1
|
Li R, Guo L, Liang B, Sun W, Hai F. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Open Med (Wars) 2025; 20:20251159. [PMID: 40028265 PMCID: PMC11868716 DOI: 10.1515/med-2025-1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background The immune system is closely related to hypertension. Hypertension is an immune disorder to a certain extent, and inflammation is the basis of abnormally elevated blood pressure (BP). The accumulation of T cells and their cytokines can increase BP and end organ damage. T cells are activated by antigen-presenting cells of the innate immune system or by the influence of a high-sodium diet, the self-environment, or the gut microbiota. These cells produce inflammatory factors and cytokines, such as interleukin-17A (IL-17A) in T helper 17 cells, causing vascular inflammation, hypertension, and target organ damage. Methods In this article, we provide an insightful review of the research progress regarding the role of IL-17A in the pathogenesis of hypertension and its effects on different organs while emphasizing the role of IL-17A and its mediated functions in the kidneys, brain, intestines, and vascular system in the development and progression of hypertension. Results At the organ level, IL-17A is involved in the development and progression of hypertension in the kidneys, brain, intestines, and blood vessels, interacting with multiple signal pathway. Conclusions These findings have significant implications for developing future immunomodulatory therapies, which may lead to the development of potential treatments for hypertension.
Collapse
Affiliation(s)
- Ruiyuan Li
- Graduate School of Jinzhou Medical University,
Jinzhou, Liaoning, China
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, No. 40 Qianshan Road, Dalian, 116033, Liaoning, China
| | - Bin Liang
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Wei Sun
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Feng Hai
- Department of Critical Care Medicine, Dalian Third People’s Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
2
|
Carter K, Shah E, Waite J, Rana D, Zhao ZQ. Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages. Cells 2024; 13:2001. [PMID: 39682749 PMCID: PMC11640308 DOI: 10.3390/cells13232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure. Ang II stimulates macrophages via its AT1 receptor to release oxygen-free radicals, cytokines, chemokines, and other inflammatory mediators in the myocardium, and upregulates the expression of integrin adhesion molecules on both monocytes and endothelial cells, leading to monocyte-endothelial cell-cell interactions. The transendothelial migration of monocyte-derived macrophages exerts significant biological effects on the proliferation of fibroblasts, deposition of extracellular matrix proteins, induction of perivascular/interstitial fibrosis, and development of hypertension, cardiac hypertrophy and heart failure. Inhibition of macrophage activation using Ang II AT1 receptor antagonist or depletion of macrophages from the peripheral circulation has shown significant inhibitory effects on Ang II-induced vascular and myocardial injury. The purpose of this review is to discuss the current understanding in Ang II-induced maladaptive cardiac remodeling and dysfunction, particularly focusing on molecular signaling pathways involved in macrophages-mediated hypertension, cardiac hypertrophy, fibrosis, and failure. In addition, the challenges remained in translating these findings to the treatment of heart failure patients are also addressed.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
3
|
Pacella J, Lembo G, Carnevale L. A Translational Perspective on the Interplay Between Hypertension, Inflammation and Cognitive Impairment. Can J Cardiol 2024; 40:2368-2377. [PMID: 39455022 DOI: 10.1016/j.cjca.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertension represents the major risk factor in the onset of cardiovascular disease worldwide. Preclinically, several mouse models of hypertension have been developed to investigate the pathophysiological link between hypertension and vascular impairment. Specifically, angiotensin-II infusion, transverse aortic constriction, deoxycorticosterone acetate salt, and N(ω)-nitro-L-arginine methyl ester (L-NAME) administration as hypertensive stimuli at the preclinical level permit the unveiling of a proinflammatory response driven by the innate and adaptive immune system and leads to vascular injury in terms of structural and functional alterations. Vascular impairment seems to be particularly critical at the cerebral level wherein arterioles, venules, and capillaries finely tune blood supply across the whole brain leading to the onset of a well known clinical condition named cerebral small vessel disease (cSVD) characterized by extensive brain injury, which culminates in the decline of cognitive functions. Advances in magnetic resonance imaging permit identification and accurate diagnosis of specific cSVD biomarkers including white matter hyperintensities, lacunar strokes, cerebral microbleeds, and enlarged perivascular spaces, each of which proved to be associated with a specific cognitive domain impairment. Such an approach in combination with pharmacological interventions targeted to the lowering of blood pressure and the prevention of vascular thrombosis formation represents a solid strategy in the prevention and the management of cSVD cognitive decay.
