5 μM). Most ATF-Cu(I) complexes showed low to medium micromolar activity against Candida albicans (IC50's 2.6-24.8 μM) and Staphylococcus aureus (IC50's = 3.4-37.7 μM), with increasing activity corresponding to complexes with higher binding association constants. The antiproliferative properties of ATF-Cu(I) metal salt complexes against mammalian cells were mixed, with low to medium micromolar activity across all cell lines. Notably, several ATF-Cu(I) salt coordination complexes showed submicromolar activity against the HT-1080 fibrosarcoma line (0.52-0.69 μM). The results demonstrate promising activity of ATF-Cu(I) complexes, particularly with pyrrolidine as the formamide component. These studies suggest that the stronger binding association values correlate to higher levels of biological activity.
Collapse
Affiliation(s)
- Laxmi Tiwari
- Department
of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Caleb Leach
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United States
| | - Ashley Williams
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United States
| | - Brandon Lighter
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United States
| | - Zachariah Heiden
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Mark F. Roll
- Department
of Mechanical Engineering, University of
Idaho, Moscow, Idaho 83844, United States
| | - James G. Moberly
- Department
of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| | - Kenneth A. Cornell
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United States
| | | |
Collapse
|
9
|
Luo SY, Zeng CM, Xu P, Ning Y, Dong ML, Zhang WH, Yu G. Thiazole Functionalization of Thiosemicarbazone for Cu(II) Complexation: Moving toward Highly Efficient Anticancer Drugs with Promising Oral Bioavailability. Molecules 2024; 29:3832. [PMID: 39202911 PMCID: PMC11357102 DOI: 10.3390/molecules29163832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
In this work, we report the synthesis of a new thiosemicarbazone-based drug of N'-(di(pyridin-2-yl)methylene)-4-(thiazol-2-yl)piperazine-1-carbothiohydrazide (HL) featuring a thiazole spectator for efficient coordination with Cu(II) to give [CuCl(L)]2 (1) and [Cu(NO3)(L)]2 (2). Both 1 and 2 exhibit dimeric structures ascribed to the presence of di-2-pyridylketone moieties that demonstrate dual functions of chelation and intermolecular bridging. HL, 1, and 2 are highly toxic against hepatocellular carcinoma cell lines Hep-G2, PLC/PRF/5, and HuH-7 with half maximal inhibitory concentration (IC50) values as low as 3.26 nmol/mL (HL), 2.18 nmol/mL (1), and 2.54 × 10-5 nmol/mL (2) for PLC/PRF/5. While the free ligand HL may elicit its anticancer effect via the sequestration of bio-relevant metal ions (i.e., Fe3+ and Cu2+), 1 and 2 are also capable of generating cytotoxic reactive oxygen species (ROS) to inhibit cancer cell proliferation. Our preliminary pharmacokinetic studies revealed that oral administration (per os, PO) of HL has a significantly longer half-life t1/2 of 21.61 ± 9.4 h, nearly doubled as compared with that of the intravenous (i.v.) administration of 11.88 ± 1.66 h, certifying HL as an effective chemotherapeutic drug via PO administration.
Collapse
Affiliation(s)
- Song-Yu Luo
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Chun-Mei Zeng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Ping Xu
- Suzhou Degen Bio-Medical Co., Ltd., No. 1 Huayun Road, Suzhou Industrial Park, Suzhou 215000, China;
| | - Ye Ning
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Meng-Lin Dong
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Guangliang Yu
- Suzhou Degen Bio-Medical Co., Ltd., No. 1 Huayun Road, Suzhou Industrial Park, Suzhou 215000, China;
| |
Collapse
|
10
|
Radomska D, Szewczyk-Roszczenko OK, Marciniec K, Książek M, Kusz J, Roszczenko P, Szymanowska A, Radomski D, Bielawski K, Czarnomysy R. Evaluation of anticancer activity of novel platinum(II) bis(thiosemicarbazone) complex against breast cancer. Bioorg Chem 2024; 148:107486. [PMID: 38788367 DOI: 10.1016/j.bioorg.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41‑200 Sosnowiec, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland.
