1
|
Fu M, Guo S, Yang S, Yang K, Li R, Shan X, Zhao P, Zhang C, Guo W, Xu M, Chen H, Lu R. Stachydrine hydrochloride reduces NOX2 activity to suppress oxidative stress levels to improve cardiac insufficiency. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156621. [PMID: 40088741 DOI: 10.1016/j.phymed.2025.156621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Oxidative stress is a significant cause in the occurrence of cardiac insufficiency. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase2 (NOX2)-derived reactive oxygen species (ROS) play a pivotal role in oxidative stress-induced excitation-contraction decoupling. Stachydrine hydrochloride (Sta) reduces pressure overload-induced cardiac insufficiency, which may be related to the NOX2-ROS pathway, as demonstrated by our earlier research. However, the mechanism through which Sta specifically affects NOX2 remains unknown. PURPOSE In order to investigate whether Sta plays a cardioprotective role by inhibiting NOX2 activity, we explored the specific mechanism by which Sta improves cardiac function by affecting NOX2-mediated oxidative stress in this study. METHODS Molecular docking and cellular thermal shift assay (CETSA) were performed to verify whether Sta can bind to individual subunits of NOX2. We induced models of cardiac insufficiency in the compensatory phase (cardiac hypertrophy) by phenylephrine (PE) in vivo and in vitro and treated with Sta and GSK2795039 (NOX2 inhibitor). Cardiac function and structure were observed by echocardiography analysis. We detected the expression and localization of NOX2 subunits and calcium channel proteins, also detected the activities of ROS and NOX2, SOD, and GSH, and observed intracardiac calcium homeostasis and systolic-diastolic function in cardiomyocytes. Secondly, we used adenovirus and adeno-associated virus transfection for cardiac-specific overexpression of NOX2 in vivo and in vitro respectively, and also treated with Sta to observe NOX2 activation indexes and ROS levels, cardiac function and cardiomyocyte function in mice. RESULTS Prior to our investigation, we discovered that Sta could bind to NOX2 through molecular docking and CETSA. The findings demonstrated that Sta decreased the expression levels of gp91phox and p67phox, as well as the phosphorylation levels of p47phox, and by preventing p67phox and p47phox from translocating across cell membranes. NOX2 activity inhibition by Sta suppresses ROS production. Sta reduced ROS-induced oxidation of Ca2+/calmodulin protein kinase II and modulated excitatory-contractile coupling via sarcoplasmic reticulum calcium pumps. Cardiac-specific overexpression of gp91phox promotes membrane translocation of p67phox and p47phox, increases NOX2 activity, and promotes ROS generation. Sta inhibition of gp91phox overexpression reduced the membrane translocation of p67phox and p47phox, decreased NOX2 activity and oxidative stress levels, and restored excitatory-contractor-coupled myocardial function. CONCLUSIONS Our study innovatively verified the key role of NOX2 in cardiac insufficiency. Sta downgrades NOX2's activity by suppressing the protein level of gp91phox and the membrane transport of p67phox and p47phox, thereby reducing myocardial oxidative stress and playing a cardioprotective role. This study was hoped to support the possibility of Sta as a cardiac function-enhancing drug in the future.
