1
|
Wen C, Liao X, Ye X, Lai W. Pharmacokinetics and Biological Activities of Notoginsenoside R1: A Systematical Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:205-249. [PMID: 39880667 DOI: 10.1142/s0192415x25500090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Panax notoginseng (PN) root is a renowned nutritional supplement, health food additive, and traditional medicine that maintains homeostasis within the human microcirculatory system. Notoginsenoside R1 (NG-R1), an active compound derived from PN root, has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidant, anticancer, antimicrobial, and angiogenic effects. However, NG-R1's pharmacokinetic properties and pharmacological activities have not been systematically elucidated. In this paper, the pharmacokinetic properties of NG-R1, its pharmacological effects, mechanisms of actions, and structure-activity relationship have been reviewed. Notably, NG-R1 inhibits tumor necrosis factor α (TNF-α) expression, enhances the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and enhances the expression of vascular endothelial growth factor receptor (VEGFR). The pharmacological effects of NG-R1 are associated with the modulation of several signaling pathways, such as mitogen-activated protein kinase (MAPK)/nuclear factor κ-B (NF-κB), NRF2/antioxidant response element (ARE), Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT). NG-R1 offers potentially protective effects against numerous diseases, including cardiovascular, neurological, renal, pulmonary, bone, and diabetes-related conditions. Although the pharmacological activities and diverse effects of NG-R1 have been demonstrated in various diseases, its clinical applications are limited by poor bioavailability. Several strategies have been explored to improve the pharmacokinetic profile of NG-R1, making it a promising candidate for drug development.
Collapse
Affiliation(s)
- Chao Wen
- School of Nursing, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou 341000, P. R. China
| | - Xinyun Ye
- Department of Neurosurgey, Ganzhou People's Hospital, Ganzhou 341000, P. R. China
| | - Wentao Lai
- Department of Neurosurgey, Ganzhou People's Hospital, Ganzhou 341000, P. R. China
| |
Collapse
|
2
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Lin SK, Zhou J, Lu Y, Guo L, Huang JJ, Lin JF. Computer-Guided Engineered Endo- and Exocleaving Glycosidase for Significantly Improving Production of Ginsenoside F1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26294-26304. [PMID: 39535231 DOI: 10.1021/acs.jafc.4c07387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ginsenoside F1, a particularly rare and valuable compound known for its health benefits, requires precise deglycosylation due to the extensive glycosylation of ginsenosides in Panax notoginseng. Here, we identified that the β-d-glucosidase BglSK exhibits both endo- and exocleaving glycosidase activities with multi-6-O-glycosides, thereby facilitating the specific production of Ginsenoside F1. The variant BglSKT137A/L508A, obtained through protein engineering, displayed kcat/KM values for the reactions of ginsenoside Rg1 and notoginsenoside R1 that were increased by 13.88-fold and 108.56-fold, respectively, compared with the BglSKWT. The reduced steric hindrance and the overall increase in loop stability show a higher tendency to adopt a closed conformation and facilitate the prereaction state, which may explain the enhanced catalytic efficiency of the engineered enzyme. These beneficial mutants will deepen our understanding of mechanisms for improving glycosidase activity and provide tools for producing high-value P. notoginseng products.