Collapse
Affiliation(s)
- Jacopo Pacella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy. https://twitter.com/LorCarnevale
| |
Collapse
|
4
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
5
|
Koh S, Kim D, Kim M, Kim T. Aerobic exercise effects on systolic blood pressure and endothelial inflammation in obese and non-obese elderly women with isolated systolic hypertension. J Hypertens 2024; 42:1743-1749. [PMID: 39091233 DOI: 10.1097/hjh.0000000000003794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of a 16-week aerobic exercise program on systolic blood pressure, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and oxidized low-density lipoprotein of obese and nonobese elderly women with isolated systolic hypertension. METHODS Elderly women aged 70-85 years were recruited and grouped into the normal isolated systolic hypertension ( n = 12) and obese isolated systolic hypertension groups ( n = 13). The participants followed an aerobic exercise program, using a wireless heart rate monitor to maintain an appropriate heart rate reserve based on the American College of Sports Medicine exercise guidelines. The two-way repeated measures analysis of variance tested group × time interaction. Pearson's correlation and simple regression assessed the influence of each variable, which showed significant differences. RESULTS An interaction effect for systolic blood pressure, intracellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 ( P < 0.05) and a main time effect for oxidized low-density lipoprotein ( P < 0.05) were observed. A correlation between the rates of change in systolic blood pressure and vascular cell adhesion molecule-1 ( P < 0.05) with a 42.8% influence ( P < 0.001) and in intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 ( P < 0.05) with a 21.6% influence ( P < 0.05) was observed. CONCLUSIONS These findings collectively showed that the 16-week aerobic exercise program effectively lowered blood pressure in patients with isolated systolic hypertension, particularly in the normal group compared to the obese group. Thus, regular aerobic exercise for 16 weeks or more enhances vascular health, potentially improving the healthy life expectancy of elderly women.
Collapse
Affiliation(s)
- Suhan Koh
- Physical Education, Pusan National University, Busan, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Melchinger I, Guo K, Li X, Guo J, Cantley LG, Xu L. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition. Am J Physiol Renal Physiol 2024; 327:F610-F622. [PMID: 39116349 PMCID: PMC11483080 DOI: 10.1152/ajprenal.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-β suppressed TNF-α- and IL-1β-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1β) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.
Collapse
Affiliation(s)
- Isabel Melchinger
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kailin Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xiaoxu Li
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jiankan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
8
|
Lin QY, Yu WJ, Bai J, Jiang WX, Li HH. Mac-1 deficiency ameliorates pressure overloaded heart failure through inhibiting macrophage polarization and activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167048. [PMID: 38296117 DOI: 10.1016/j.bbadis.2024.167048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Public Health, Dalian Medical University, Dalian, China
| | - Wen-Xi Jiang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China.
| |
Collapse
|
9
|
Li JX, Xiao X, Teng F, Li HH. Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1-7)-Mas-mediated macrophage polarization. Redox Biol 2024; 69:103004. [PMID: 38141575 PMCID: PMC10788636 DOI: 10.1016/j.redox.2023.103004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
10
|
Zhang YL, Bai J, Yu WJ, Lin QY, Li HH. CD11b mediates hypertensive cardiac remodeling by regulating macrophage infiltration and polarization. J Adv Res 2024; 55:17-31. [PMID: 36822392 PMCID: PMC10770112 DOI: 10.1016/j.jare.2023.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.