Collapse
Affiliation(s)
- Mengwei Fu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Guo
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Songru Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Kaijing Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Rongshan Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Mostafa EMA, Atta R, Maher SA, El-Kherbetawy MK, Ameen AM. Quercetin and its potential therapeutic effects on aluminum phosphide-induced cardiotoxicity in rats: Role of NOX4, FOXO1, ERK1/2, and NF-κB. Tissue Cell 2024; 91:102622. [PMID: 39549503 DOI: 10.1016/j.tice.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Acute Aluminum phosphide (AlP) poisoning poses a serious global issue, yet the exact mechanisms behind AlP-induced cardiotoxicity are still not well understood. Moreover, there is no specific antidote available for AlP toxicity. Nevertheless, Quercetin (QE) has emerged as a promising therapeutic candidate in various contexts. Accordingly, our study aimed to evaluate the QE potential therapeutic effects against AlP-induced cardiotoxicity and the mechanisms underlying such effects. Rats were assigned into four groups: Group I (control group), Group II (vehicle (corn oil) group), Group III (AlP group) received a single dose of AlP (10 mg/kg body weight) dissolved in corn oil by oral gavage, and Group IV (AlP + QE group) received a single dose of QE (400 mg/kg body weight) dissolved in saline, one hour after AlP administration. AlP-induced cardiotoxicity was evidenced by the increase in cardiac troponin I (cTnI) as well as the hemodynamic, ECG, and histopathological abnormalities. The AlP group denoted a decrease of the antioxidant enzymes; catalase and SOD and an increase of the lipid peroxidation marker; MDA. This was associated with a notable increase in inflammatory cytokines (TNFα, IL-6, and IL1β), in addition to a significant upregulation of the expression of NOX4, FOXO1, ERK1/2, and NF-κB. Moreover, Caspase3, and BAX showed strong immunopositive expression, while Bcl-2 showed mild immunoexpression. On the other hand, treatment with QE showed an improvement in the cardiotoxic effects of AlP, as indicated by significant enhancements in biomarkers, functional assessments, and histopathological findings. These results suggest that QE may be a promising candidate for treating AlP-induced cardiotoxicity, attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, particularly emphasizing the roles of NOX4, FOXO1, ERK1/2, and NF-κB.
Collapse
Affiliation(s)
- Enas M A Mostafa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha Atta
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Angie M Ameen
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Challa A, Kogan E, Fogacci F, Mikhaleva L, Vandysheva R, Yakubovskaya M, Faggiano A, Carugo S, Urazova O, Jahanbin B, Lesovaya E, Polana S, Kirsanov K, Sattar Y, Trofimenko A, Demura T, Saghazadeh A, Koliakos G, Shafie D, Alizadehasl A, Cicero A, Costabel JP, Biondi-Zoccai G, Ottaviani G, Sarrafzadegan N. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol 2024; 73:107683. [PMID: 39111556 DOI: 10.1016/j.carpath.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Over the years, advancements in the field of oncology have made remarkable strides in enhancing the efficacy of medical care for patients with cancer. These modernizations have resulted in prolonged survival and improved the quality of life for these patients. However, this progress has also been accompanied by escalation in mortality rates associated with anthracycline chemotherapy. Anthracyclines, which are known for their potent antitumor properties, are notorious for their substantial cardiotoxic potential. Remarkably, even after 6 decades of research, a conclusive solution to protect the cardiovascular system against doxorubicin-induced damage has not yet been established. A comprehensive understanding of the pathophysiological processes driving cardiotoxicity combined with targeted research is crucial for developing innovative cardioprotective strategies. This review seeks to explain the mechanisms responsible for structural and functional alterations in doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Department of Internal Desiases Propedeutics, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence Based Medicine Department, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Lev Kakturskiy
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Teharan, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abhiram Challa
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Eugenia Kogan
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Liudmila Mikhaleva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Rositsa Vandysheva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Marianna Yakubovskaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Olga Urazova
- Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ekaterina Lesovaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia; Department of Oncology, Ryazan State Medical University after I. P. Pavlov, Ryazan, Russia
| | | | - Kirill Kirsanov
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Yasar Sattar
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Artem Trofimenko
- Department of Pathophysiology, Kuban State Medical University, Krasnodar, Russia
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amene Saghazadeh
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - George Koliakos
- Head of Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davood Shafie
- Director of Heart Failure Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azin Alizadehasl
- Head of Cardio-Oncology Department and Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Juan Pablo Costabel
- Chief of Coronary Care Unit, Buenos Aires Institute of Cardiology, Buenos Aires, Argentina
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Giulia Ottaviani
- Anatomic Pathology, Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Huang Y, Chen D, Shan L, Lu Y, Bai J, Fu Y, Zhou Y, Su Y, Guo Y. The crucial quality marker of Panax ginseng: Glycosylated modified ribonuclease-like storage protein. Int J Biol Macromol 2024; 282:136894. [PMID: 39490867 DOI: 10.1016/j.ijbiomac.2024.136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Panax ginseng C.A.Mey is a famous natural herbal medicine worldwide. Mountain-cultivated ginseng (MCG) and garden-cultivated ginseng (GCG) are two types of Panax ginseng. There is a significant difference in economic benefits between MCG and GCG, which can always lead to problems such as adulteration and substitution of MCG with lower-priced alternatives. We explored the quality marker of ginseng at the intact protein level and established a foundation for the quality control of ginseng. Cellulose nanocrystal assisted sample preparation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) equipped with a high mass detector was performed to analyze intact proteins in ginseng. The results revealed that the ribonuclease-like storage protein is the most abundant protein in MCG and GCG. Meanwhile, the molecular weight of the ribonuclease-like storage protein showed great difference between different ginseng species, which is 26.2 kDa in MCG and 24.2 kDa in GCG. The ribonuclease-like storage protein glycosylation modification difference provides data support for the differentiation between MCG and GCG. This study showed that glycosylated modified ribonuclease-like storage protein can be a crucial quality marker of ginseng, facilitating the rapid distinction between MCG and GCG.