| |
Collapse
|
11
|
Li A, Huang K, Pan W, Wu Y, Liang Y, Zhang Z, Wu D, Ma L, Gou Y. Thiosemicarbazone Mixed-Valence Cu(I/II) Complex against Lung Adenocarcinoma Cells through Multiple Pathways Involving Cuproptosis. J Med Chem 2024; 67:9091-9103. [PMID: 38778566 DOI: 10.1021/acs.jmedchem.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Induction of cuproptosis and targeting of multiple signaling pathways show promising applications in tumor therapy. In this study, we synthesized two thiosemicarbazone-copper complexes ([CuII(L)Cl] 1 and [CuII2CuI(L)2Cl3] 2, where HL is the (E)-N-methyl-2-(phenyl(pyridin-2-yl)methylene ligand), to assess their antilung cancer activities. Both copper complexes showed better anticancer activity than cisplatin and exhibited hemolysis comparable to that of cisplatin. In vivo experiments showed that complex 2 retarded the A549 cell growth in a mouse xenograft model with low systemic toxicity. Primarily, complex 2 kills lung cancer cells in vitro and in vivo by triggering multiple pathways, including cuproptosis. Complex 2 is the first mixed-valent Cu(I/II) complex to induce cellular events consistent with cuproptosis in cancer cells, which may stimulate the development of mixed-valent copper complexes and provide effective cancer therapy.
Collapse
Affiliation(s)
- Aili Li
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin 541001, P. R. China
| | - Kai Huang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, P. R. China
- Department of Scientific Research, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
| | - Weiping Pan
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
| | - Youru Wu
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
| | - Yuwei Liang
- Department of Scientific Research, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
| | - ZhenLei Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Daqi Wu
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
| | - Libing Ma
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin 541001, P. R. China
| | - Yi Gou
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin 541001, P. R. China
| |
Collapse
|
12
|
Zheng Y, An H, Qi J, Li J. Recent progress in thiocarbazone metal complexes for cancer therapy via mitochondrial signalling pathway. Front Chem 2024; 12:1424022. [PMID: 38873408 PMCID: PMC11169589 DOI: 10.3389/fchem.2024.1424022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Mitochondria are the energy factories of cells and are important targets for the development of novel tumour treatment strategies owing to their involvement in processes such as apoptosis, oxidative stress, and metabolic programming. Thiosemicarbazone metal complexes target mitochondria and reduce mitochondrial membrane potential. The breakdown of mitochondrial membrane potential is a key event in the early stage of apoptosis, which releases cytochrome C and other pro-apoptotic factors, activates the intracellular apoptotic enzyme cascade, and eventually causes irreversible apoptosis of tumour cells. Thiosemicarbazone metal complexes targeting the mitochondria have recently emerged as potential antitumour agents; therefore, this review describes the structural diversity of thiosemicarbazone metal [Fe(III), Cu(II), Ni(II), Zn(II), Ga(III), Pb(II), Au(III), and Ir(III)] complexes and explores their anti-tumour mechanisms that target mitochondrial pathways.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medical School of Pingdingshan University, Pingdingshan, China
| | - Hangyi An
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Jinxu Qi
- Medical School of Pingdingshan University, Pingdingshan, China
| | - Jiaming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
13
|
Munir R, Zaib S, Zia-ur-Rehman M, Javed H, Roohi A, Zaheer M, Fatima N, Bhat MA, Khan I. Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis. Front Chem 2024; 12:1403127. [PMID: 38855062 PMCID: PMC11157103 DOI: 10.3389/fchem.2024.1403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives (5a-i) were designed, synthesized and characterized through FTIR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated in vitro for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)-N-(2-morpholinoethyl)hydrazinecarbothioamide (5g) inhibited the urease in an uncompetitive manner with an IC50 value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound 5g has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor (5g) suggested the druglikeness behavior with zero violation.