Collapse
Affiliation(s)
- Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China.
| |
Collapse
|
11
|
Shi YJ, Yang CG, Qiao WB, Liu YC, Liu SY, Dong GJ. Sacubitril/valsartan attenuates myocardial inflammation, hypertrophy, and fibrosis in rats with heart failure with preserved ejection fraction. Eur J Pharmacol 2023; 961:176170. [PMID: 37939991 DOI: 10.1016/j.ejphar.2023.176170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a multifaceted syndrome related to complex pathologic mechanisms. Sacubitril/valsartan (Sac/val) has demonstrated therapeutic efficacy in HFpEF treatment. However, additional research is required to elucidate its pharmacological mechanisms. Accordingly, this study aimed to explore the potential therapeutic effects of Sac/val in HFpEF rats and the underlying molecular mechanisms. In this study, rats with HFpEF were induced by subjecting spontaneously hypertensive rats to a diet rich in fats, salts, and sugars, along with administering streptozotocin. Subsequently, they were administered Sac/val at a daily dosage of 18 mg/kg. Finally, cardiac structure and function were assessed using echocardiography; Hematoxylin and eosin staining and Masson's trichrome staining were employed to evaluate the pathological changes; Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of pertinent mRNA and proteins. Sac/val treatment attenuated left ventricular (LV) remodeling and diastolic dysfunction in HFpEF rats, possibly related to its anti-inflammatory, anti-hypertrophic, and anti-fibrotic efficacy. Mechanistically, Sac/val might inhibit inflammation by down-regulating cell adhesion molecule (intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial cell adhesion molecule-1 (VCAM-1)) expression. Additionally, it blocked the phosphorylation of glycogen synthase kinase 3β (GSK-3β) to prevent cardiomyocyte hypertrophy. Furthermore, it effectively suppressed myocardial fibrosis by inhibiting the transforming growth factor-beta1 (TGF-β1)/Smads pathway. Our findings suggest that Sac/val improved LV remodeling and diastolic dysfunction, potentially attributed to its anti-inflammatory, anti-hypertrophic, and anti-fibrotic effects. These results provide a sound theoretical rationale for the clinical application of Sac/val in patients with HFpEF.
Collapse
Affiliation(s)
- Yu Jiao Shi
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chen Guang Yang
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wen Bo Qiao
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yong Cheng Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Si Yu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Guo Ju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
12
|
Mukohda M, Mizuno R, Ozaki H. Emerging evidence for a cardiovascular protective effect of concentrated Japanese plum juice. Hypertens Res 2023; 46:2428-2429. [PMID: 37532955 DOI: 10.1038/s41440-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
13
|
Okuno K, Torimoto K, Kuroda R, Cicalese SM, Okuno Y, Kono R, Marumoto S, Utsunomiya H, Eguchi S. Infused juice concentrate of Japanese plum Prunus mume attenuates inflammatory vascular remodeling in a mouse model of hypertension induced by angiotensin II. Hypertens Res 2023; 46:1923-1933. [PMID: 37308550 DOI: 10.1038/s41440-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
Fruit from the Prunus mume tree is a traditional food in Japan. Recently, bainiku-ekisu, an infused juice concentrate of Japanese Prunus mume, is attracting attention as a health promoting supplement. Angiotensin II (Ang II) plays a central role in development of hypertension. It has been reported that bainiku-ekisu treatment attenuates the growth-promoting signaling induced by Ang II in vascular smooth muscle cells. However, whether bainiku-ekisu has any effect on an animal model of hypertension remains unknown. Therefore, this study was designed to explore the potential anti-hypertensive benefit of bainiku-ekisu utilizing a mouse model of hypertension with Ang II infusion. Male C57BL/6 mice were infused with Ang II for 2 weeks and given 0.1% bainiku-ekisu containing water or normal water for 2 weeks with blood pressure evaluation. After 2 weeks, mice were euthanized, and the aortas were collected for evaluation of remodeling. Aortic medial hypertrophy was observed in control mice after Ang II infusion, which was attenuated in bainiku-ekisu group with Ang II infusion. Bainiku-ekisu further attenuated aortic induction of collagen producing cells and immune cell infiltration. Development of hypertension induced by Ang II was also prevented by bainiku-ekisu. Echocardiograph indicated protection of Ang II-induced cardiac hypertrophy by bainiku-ekisu. In vascular fibroblasts, bainiku-ekisu attenuated vascular cell adhesion molecule-1 induction, an endoplasmic reticulum stress marker, inositol requiring enzyme-1α phosphorylation, and enhancement in glucose consumption in response to Ang II. In conclusion, Bainiku-ekisu prevented Ang II-induced hypertension and inflammatory vascular remodeling. Potential cardiovascular health benefit to taking bainiku-ekisu should be further studied.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ryohei Kuroda
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Stephanie M Cicalese
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yoshiharu Okuno
- National Institute of Technology, Wakayama College, Gobo, Japan
| | - Ryohei Kono
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | | | - Hirotoshi Utsunomiya
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan.