Collapse
Affiliation(s)
- Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China; State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Danqing Chen
- Shanghai SPH Shenxiang Health Co., LTD, Shanghai 200235, PR China
| | - Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ying Fu
- Shanghai Pharmaceutical School, Shanghai 200135, PR China
| | - Yaobin Zhou
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, PR China.
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| |
Collapse
|
5
|
Abd Alhusen SK, Hasan AF. Evaluating the renoprotective effects of omega-3-6-9 against cisplatin-induced nephrotoxicity in mice. J Med Life 2023; 16:1756-1759. [PMID: 38585532 PMCID: PMC10994620 DOI: 10.25122/jml-2023-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024] Open
Abstract
Fatty acids, particularly omega-3, omega-6, and omega-9, play a vital role in various biological processes. As the body cannot synthesize omega-3 and omega-6, dietary sources of these fatty acids are essential. Each omega fatty acid has a distinct chemical structure, source, and function. Cisplatin (CP) treatment is known to cause acute kidney injury (AKI) due to its inflammatory effects. This study explored the renoprotective potential of omega-3-6-9 when co-administered with cisplatin in a mice model. We divided adult mice into five groups: a control group received 0.5 ml of liquid paraffin; a cisplatin-only group; two groups were treated with low (50 mg/kg) and high (100 mg/kg) doses of omega-3-6-9 plus cisplatin; and a final group received vitamin E before cisplatin administration. The administration of omega-3-6-9 significantly decreased pro-inflammatory modulators and kidney function markers such as TNF-α, IL-1β, blood urea nitrogen, and creatinine, indicating potential renoprotective effects. Our research concluded that omega-3- 6- 9 had anti-inflammatory properties and was effective against the harmful effects of cisplatin.
Collapse
Affiliation(s)
- Saja Kareem Abd Alhusen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Ali Faris Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
6
|
Hammoodi HZ, Al-Shawi NN. Neuroprotective effects of daidzein against ifosfamide-induced neurotoxicity in male rats: role of selected inflammatory and apoptotic markers. J Med Life 2023; 16:1628-1632. [PMID: 38406792 PMCID: PMC10893576 DOI: 10.25122/jml-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/13/2023] [Indexed: 02/27/2024] Open
Abstract
Ifosfamide (IFO), an alkylating chemotherapy agent, is known for its association with neurotoxicity and encephalopathy. This trial was designed to evaluate the protective action of daidzein (DZN) against IFO-induced neurotoxicity in male rats by determining the difference in certain inflammatory and apoptotic markers in the brain tissue of rats. Twenty-eight Wistar rats, weighing 120-150 g, were divided into four groups of seven rats: Group 1 (Control) received no treatment; Group 2 was orally administered DZN (100 mg/kg/day) for seven days; Group 3 received a single intraperitoneal (IP) dose of IFO (500 mg/kg); Group 4 received oral DZN (100 mg/kg/day) for one week prior to a single IP dose of IFO on the seventh day. Twenty-four hours post-treatment, serum and brain tissue samples were collected for analysis. The results indicated a significant increase in serum inflammatory markers (TNF-alpha, IL-6, and iNOS) and the anti-inflammatory marker (IL-10), along with elevated caspase-3 enzyme activity in the brain tissue of the IFO-treated group compared to the control group. Conversely, pre-treatment with DZN significantly reduced serum inflammatory markers and caspase-3 levels in tissue. The findings suggest that daidzein has anti-inflammatory and anti-apoptotic properties, potentially offering protection against IFO-induced neurotoxicity in rats.