Collapse
Affiliation(s)
- Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan
| | - Nabiha Fatima
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Taati H, Sangani H, Davoudi A, Safabakhsh Kouchesfahani S, Hedayati M, Tarashandeh Hemmati S, Ghasemipour T, Aghajani S, Farah Andooz M, Amanollahi M, Kalavari F, Salehzadeh A. Silver nanoparticle functionalized by glutamine and conjugated with thiosemicarbazide induces apoptosis in colon cancer cell line. Sci Rep 2024; 14:3809. [PMID: 38360831 PMCID: PMC10869841 DOI: 10.1038/s41598-024-54344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
The high mortality rate of colon cancer indicates the insufficient efficacy of current chemotherapy. Thus, the discussion on engineered metal nanoparticles in the treatment of the disease has been considered. In this study, silver nanoparticles were functionalized with glutamine and conjugated with thiosemiccarbazide. Then, anticancer mechanism of Ag@Gln-TSC NPs in a colon cancer cell line (SW480) was investigated. Characterizing Ag@Gln-TSC NPs by FT-IR, XRD, EDS-mapping, DLS, zeta potential, and SEM and TEM microscopy revealed that the Ag@Gln-TSC NPs were correctly synthesized, the particles were spherical, with surface charge of - 27.3 mV, high thermal stability and low agglomeration level. Using MTT assay we found that Ag@Gln-TSC NPs were significantly more toxic for colon cancer cells than normal fibroblast cells with IC50 of 88 and 186 µg/mL, respectively. Flow cytometry analysis showed that treating colon cancer cells with Ag@Gln-TSC NPs leads to a considerable increase in the frequency of apoptotic cells (85.9% of the cells) and increased cell cycle arrest at the S phase. Also, several apoptotic features, including hyperactivity of caspase-3 (5.15 folds), increased expression of CASP8 gene (3.8 folds), and apoptotic nuclear alterations were noticed in the nanoparticle treated cells. Furthermore, treating colon cancer cells with Ag@Gln-TSC NPs caused significant down-regulation of the HULC Lnc-RNA and PPFIA4 oncogene by 0.3 and 0.6 folds, respectively. Overall, this work showed that Ag@Gln-TSC NPs can effectively inhibit colon cancer cells through the activation of apoptotic pathways, a feature that can be considered more in studies in the field of colon cancer treatment.
Collapse
Affiliation(s)
- Hadi Taati
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Helia Sangani
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Arash Davoudi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | | | | | | | - Shahrzad Aghajani
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mahan Farah Andooz
- Department of Biology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Amanollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fakhrieh Kalavari
- Department of Pathology, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
15
|
Wang X, Zhu M, Li S, Xu G, Zhang Z, Yang F. Novel mono-, bi-, tri- and tetra-nuclear copper complexes that inhibit tumor growth through apoptosis and anti-angiogenesis. J Inorg Biochem 2024; 250:112403. [PMID: 37866112 DOI: 10.1016/j.jinorgbio.2023.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
To develop the next-generation metal agents for efficiently inhibiting tumor growth, a series of novel mononuclear, binuclear and trinuclear copper (Cu) thiophene-2-formaldehyde thiosemicarbazone complexes and a tetranuclear Cu 1,2,4-triazole-derived complex have been synthesized and their structure-activity relationships have been studied. The trinucleated Cu complex showed the strongest inhibitory activity against T24 cells among all the Cu complexes. Its antitumor effect in vivo was superior to that of cisplatin, with reduced side effects. Further studies on the antitumor mechanism have showed that Cu complexes not only induced apoptosis of cancer cells but also inhibited tumor angiogenesis by inhibiting the migration and invasion of vascular endothelial cells, blocking the cell cycle in the G1 phase, and inducing autophagy.