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Shi Y, Liu C, Yang C, Qiao W, Liu Y, Liu S, Dong G. A rat model of metabolic syndrome-related heart failure with preserved ejection fraction phenotype: pathological alterations and possible molecular mechanisms. Front Cardiovasc Med 2023; 10:1208370. [PMID: 37469482 PMCID: PMC10352810 DOI: 10.3389/fcvm.2023.1208370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) represents a syndrome involving multiple pathophysiologic disorders and clinical phenotypes. This complexity makes it challenging to develop a comprehensive preclinical model, which presents an obstacle to elucidating disease mechanisms and developing new drugs. Metabolic syndrome (MetS) is a major phenotype of HFpEF. Thus, we produced a rat model of the MetS-related HFpEF phenotype and explored the molecular mechanisms underpinning the observed pathological changes. Methods A rat model of the MetS-related HFpEF phenotype was created by feeding spontaneously hypertensive rats a high-fat-salt-sugar diet and administering streptozotocin solution intraperitoneally. Subsequently, pathological changes in the rat heart and their possible molecular mechanisms were explored. Results The HFpEF rats demonstrated primary features of MetS, such as hypertension, hyperglycemia, hyperlipidemia, insulin resistance, and cardiac anomalies, such as left ventricular (LV) remodeling and diastolic impairment, and left atrial dilation. Additionally, inflammation, myocardial hypertrophy, and fibrosis were observed in LV myocardial tissue, which may be associated with diverse cellular and molecular signaling cascades. First, the inflammatory response might be related to the overexpression of inflammatory regulators (growth differentiation factor 15 (GDF-15), intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial cell adhesion molecule-1 (VCAM-1)). Secondly, phosphorylated glycogen synthase kinase 3β (GSK-3β) may stimulate cardiac hypertrophy, which was regulated by activated -RAC-alpha serine/threonine-protein kinase (AKT). Finally, the transforming growth factor-β1 (TGF-β1)/Smads pathway might regulate collagen production and fibroblast activation, promoting myocardial fibrosis. Conclusion The HFpEF rat replicates the pathology and clinical presentation of human HFpEF with MetS and may be a reliable preclinical model that helps elucidate HFpEF pathogenesis and develop effective treatment strategies.