Collapse
Affiliation(s)
- Hiba Zaki Hammoodi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Nada Naji Al-Shawi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Abduljaleel YR, Jwaid AH, Hussein AK. Evaluating the effect of ursodeoxycholic acid (UDCA) in comparison with dexamethasone and diclofenac in a rat model of rheumatoid arthritis. J Med Life 2023; 16:1519-1526. [PMID: 38313166 PMCID: PMC10835553 DOI: 10.25122/jml-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 02/06/2024] Open
Abstract
Ursodeoxycholic acid (UDCA) is known for its major effects on the liver, but its impact on autoimmune diseases is not well understood. This study aimed to assess the effectiveness of UDCA in controlling rheumatoid arthritis (RA) in an in vivo setting. Experimental RA was induced in rats using Freund's complete adjuvant, and the effects of UDCA (50,100 mg/kg) were compared to those of dexamethasone and diclofenac by measuring changes in paw size, IL-17, pro-inflammatory cytokines, oxidative stress (GSH, MDA), and radiological changes. The administration of UDCA resulted in decreased cartilage damage, reduced paw edema, and a decrease in the release of pro-inflammatory cytokines and oxidative stress. Additionally, X-ray joint alterations were observed in the UDCA-treated group compared to the dexamethasone and diclofenac groups. These results suggest that UDCA has anti-rheumatoid arthritis properties due to its ability to minimize oxidative stress and inflammation in arthritis-affected rats.
Collapse
Affiliation(s)
- Yamama Raad Abduljaleel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Ahmed Hamed Jwaid
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
8
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
9
|
Mahmood YS, Kathem SH. Protective effect of citronellol in rhabdomyolysis-induced acute kidney injury in mice. J Med Life 2023; 16:1057-1061. [PMID: 37900084 PMCID: PMC10600660 DOI: 10.25122/jml-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 10/31/2023] Open
Abstract
Acute kidney injury (AKI) is a serious pathophysiological event consequent to rhabdomyolysis. Inflammatory mechanisms play a role in the development of rhabdomyolysis-induced AKI. Citronellol (CT) is a naturally occurring monoterpene in essential oils of aromatic plant species. In this study, we explored the protective effects of citronellol on AKI resulting from glycerol-induced rhabdomyolysis. Rhabdomyolysis was induced by a single intramuscular injection of glycerol 50% (10mg/kg) in the thigh caudal muscle. Four groups of mice were assigned, including a control group, a group administered with glycerol to induce AKI as a model, a group treated with glycerol plus 50mg/kg CT, and a group treated with glycerol plus 100mg/kg CT. The renal function of mice from all groups was evaluated using kidney histopathological changes and kidney injury molecule-1 (KIM-1). Myoglobin levels were measured to detect rhabdomyolysis. Apoptosis was evaluated by renal cleaved caspase-3 and BAX levels. Both doses of citronellol (50mg/kg and 100mg/kg) significantly reduced KIM-1 mRNA expression and myoglobin levels compared to the glycerol group. In addition, citronellol resulted in lower cleaved caspase-3 and BAX in the renal tissue, indicating that citronellol exerted an anti-apoptotic effect in AKI. Citronellol showed a reno-protective effect against rhabdomyolysis-induced AKI, which may be attributed to its anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Sarmed Hashim Kathem
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
10
|
AL-hoshary DM, Zalzala MH. Mucoprotective effect of ellagic acid in 5 fluorouracil-induced intestinal mucositis model. J Med Life 2023; 16:712-718. [PMID: 37520490 PMCID: PMC10375349 DOI: 10.25122/jml-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal mucositis (IM) is a common side effect of several anticancer medications, including 5-fluorouracil (5-FU), and can lead to treatment disruptions and compromised outcomes. IM has severe clinical effects such as diarrhea, erythematous mucosal lesions, and the development of ulcers accompanied by excruciating pain. This study aimed to evaluate the mucoprotective effects of ellagic acid on 5-FU-induced IM in mice. Mice were