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China.
| |
Collapse
|
16
|
Arshad JZ, Tabassum S, Kiani MS, Arshad S, Hashmi MA, Majeed I, Ali H, Shah SSA. Anticancer Properties of Ru and Os Half-Sandwich Complexes of N,S Bidentate Schiff Base Ligands Derived from Phenylthiocarbamide. Chem Asian J 2023; 18:e202300804. [PMID: 37737043 DOI: 10.1002/asia.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The versatile coordinating nature of N,S bidentate ligands is of great importance in medicinal chemistry imparting stability and enhancing biological properties of the metal complexes. Phenylthiocarbamide-based N,S donor Schiff bases converted into RuII /OsII (cymene) complexes and characterized by spectroscopic techniques and elemental analysis. The hydrolytic stability of metal complexes to undergo metal-halide ligand exchange reaction was confirmed both by the DFT and NMR experimentation. The ONIOM (QM/MM) study confirmed the histone protein targeting nature of aqua/hydroxido complex 2 aH with an excellent binding energy of -103.19 kcal/mol. The antiproliferative activity against a panel of cancer cells A549, MCF-7, PC-3, and HepG2 revealed that ruthenium complexes 1 a-3 a were more cytotoxic than osmium complexes and their respective ligands 1-3 as well. Among these ruthenium cymene complex bearing sulfonamide moiety 2 a proved a strong cytotoxic agent and showed excellent correlation of cellular accumulation, lipophilicity, and drug-likeness to the anticancer activity. Moreover, the favorable physiochemical properties such as bioavailability and gastrointestinal absorption of ligand 2 also supported the development of Ru complex 2 a as an orally active anticancer metallodrug.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Sana Tabassum
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Shaheer Kiani
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Sundas Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Imran Majeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Ali
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
17
|
Jiang X, Fielding LA, Davis H, Carroll W, Lisic EC, Deweese JE. Inhibition of Topoisomerases by Metal Thiosemicarbazone Complexes. Int J Mol Sci 2023; 24:12010. [PMID: 37569386 PMCID: PMC10419228 DOI: 10.3390/ijms241512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Topoisomerases, common targets for anti-cancer therapeutics, are crucial enzymes for DNA replication, transcription, and many other aspects of DNA metabolism. The potential anti-cancer effects of thiosemicarbazones (TSC) and metal-TSC complexes have been demonstrated to target several biological processes, including DNA metabolism. Human topoisomerases were discovered among the molecular targets for TSCs, and metal-chelated TSCs specifically displayed significant inhibition of topoisomerase II. The processes by which metal-TSCs or TSCs inhibit topoisomerases are still being studied. In this brief review, we summarize the TSCs and metal-TSCs that inhibit various types of human topoisomerases, and we note some of the key unanswered questions regarding this interesting class of diverse compounds.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Lauren A. Fielding
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
| | - Hunter Davis
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - William Carroll
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Edward C. Lisic
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Joseph E. Deweese
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
18
|
Almeida CM, Nascimento ÉCM, Martins JBL, da Mota THA, de Oliveira DM, Gatto CC. Crystal Design, Antitumor Activity and Molecular Docking of Novel Palladium(II) and Gold(III) Complexes with a Thiosemicarbazone Ligand. Int J Mol Sci 2023; 24:11442. [PMID: 37511201 PMCID: PMC10380234 DOI: 10.3390/ijms241411442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.