Collapse
Affiliation(s)
- Shi-Kun Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jinlin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
| | - Yujing Lu
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jia-Jun Huang
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
- TF BioSyn Biotechnology Co., Ltd., Foshan 528225, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
4
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
5
|
Tu J, Liu Q, Sun H, Gan L. Farrerol Alleviates Diabetic Cardiomyopathy by Regulating AMPK-Mediated Cardiac Lipid Metabolic Pathways in Type 2 Diabetic Rats. Cell Biochem Biophys 2024; 82:2427-2437. [PMID: 38878100 DOI: 10.1007/s12013-024-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent complication of diabetes mellitus characterized by cardiac dysfunction and myocardial remodeling. Farrerol (FA), an active ingredient in Rhododendron with various pharmacological activities, has an unclear specific role in DCM. Therefore, this study aims to investigate the effects of FA on DCM rats and elucidate its mechanism. The type 2 diabetes mellitus (T2DM) model was induced in adult male Sprague-Dawley rats by administering a high-fat diet for 8 weeks along with STZ injection. Subsequent to successful modeling, FA and the positive drug Dapagliflozin (Dapa) were orally administered via gavage for an additional 8-week period. After administration, the rats' body weight, fasting blood glucose, fasting insulin, and blood lipid profiles were quantified. Cardiac function was assessed through evaluation of cardiac function parameters, histopathological examination and measurement of myocardial enzyme markers were conducted to assess myocardial injury and fibrosis, Oil red O staining was utilized to evaluate myocardial lipid accumulation, wheat germ agglutinin (WGA) staining was used for assessing cardiomyocyte hypertrophy, and Western blot analysis was used to detect the proteins expression level of AMP-activated protein kinase (AMPK) pathway. The rat cardiomyocyte H9c2 were induced with palmitic acid to establish an in vitro cell model of myocardial lipid toxicity. Subsequently, the cells were subjected to treatment with FA and AMPK inhibitor Compound C, followed by assessment of lipid formation and expression levels of proteins related to the AMPK signaling pathway. The findings demonstrated that both FA and Dapa exhibited efficacy in ameliorating diabetic symptoms, cardiac dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, and lipid accumulation in T2DM rats. Additionally, they were found to enhance AMPK phosphorylation and PPARα expression while down-regulating CD36. Similarly, FA was observed to inhibit lipid formation in H9c2 and activate the AMPK signaling pathway. However, the improved effect of FA on lipotoxic cardiomyocytes induced by palmitic acid was partially reversed by Compound C. Therefore, the activation of the AMPK signaling pathway by FA may enhance cardiac lipid metabolism, thereby improving cardiac dysfunction and myocardial fibrosis in DCM rats.
Collapse
MESH Headings
- Animals
- Male
- Rats
- AMP-Activated Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Cell Line
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Lipid Metabolism/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jia Tu
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Qiaoling Liu
- Department of Neonatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Huirong Sun
- Department of Cardiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Luzhen Gan
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China.
| |
Collapse
|
6
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024; 110:49-61. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Qi K, Cao F, Wang J, Wang Y, Li G. miR-652-3p Suppressed the Protective Effects of Isoflurane Against Myocardial Injury in Hypoxia/Reoxygenation by Targeting ISL1. Cardiovasc Toxicol 2024; 24:646-655. [PMID: 38801481 DOI: 10.1007/s12012-024-09870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
This research is concentrated on investigating the role and mechanism of miR-652-3p in the protective effects of isoflurane (ISO) against myocardial ischemia-reperfusion (I/R) injury. H9c2 cells underwent pretreatment with varying concentrations of ISO, and subsequently, a hypoxia/reoxygenation (H/R) model was constructed. The levels of miR-652-3p, ISL LIM homeobox 1 (ISL1), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were evaluated through reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay was employed to investigate concentrations of myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI). Cell counting kit-8 was used to evaluate cell viability, while flow cytometry was utilized to measure apoptosis. Additionally, a dual luciferase reporter assay was conducted to validate the targeting relationship between ISL1 and miR-652-3p. Herein, we confirmed that the level of miR-652-3p was gradually increased with prolonged hypoxia; nevertheless, this increase was suppressed by ISO pretreatment (P < 0.05). Additionally, ISO pretreatment prevented the decrease in cell viability, increase in apoptosis, and overproduction of IL-6, TNF-α, CK-MB, and cTnI induced by H/R (P < 0.05). However, the inhibitory effects of ISO were counteracted by the increased levels of miR-652-3p (P < 0.05). ISL1 is a potential target of miR-652-3p. H/R induction suppressed ISL1 levels compared to the control, but ISO treatment increased its expression (P < 0.05). Overexpression of ISL1 inhibited the elimination of the protective effect of ISO on myocardial damage induced by the elevation of miR-652-3p (P < 0.05). The findings of this research confirm that miR-652-3p attenuated the protective effect of ISO on cardiomyocytes in myocardial ischemia by targeting ISL1.