administered normal saline intraperitoneally for six days, followed by intraperitoneal injection of 5-FU for four days at a dose of 50 mg per kilogram. Ellagic acid was orally administered to the mice in groups III and IV in two doses (5 mg and 10 mg), with a one-hour time separation from 5-FU for ten days. At the end of the experiment, small intestine tissue was collected to measure the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and inflammatory cytokines (IL-6, IL-B, TNF) using ELISA assay. Pre-treatment with ellagic acid led to a significant decrease in pro-inflammatory cytokines and improved antioxidant enzyme levels compared to the 5-FU group. Histopathological analysis demonstrated the mucoprotective effect of ellagic acid against 5-FU-induced intestinal changes, including villi atrophy, damage to stem cells, infiltration of inflammatory cells in the mucosal layer, edema, damage to muscular mucosa, and decreased oxidative stress production, such as MDA. These results suggest that ellagic acid may be a potential candidate for treating IM induced by antineoplastic drugs.
Collapse
Affiliation(s)
- Dareen Mahmood AL-hoshary
- Al-Kut Hospital for Gynecology Obstetrics and Pediatrics, Ministry of Health, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
11
|
Al-hussaniy HA, Alburghaif AH, alkhafaje Z, AL-Zobaidy MAHJ, Alkuraishy HM, Mostafa-Hedeab G, Azam F, Al-Samydai AM, Al-tameemi ZS, Naji MA. Chemotherapy-induced cardiotoxicity: a new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs. J Med Life 2023; 16:491-500. [PMID: 37305823 PMCID: PMC10251384 DOI: 10.25122/jml-2022-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 06/13/2023] Open
Abstract
Cancer is a major public health problem, and chemotherapy plays a significant role in the management of neoplastic diseases. However, chemotherapy-induced cardiotoxicity is a serious side effect secondary to cardiac damage caused by antineoplastic's direct and indirect toxicity. Currently, there are no reliable and approved methods for preventing or treating chemotherapy-induced cardiotoxicity. Understanding the mechanisms of chemotherapy-induced cardiotoxicity may be vital to improving survival. The independent risk factors for developing cardiotoxicity must be considered to prevent myocardial damage without decreasing the therapeutic efficacy of cancer treatment. This systematic review aimed to identify and analyze the evidence on chemotherapy-induced cardiotoxicity, associated risk factors, and methods to decrease or prevent it. We conducted a comprehensive search on PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) using the following keywords: "doxorubicin cardiotoxicity", "anthracycline cardiotoxicity", "chemotherapy", "digoxin decrease cardiotoxicity", "ATG7 activators", retrieving 59 articles fulfilling the inclusion criteria. Therapeutic schemes can be changed by choosing prolonged infusion application over boluses. In addition, some agents like Dexrazoxane can reduce chemotherapy-induced cardiotoxicity in high-risk groups. Recent research found that Digoxin, ATG7 activators, Resveratrol, and other medical substances or herbal compounds have a comparable effect on Dexrazoxane in anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Hany Akeel Al-hussaniy
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | | | - Zahraa alkhafaje
- Department of Pharmacy, Alfarahidi University College, Baghdad, Iraq
| | | | - Hayder Mutair Alkuraishy
- Department of Clinical Pharmacology, College of Medicine, Almustansria University, Baghdad, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Saudi Arabia
| | - Ali Mahmoud Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zahraa Salam Al-tameemi
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | - Meena Akeel Naji
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| |
Collapse
|
12
|