Collapse
Affiliation(s)
- Yujiao Shi
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunqiu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chenguang Yang
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenbo Qiao
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yongcheng Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Siyu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - GuoJu Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Martínez-Iglesias O, Naidoo V, Corzo L, Carrera I, Seoane S, Rodríguez S, Alcaraz M, Muñiz A, Cacabelos N, Cacabelos R. Proteomic and Global DNA Methylation Modulation in Lipid Metabolism Disorders with a Marine-Derived Bioproduct. BIOLOGY 2023; 12:806. [PMID: 37372091 DOI: 10.3390/biology12060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Dyslipidemia is a significant risk factor for cardiovascular disease and stroke. Our recent findings showed that RCI-1502, a bioproduct derived from the muscle of the European S. pilchardus, has lipid-lowering effects in the liver and heart in high-fat diet (HFD) fed mice. In the present follow-up study, we investigated the therapeutic potential of RCI-1502 on gene expression and DNA methylation in HFD-fed mice and in patients with dyslipidemia. Using LC-MS/MS, we identified 75 proteins in RCI-1502 that are primarily involved in binding and catalytic activity and which regulate pathways implicated in cardiovascular diseases. In HFD-fed mice, RCI-1502 treatment significantly reduced the expression of cardiovascular disease-related genes, including vascular cell adhesion molecule and angiotensin. RCI-1502 also decreased DNA methylation levels, which were elevated in HFD-fed mice, to levels similar to those in control animals. Furthermore, peripheral blood leukocyte DNA from dyslipidemic patients exhibited higher DNA methylation levels than healthy individuals, suggesting a potential association with cardiovascular risk. Serum analysis also revealed that RCI-1502 treatment regulated cholesterol and triglyceride levels in patients with dyslipidemia. Our findings appear to suggest that RCI-1502 is an epigenetic modulator for the treatment of cardiovascular diseases, specifically in individuals with dyslipidemia.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Vinogran Naidoo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Silvia Seoane
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Susana Rodríguez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Margarita Alcaraz
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Adriana Muñiz
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| |
Collapse
|
16
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Wang J, Cai E, An X, Wang J. Ginaton reduces M1-polarized macrophages in hypertensive cardiac remodeling via NF-κB signaling. Front Pharmacol 2023; 14:1104871. [PMID: 36992835 PMCID: PMC10040779 DOI: 10.3389/fphar.2023.1104871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Macrophages play a critical role in cardiac remodeling, and dysregulated macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac damage. Ginaton is a natural extract extracted from Ginkgo biloba. Because of its anti-inflammatory properties, it has long been used to treat a variety of diseases. However, the role of Ginaton in modulating the diverse macrophage functional phenotypes brought on by Ang II-induced hypertension and cardiac remodeling is unknown.Methods: In the present study, we fed C57BL/6J mice in the age of eight weeks with Ginaton (300 mg/kg/day) or PBS control, and then injected Ang II (1000 ng/kg/min) or saline for 14 days to investigate the specific efficacy of Ginaton. Systolic blood pressure was recorded, cardiac function was detected by echocardiography, and pathological changes in cardiac tissue were assessed by histological staining. Different functional phenotypes of the macrophages were assessed by immunostaining. The mRNA expression of genes was assessed by qPCR analysis. Protein levels were detected by immunoblotting.Results: Our results showed that Ang II infusion significantly enhanced the activation and infiltration of macrophages with hypertension, cardiac insufficiency, myocardial hypertrophy, fibrosis and M1 phenotype macrophages compared with the saline group. Instead, Ginaton attenuated these effects. In addition, in vitro experiments showed that Ginaton inhibited Ang II-induced activation, adhesion and migration of M1 phenotype macrophages.Conclusion: Our study showed that Ginaton treatment inhibits Ang II-induced M1 phenotype macrophage activation, macrophage adhesion, and mitigation, as well as the inflammatory response leading to impaired and dysfunctional hypertension and cardiac remodeling. Gianton may be a powerful treatment for heart disease.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Enze Cai
- Department of Cardiology, the Fifth People’s Hospital of Dalian, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xiangbo An, ; Junjie Wang,
| | - Junjie Wang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xiangbo An, ; Junjie Wang,
| |
Collapse
|
18
|