Collapse
Affiliation(s)
- Carolane M Almeida
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70904-970, Brazil
| | - Érica C M Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70904-970, Brazil
| | - João B L Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70904-970, Brazil
| | - Tales H A da Mota
- University of Brasilia, Faculty UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília 72220-275, Brazil
| | - Diêgo M de Oliveira
- University of Brasilia, Faculty UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília 72220-275, Brazil
| | - Claudia C Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70904-970, Brazil
| |
Collapse
|
19
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
20
|
Montalbano S, Bisceglie F, Pelosi G, Lazzaretti M, Buschini A. Modulation of Transcription Profile Induced by Antiproliferative Thiosemicarbazone Metal Complexes in U937 Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051325. [PMID: 37242567 DOI: 10.3390/pharmaceutics15051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Since the discovery of cisplatin, the search for metal-based compounds with therapeutic potential has been a challenge for the scientific community. In this landscape, thiosemicarbazones and their metal derivatives represent a good starting point for the development of anticancer agents with high selectivity and low toxicity. Here, we focused on the action mechanism of three metal thiosemicarbazones [Ni(tcitr)2], [Pt(tcitr)2], and [Cu(tcitr)2], derived from citronellal. The complexes were already synthesized, characterized, and screened for their antiproliferative activity against different cancer cells and for genotoxic/mutagenic potential. In this work, we deepened the understanding of their molecular action mechanism using an in vitro model of a leukemia cell line (U937) and an approach of transcriptional expression profile analysis. U937 cells showed a significant sensitivity to the tested molecules. To better understand DNA damage induced by our complexes, the modulation of a panel of genes involved in the DNA damage response pathway was evaluated. We analyzed whether our compounds affected cell cycle progression to determine a possible correlation between proliferation inhibition and cell cycle arrest. Our results demonstrate that metal complexes target different cellular processes and could be promising candidates in the design of antiproliferative thiosemicarbazones, although their overall molecular mechanism is still to be understood.
Collapse
Affiliation(s)
- Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mirca Lazzaretti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
21
|
Zhang Z, Zhang J, Yang T, Li S, Xu G, Liang H, Yang F. Developing an Anticancer Platinum(II) Compound Based on the Uniqueness of Human Serum Albumin. J Med Chem 2023; 66:5669-5684. [PMID: 37071741 DOI: 10.1021/acs.jmedchem.3c00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
To develop the next-generation Pt drug with remarkable activity and low toxicity to maximally inhibit tumor growth, we optimized a Pt(II) thiosemicarbazone compound (C4) with remarkable cytotoxicity to SK-N-MC cells and then constructed a new human serum albumin-C4 (HSA-C4) complex delivery system. The in vivo results showed that C4 and the HSA-C4 complex have remarkable therapeutic efficiency and almost no toxicity; they induced apoptosis and inhibited tumor angiogenesis. This system showed potential as a practical Pt drug. This study could pave the way for developing next-generation dual-targeted Pt drugs and achieving their targeting therapy for cancer.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
22
|
Zheng Y, Wei K, Gao Y, Zhou Z, Zheng X, Li J, Qi J. Comparative evaluation of the structure and antitumor mechanism of mononuclear and trinucleated thiosemicarbazone Cu(II) complexes. J Inorg Biochem 2023; 240:112116. [PMID: 36592511 DOI: 10.1016/j.jinorgbio.2022.112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The ratio of ligand to Cu(II) ions has an essential effect on the geometrical configuration and anti-tumour activity of metal-based complexes. In this work, we synthesised two Cu(II) thiosemicarbazone complexes, namely, [Cu(L)(Cl)] (C1) and [Cu3(L)2(Cl)4] (C2), by controlling the ratio of Cu(II) ion to ligand, to evaluate their anti-tumour activity. The ability of C1 to catalyze hydrogen peroxide to produce reactive oxygen species (ROS) was significantly higher than that of Cu(II) ion. Moreover, the bridge of Cu(II) and two molecules generated a new complex (C2), which, in contrast to C1, enhanced the generation of Fenton-like-triggered ROS. Consequently, the produced ROS depleted reduced glutathione, caused oxidative cell stress and promoted apoptosis through mitochondrial apoptotic pathways. In addition, C2 exhibited better tumour suppression than C1 in a nude mouse tumour xenograft model.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Kai Wei
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ziyan Zhou
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiuling Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
23
|
Emam SM, Bondock S, Aldaloa AA. Schiff Base Coordination Compounds Including Thiosemicarbazide Derivative and 4-Benzoyl-1, 3-Diphenyl-5-Pyrazolone: Synthesis, Structural Spectral Characterization and Biological Activity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Structural, Spectral Studies and Antimicrobial Activity of Zinc(II), Cadmium(II) and Nickel(II) Complexes of 2-Acetylbenzothiophene-3-thiosemicarbazone and 2-Acetylbenzothiophene-4-ethyl-3-thiosemicarbazone. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|