Yusuf HR, Musa SA, Agbon AN, Eze ED, Okesina AA, Onanuga I, Pius T, Archibong V, Diaz MEF, Ochieng JJ, Kusiima N, Sunday BY, Usman IM. Hepatoprotective potential of Tamarindus indica following prenatal aluminum exposure in Wistar rat pups. Toxicol Rep 2023; 10:376-381. [PMID: 36926661 PMCID: PMC10014219 DOI: 10.1016/j.toxrep.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Over time, the use of plant-derived agents in the management of various human health conditions has gained a lot of attention. The study assessed the hepatoprotective potential of ethyl acetate fraction Tamarindus indica leaves (EFTI) during prenatal aluminum chloride exposure. Pregnant rats were divided into 5 groups (n = 4); Group I rats were administered 2 ml kg-1 of distilled water (negative control), Group II rats received only 200 mg kg-1 aluminum chloride (positive control), Group III rats were administered 200 mg kg-1 aluminum chloride and 400 mg kg-1 EFTI, Group IV rats were administered 200 mg kg-1 aluminum chloride and 800 mg kg-1 EFTI, Group V rats were administered 200 mg kg-1 aluminum chloride and 300 mg kg-1 Vit E (comparative control). On postnatal day 1, the pups were euthanized, and liver tissues were harvested for the biochemical study (tissue levels of malondialdehyde, caspase-3, tumor necrosis factor-alpha, aspartate aminotransferase, alkaline phosphatase, and alanine aminotransferases) and the liver histological examination. The administration of EFTI was marked with significant improvement in the tissue levels of malondialdehyde, caspase-3, tumor necrosis factor-alpha, aspartate aminotransferase, alkaline phosphatase, and alanine aminotransferases. There was a marked improvement in histopathological changes associated with prenatal aluminum chloride exposure. In conclusion, the administration of EFTI was protective during prenatal aluminum chloride exposure of the liver in Wistar rats, and is mediated by the anti-lipid peroxidative, antiapoptotic, and anti-inflammatory activity of EFTI.
Collapse
Affiliation(s)
- Helen Ruth Yusuf
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | | | - Ismail Onanuga
- Department of Human Anatomy, Kampala International University, Tanzania
| | - Theophilus Pius
- Department of Medical Laboratory, Kampala International University, Uganda
| | | | | | - Juma John Ochieng
- Department of Human Anatomy, Kampala International University, Uganda
| | - Nicholas Kusiima
- Department of Medical Laboratory, Kampala International University, Uganda
| | - Bot Yakubu Sunday
- Department of Medical Laboratory, Kampala International University, Uganda
| | - Ibe Michael Usman
- Department of Human Anatomy, Kampala International University, Uganda
| |
Collapse
|
13
|
Moini Jazani A, Arabzadeh A, Haghi-Aminjan H, Nasimi Doost Azgomi R. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front Cardiovasc Med 2023; 10:1022360. [PMID: 36844721 PMCID: PMC9946988 DOI: 10.3389/fcvm.2023.1022360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Aims Although chemotherapy agents are used to treating cancers, they have serious side effects, like their harmful effects on the cardiovascular system, limiting the clinical use of these chemotherapy agents. This study aimed to systematically investigate the potential role of ginseng derivatives in the prevention of chemotherapy-induced cardiac toxicity. Methods This systematic review was performed according to PRISMA guidelines strategy in databases till August 2022. First, identify studies related to using search terms in titles and abstracts. After studying and screening 209 articles, 16 articles were selected in this study according to our inclusion and exclusion criteria. Results According to the findings of this study, ginseng derivatives showed significant changes in biochemical, histological, and heart weight loss, as well as a reduction in mortality, which occurred in the groups treated with chemotherapy agents compared to the control groups. Co-administration of ginseng derivatives with chemotherapy agents inhibited or reversed these changes to near-moderate levels. The protective effects of ginseng derivatives can be due to their anti-inflammatory, anti-oxidant, and anti-apoptotic action. Conclusion This systematic review shows evidence that concomitant administration of ginseng derivatives improves chemotherapy-induced cardiac toxicity. However, for better conclusions about the practical mechanisms of ginseng derivatives in reducing the cardiac toxic effects of chemotherapy agents and evaluating the efficacy and safety of the compound simultaneously, it is necessary to design comprehensive studies.