Lin QY, Bai J, Zhang YL, Li HH. Integrin CD11b Contributes to Hypertension and Vascular Dysfunction Through Mediating Macrophage Adhesion and Migration. Hypertension 2023; 80:57-69. [PMID: 36377602 DOI: 10.1161/hypertensionaha.122.20328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Leukocyte adhesion to endothelium is an early inflammatory response and is mainly controlled by the β2-integrins. However, the role of integrin CD11b/CD18 in the pathogenesis of hypertension and vascular dysfunction is unclear. METHODS Hypertension was established by angiotensin II (490 ng/kg·per min) or deoxycorticosterone acetate salt. Hypertensive responses were studied in CD11b-deficient (CD11b-/-) mice, bone marrow transplanted and wild-type (WT) mice that were administered anti-CD11b neutralizing antibody or agonist leukadherin-1. Blood pressure was monitored with tail-cuff method and radiotelemetry. Blood and vascular inflammatory cells were assessed by flow cytometry. Aortic remodeling and function were examined using histology and aortic ring analysis. Cell adhesion and migration were evaluated in vitro. The relationship between circulating CD11b+ immune cells and hypertension was analyzed in patients with hypertension. RESULTS We found that CD11b and CD18 expression as well as the CD45+CD11b+CD18+ myeloid cells were highly increased in the aorta of angiotensin II-infused mice. Ablation or pharmacological inhibition of CD11b in mice significantly alleviated hypertension, aortic remodeling, superoxide generation, vascular dysfunction, and the infiltration of CD11b+ macrophages through reducing macrophage adhesion and migration. These effects were confirmed in WT mice reconstituted with CD11b-deficient bone marrow cells. Conversely, angiotensin II-induced hypertensive response was exacerbated by CD11b agonist leukadherin-1. Notably, circulating CD45+CD11b+CD18+ myeloid cells and the ligand levels in hypertensive patients were significantly higher than in normotensive controls. CONCLUSIONS We demonstrated a critical significance of CD11b+ myeloid cells in hypertension and vascular dysfunction. Targeting CD11b may represent a novel therapeutic option for hypertension.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y.L., J.B., H.-H.L.)
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y.L., J.B., H.-H.L.)
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (Y.-L.Z., H.-H.L.)
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y.L., J.B., H.-H.L.).,Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (Y.-L.Z., H.-H.L.)
| |
Collapse
|
19
|
Lee YJ, Kim HM, Jang YN, Han YM, Seo HS, Jung TW, Jeong JH, Lee HJ, Jung KO. Buspirone Induces Weight Loss and Normalization of Blood Pressure via the Stimulation of PPAR δ Dependent Energy Producing Pathway in Spontaneously Hypertensive Rats. PPAR Res 2023; 2023:7550164. [PMID: 37168052 PMCID: PMC10164918 DOI: 10.1155/2023/7550164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Buspirone, as a partial agonist for a 5-hydroxytryptamine (serotonin) receptor 1A (5-HT1A), has been prescribed as an anxiolytic drug for patients. In addition, the lowering effect of serotonin on blood pressure was reported in hypertensive animal model. We investigated the therapeutic mechanism of buspirone against lipid metabolism disturbed by hypertension of early stage via hypertensive and obese animal model. Methods The levels of various biomarkers related to lipid metabolism and hypertension were estimated through the measurement of body weight and fat weight, blood analysis, western blotting, immunohistochemistry, and staining methods. Results The lipid accumulation was lowered in differentiated 3T3-L1 cells by buspirone treatments of 50 and 100 μM compared with untreated differentiated control. Body weight and abdominal fat weight were lowered in spontaneously hypertensive rats (SHRs) administered with buspirone of 10 mg/kg/day for 4 weeks than 8-week untreated group. Triglyceride (TG) level was decreased in SHRs administered with buspirone of 5 and 10 mg/kg/day compared to 8-week untreated group. High-density lipoprotein (HDL)-cholesterol concentration was elevated by buspirone 10 mg/kg/day treatment compared to 8-week untreated group. Blood pressures in SHRs were lowered by buspirone treatments of 5 and 10 mg/kg/day compared with 8-week untreated group. Protein levels for peroxisome proliferator-activated receptor δ (PPARδ), 5' adenosine monophosphate-activated protein kinase (AMPK), and PPARγ coactivator-1 alpha (PGC-1α) were increased both in C2C12 cells treated by buspirone of 100 μM and in SHRs administered by buspirone of 1, 5, and 10 mg/kg/day compared to untreated control cells and 8-week untreated group. Fat cell numbers decreased in 8-week untreated group were increased in SHRs administered by buspirone treats of 1, 5, and 10 mg/kg/day. Protein expression levels for angiotensin II type 1 receptor (AT1R) and vascular cell adhesion molecule 1 (VCAM1) were increased in 8-week untreated group compared to 4-week group, however, they were decreased by buspirone treatments of 1, 5, and 10 mg/kg/day. Conclusion Buspirone may induce the losses of body weight and abdominal fat weight through the activation of PPARδ dependent catabolic metabolism producing energy, and eventually, the ameliorated lipid metabolism could normalize high blood pressure.