Collapse
Affiliation(s)
- Kaikai Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Jing Wang
- Operating Room, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China.
| |
Collapse
|
8
|
Yu J, Hu J, Baldini M, Lei H, Li L, Luo S, Wu J, Liu X, Shan D, Xie Y, Fang H, Yu J. Integrating network pharmacology and experimental models to identify notoginsenoside R1 ameliorates atherosclerosis by inhibiting macrophage NLRP3 inflammasome activation. J Nat Med 2024; 78:644-654. [PMID: 38409483 DOI: 10.1007/s11418-023-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Atherosclerosis is a cardiovascular disease, accounting for the most common mortality cause worldwide. Notoginsenoside R1 (NGR1) is a characteristic saponin of Radix notoginseng that exhibits anti-inflammatory and antioxidant effects while modulating lipid metabolism. Evidence suggests that NGR1 exerts cardioprotective, neuroprotective, and anti-atherosclerosis effects. However, underlying NGR1 mechanisms alleviating atherosclerosis (AS) have not been examined. This study used a network pharmacology approach to construct the drug-target-disease correlation and protein-protein interaction (PPI) network of NGR1 and AS. Moreover, functional annotation and pathway enrichment analyses deciphered the critical biological processes and signaling pathways potentially regulated by NGR1. The protective effect of NGR1 against AS and the underlying mechanism(s) was assessed in an atherogenic apolipoprotein E-deficient (ApoE-/-) mice in vivo and an oxidized low-density lipoprotein (ox-LDL)-induced macrophage model in vitro. The network pharmacology and molecular docking analyses revealed that NGR1 protects against AS by targeting the NLRP3/caspase-1/IL-1β pathway. NGR1 reduced foam cell formation in ox-LDL-induced macrophages and decreased atherosclerotic lesion formation, serum lipid metabolism, and inflammatory cytokines in AS mice in vivo. Therefore, NGR1 downregulates the NLRP3 inflammasome complex gene expression of NLRP3, caspase-1, ASC, IL-1β, and IL-18, in vivo and in vitro.
Collapse
Affiliation(s)
- Jingyue Yu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jinyu Hu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Margaret Baldini
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Huan Lei
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lei Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shanshan Luo
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jielian Wu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xupin Liu
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, China
| | - Dan Shan
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Haihong Fang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
9
|
He SY, Liu W, Huang CM, Huang HM, Cao QL, Li YX, Xu YN, Kim NH, Li YH. Enhancing antioxidant levels and mitochondrial function in porcine oocyte maturation and embryonic development through notoginsenoside R1 supplementation. Reprod Domest Anim 2024; 59:e14631. [PMID: 38828566 DOI: 10.1111/rda.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.