Collapse
Affiliation(s)
- Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,*Correspondence: Hamed Haghi-Aminjan,✉
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Ramin Nasimi Doost Azgomi,✉
| |
Collapse
|
14
|
Arianto AT, Soetrisno S, Purwoko P, Indarto D. The Effect of Remifentanil, MgSO4, or Remifentanil-MgSO4 as Neuroprotectors on BDNF, MAC, and Caspase-3 Levels in Wistar Rats with Traumatic Brain Injury. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND: Traumatic brain injury (TBI) can lead to cell death and neurologic dysfunction. Meanwhile, Remifentanyl is an opioid with potent analgesia, while magnesium sulfate (MgSO4) has antinociceptive properties that can prevent hemodynamic instability during laryngoscopy.
AIM: This study aims to examine the effect of remifentanil, MgSO4 and their combination on BDNF, MAC, and Caspase-3 levels in Wistar rat models with TBI.
METHODOLOGY: An experimental study was conducted on 30 male Wistar rats which were randomly divided into five groups. The control group (G1) received normal saline, the induced group (G2) received normal saline after TBI induction using the modified Feeney method, and the treated group (G3, G4, and G5) received remifentanil, MgSO4, and their combination after TBI induction. The rats’ brain tissues were analyzed for BDNF, MAC, and Caspase-3 levels using ELISA. The data were analyzed statistically with ANOVA followed by post hoc Multiple Comparison Test (p < 0.05).
RESULTS: Treatment with remifentanil, MgSO4 or the combination of both in TBI subjects reduced MAC and Caspase-3 but increased the BDNF level. The post hoc multiple comparisons showed significant differences in all groups except groups 3 and 5 in terms of MAC (p = 0.190) and Caspase-3 (p = 0.999). The combination of remifentanil-MgSO4 increased BDNF levels significantly.
CONCLUSION: The administration of remifentanil, MgSO4 , or their combination can serve as a neuroprotector in Wistar rat models with TBI by lowering MAC and Caspase-3 as well as increasing BDNF levels.
Collapse
|
15
|
Al-Kuraishy HM, Al-Gareeb AI, Alkhuriji AF, Al-Megrin WAI, Elekhnawy E, Negm WA, De Waard M, Batiha GES. Investigation of the impact of rosuvastatin and telmisartan in doxorubicin-induced acute cardiotoxicity. Biomed Pharmacother 2022; 154:113673. [PMID: 36942604 DOI: 10.1016/j.biopha.2022.113673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Cardiac injury is the main dose-limiting factor for doxorubicin (Dox) use as an anticancer agent. The cardiotoxicity of Dox is linked to a number of complex mechanisms, including oxidative stress, mitochondrial damage, intracellular calcium dysregulation, and apoptosis/necrosis. This study investigates several aspects of Dox-induced cardiotoxicity. We investigated the effects of pre-treatment with rosuvastatin and telmisartan, which were used in different doses alone or combination, on the acute cardiotoxicity induced by Dox. The results of this study showed that Dox induced significant pathological changes in the cardiomyocytes. Adverse effects were observed on several biomarkers related to cardiac damage like cardiac troponin I (cTnI) and lactate dehydrogenase (LDH), oxidative stress like malondialdehyde (MDA), an inflammatory process like interleukin-17 (IL-17) with important histopathological changes. We illusterate the cardio-protective contribution of the two pharmacological agents against the acute cardiotoxic effects of Dox. This is manifested by the significant improvement in the biomarker levels and the associated histological damage. This study points out the beneficial use of both rosuvastatin and telmisartan alone or in combination as a clinical option for decreasing the acute toxicity of Dox on cardiomyocytes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-mustansiriyiah University, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-mustansiriyiah University, Iraq.
| | - Afrah Fahad Alkhuriji
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France; L'institut du Thorax, INSERM, CNRS, UNIV NANTES, F-44007 Nantes, France; LabEx Ion Channels, Science & Therapeutics, Université de Nice Sophia-Antipolis, F-06560 Valbonne, France.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AL Beheira, Egypt.
| |
Collapse
|