Collapse
Affiliation(s)
- Yong-Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Kim
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Jang
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Medicine, College of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Yoon-Mi Han
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Prasad K. Involvement of AGE and Its Receptors in the Pathogenesis of Hypertension in Elderly People and Its Treatment. Int J Angiol 2022; 31:213-221. [PMID: 36588874 PMCID: PMC9803554 DOI: 10.1055/s-0042-1756175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both systolic and diastolic blood pressures increase with age up to 50 to 60 years of age. After 60 years of age systolic pressure rises to 84 years of age but diastolic pressure remains stable or even decreases. In the oldest age group (85-99 years), the systolic blood pressure (SBP) is high and diastolic pressure (DBP) is the lowest. Seventy percent of people older than 65 years are hypertensive. This paper deals with the role of advanced glycation end products (AGE) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the development of hypertension in the elderly population. Plasma/serum levels of AGE are higher in older people as compared with younger people. Serum levels of AGE are positively correlated with age, arterial stiffness, and hypertension. Low serum levels of sRAGE are associated with arterial stiffness and hypertension. Levels of sRAGE are negatively correlated with age and blood pressure. Levels of sRAGE are lower in patients with arterial stiffness and hypertension than patients with high levels of sRAGE. AGE could induce hypertension through numerous mechanisms including, cross-linking with collagen, reduction of nitric oxide, increased expression of endothelin-1, and transforming growth factor-β (TGF-β). Interaction of AGE with RAGE could produce hypertension through the generation of reactive oxygen species, increased sympathetic activity, activation of nuclear factor-kB, and increased expression of cytokines, cell adhesion molecules, and TGF- β. In conclusion, the AGE-RAGE axis could be involved in hypertension in elderly people. Treatment for hypertension in elderly people should be targeted at reduction of AGE levels in the body, prevention of AGE formation, degradation of AGE in vivo, downregulation of RAGE expression, blockade of AGE-RAGE interaction, upregulation of sRAGE expression, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Qiu ZY, Yu WJ, Bai J, Lin QY. Blocking VCAM-1 ameliorates hypertensive cardiac remodeling by impeding macrophage infiltration. Front Pharmacol 2022; 13:1058268. [PMID: 36467095 PMCID: PMC9713306 DOI: 10.3389/fphar.2022.1058268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 07/21/2023] Open
Abstract
Cardiac remodeling is an important mechanism of heart failure, which frequently results from leukocyte infiltration. Vascular cellular adhesion molecule-1 (VCAM-1) plays a critical role in leukocyte adhesion and transmigration. However, the importance of VCAM-1 in the development of angiotensin II (Ang II)-induced cardiac remodeling remains unclear. Wild-type (WT) mice were infused with Ang II (1,000 ng/kg/min) for 14 days and simultaneously treated with VCAM-1 neutralizing antibody (0.1 or 0.2 mg) or IgG control. Systolic blood pressure (SBP) and cardiac function were detected by a tail-cuff and echocardiography. Cardiac remodeling was evaluated by histological staining. Adhesion and migration of bone marrow macrophages (BMMs) were evaluated in vitro. Our results indicated that VCAM-1 levels were increased in the serum of patients with heart failure (HF) and the hearts of Ang II-infused mice. Furthermore, Ang II-caused hypertension, cardiac dysfunction, hypertrophy, fibrosis, infiltration of VLA-4+ BMMs and oxidative stress were dose-dependently attenuated in mice administered VCAM-1 neutralizing antibody. In addition, blocking VCAM-1 markedly alleviated Ang II-induced BMMs adhesion and migration, therefore inhibited cardiomyocyte hypertrophy and fibroblast activation. In conclusion, the data reveal that blocking VCAM-1 ameliorates hypertensive cardiac remodeling by impeding VLA-4+ macrophage infiltration. Selective blockage of VCAM-1 may be a novel therapeutic strategy for hypertensive cardiac diseases.