Collapse
Affiliation(s)
- Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Wen Liu
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Chu-Man Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Hui-Mei Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Qi-Long Cao
- Qingdao Haier Biotechnology Co., Ltd., Qingdao, China
| | - Yun-Xiao Li
- Qingdao Haier Biotechnology Co., Ltd., Qingdao, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
10
|
Lu W, Shi Y, Qian M. Notoginsenoside R1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via ERα/GSK-3β/β-catenin signalling pathway. Int J Exp Pathol 2024; 105:4-12. [PMID: 37899670 PMCID: PMC10797438 DOI: 10.1111/iep.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) are attractive therapeutic agents for bone tissue regeneration owing to their osteogenic differentiation potential. Notoginsenoside R1 (NGR1) is a novel phytoestrogen with diverse pharmacological activities. Here, we probed whether NGR1 has an effect on the osteogenic differentiation of hBMSCs. EdU, CCK-8 and Transwell assays were used to measure proliferation and migration of hBMSCs after treatment with different doses of NGR1. hBMSCs were treated with osteogenic differentiation induction medium for osteogenesis. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to measure mineralized nodule formation and ALP activity in hBMSCs, respectively. ICI 182780, an antagonist of oestrogen receptor alpha (ERα) was used to inhibit ERα expression. The results showed that NGR1 enhanced hBMSC proliferation and migration. NGR1 increased ALP activity and mineralized nodule formation as well as promoting ALP, RUNX2 and OCN expression in hBMSCs. NGR1 enhanced ERα expression and promoted GSK-3β/β-catenin signal transduction in hBMSCs. ICI 182780 reversed NGR1-mediated activation of the GSK-3β/β-catenin signalling and promoted an effect on hBMSC behaviour. Thus NGR1 promotes proliferation, migration and osteogenic differentiation of hBMSCs via the ERα/GSK-3β/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wei Lu
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| | - Yuanxin Shi
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| | - Minglei Qian
- Department of TraumatologyChangshu No.2 People's HospitalJiangsuChina
| |
Collapse
|
11
|
Li L, Ran Y, Wen J, Lu Y, Liu S, Li H, Cheng M. Traditional Chinese Medicine-based Treatment in Cardiovascular Disease: Potential Mechanisms of Action. Curr Pharm Biotechnol 2024; 25:2186-2199. [PMID: 38347793 DOI: 10.2174/0113892010279151240116103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 09/26/2024]
Abstract
Cardiovascular Disease (CVD) is the leading cause of morbidity and death worldwide and has become a global public health problem. Traditional Chinese medicine (TCM) has been used in China to treat CVD and achieved promising results. Therefore, TCM has aroused significant interest among pharmacologists and medical practitioners. Previous research showed that TCM can regulate the occurrence and development of atherosclerosis (AS), ischemic heart disease, heart failure, myocardial injury, and myocardial fibrosis by inhibiting vascular endothelial injury, inflammation, oxidant stress, ischemia-reperfusion injury, and myocardial remodeling. It is well-known that TCM has the characteristics of multi-component, multi-pathway, and multitarget. Here, we systematically review the bioactive components, pharmacological effects, and clinical application of TCM in preventing and treating CVD.
Collapse
Affiliation(s)
- Lanlan Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yutong Ran
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jiao Wen
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yirui Lu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Shunmei Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Hong Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| |
Collapse
|
12
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
13
|
He SY, Liu RP, Wang CR, Wang XQ, Wang J, Xu YN, Kim NH, Han DW, Li YH. Improving the developmental competences of porcine parthenogenetic embryos by Notoginsenoside R1-induced enhancement of mitochondrial activity and alleviation of proapoptotic events. Reprod Domest Anim 2023; 58:1583-1594. [PMID: 37696770 DOI: 10.1111/rda.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 μM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.
Collapse
Affiliation(s)
- Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
14
|
Guo J, Feng J, Qu H, Xu H, Zhou H. Potential Drug Targets for Ceramide Metabolism in Cardiovascular Disease. J Cardiovasc Dev Dis 2022; 9:434. [PMID: 36547431 PMCID: PMC9782850 DOI: 10.3390/jcdd9120434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease poses a significant threat to the quality of human life. Metabolic abnormalities caused by excessive caloric intake have been shown to lead to the development of cardiovascular diseases. Ceramides are structural molecules found in biological membranes; they are crucial for cell survival and lipid metabolism, as they maintain barrier function and membrane fluidity. Increasing evidence has demonstrated that ceramide has a strong correlation with cardiovascular disease progression. Nevertheless, it remains a challenge to develop sphingolipids as therapeutic targets to improve the prognosis of cardiovascular diseases. In this review, we summarize the three synthesis pathways of ceramide and other intermediates that are important in ceramide metabolism. Furthermore, mechanistic studies and therapeutic strategies, including clinical drugs and bioactive molecules based on these intermediates, are discussed.
Collapse
Affiliation(s)
- Jiaying Guo
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Jiling Feng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|