Collapse
|
22
|
Yu J, Liu Y, Peng W, Xu Z. Serum VCAM-1 and ICAM-1 measurement assists for MACE risk estimation in ST-segment elevation myocardial infarction patients. J Clin Lab Anal 2022; 36:e24685. [PMID: 36045604 PMCID: PMC9550957 DOI: 10.1002/jcla.24685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background Vascular cell adhesion molecule‐1 (VCAM‐1) and intercellular adhesion molecule‐1 (ICAM‐1) modulate atherosclerosis by promoting leukocyte infiltration, neutrophil recruitment, endothelial cell proliferation, etc., which may directly or indirectly facilitate the occurrence of major adverse cardiac events (MACE). This study intended to investigate the value of VCAM‐1 and ICAM‐1 for predicting MACE in ST‐segment elevation myocardial infarction (STEMI) patients. Methods Totally, 373 STEMI patients receiving the percutaneous coronary intervention and 50 health controls (HCs) were included. Serum VCAM‐1 and ICAM‐1 were detected by ELISA. Meanwhile, MACE was recorded during a median follow‐up of 18 (range: 1–46) months in STEMI patients. Results Vascular cell adhesion molecule‐1 and ICAM‐1 were raised in STEMI patients compared with HCs (both p < 0.001). VCAM‐1 (p = 0.002) and ICAM‐1 (p = 0.012) high were linked with raised accumulating MACE rate in STEMI patients. Notably, VCAM‐1 high (hazard ratio [HR] = 2.339, p = 0.031), age ≥ 65 years (HR = 2.019, p = 0.039), history of diabetes mellitus (DM) (HR = 2.395, p = 0.011), C‐reactive protein (CRP) ≥ 5 mg/L (HR = 2.550, p = 0.012), multivessel disease (HR = 2.561, p = 0.007) independently predicted MACE risk in STEMI patients. Furthermore, a nomogram‐based prediction model combining these factors was established, exhibiting an acceptable value for estimating 1, 2, and 3‐year MACE risk, with AUC of 0.764, 0.716, and 0.778, respectively, in STEMI patients. Conclusion This study confirms the value of VCAM‐1 and ICAM‐1 measurement in predicting MACE risk in STEMI patients. Moreover, VCAM‐1 plus other traditional prognostic factors (such as age, history of DM, CRP, and multivessel disease) cloud further improve the predictive accuracy of MACE risk in STEMI patients.
Collapse
Affiliation(s)
- Jiancai Yu
- Tianjin Medical University, Tianjin, China.,Department of Cardiology, Cangzhou Central Hospital of Tianjin Medical University, Cangzhou, China
| | | | | | - Zesheng Xu
- Tianjin Medical University, Tianjin, China.,Department of Cardiology, Cangzhou Central Hospital of Tianjin Medical University, Cangzhou, China
| |
Collapse
|