1
|
Sun T, Hao Z, Meng F, Li X, Wang Y, Zhu H, Li Y, Ding Y. The Effects of Sika Deer Antler Peptides on 3T3-L1 Preadipocytes and C57BL/6 Mice via Activating AMPK Signaling and Gut Microbiota. Molecules 2025; 30:1173. [PMID: 40076396 PMCID: PMC11901460 DOI: 10.3390/molecules30051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
(1) Background: To explore the anti-obesity effects and mechanisms of sika deer velvet antler peptides (sVAP) on 3T3-L1 preadipocytes and in high-fat diet (HFD)-induced obese mice. (2) Methods: sVAP fractions of different molecular weights were obtained via enzymatic hydrolysis and ultrafiltration. Their anti-lipid effects on 3T3-L1 cells were assessed with Oil Red O staining. The optimal fraction was tested in HFD-induced obese C57BL/6 mice to explore anti-obesity mechanisms. Peptide purification used LC-MS/MS, followed by sequence analysis and molecular docking for activity prediction. (3) Results: The peptide with the best anti-obesity activity was identified as sVAP-3K (≤3 kDa). sVAP-3K reduced lipid content and proliferation in 3T3-L1 cells, improved lipid profiles and ameliorated adipocyte degeneration in HFD mice, promoted the growth of beneficial gut microbiota, and maintained lipid metabolism. Additionally, sVAP-3K activated the AMP-activated protein kinase (AMPK) signaling pathway, regulating adipogenic transcription factors. sVAP-3K exhibited ten major components (peak area ≥ 1.03 × 108), with four of the most active components being newly discovered natural oligopeptides: RVDPVNFKL (m/z 363.21371), GGEFTPVLQ (m/z 474.24643), VDPENFRL (m/z 495.25735), and VDPVNFK (m/z 818.44043). (4) Conclusion: This study identifies four novel oligopeptides in sVAP-3K as key components for anti-obesity effects, offering new evidence for developing natural weight-loss drugs from sika deer velvet.
Collapse
Affiliation(s)
- Tong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Fanying Meng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Xue Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yihua Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Haowen Zhu
- College of Life Sciences, University of Camerino, 62032 Camerino, Macerata Province, Italy;
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| |
Collapse
|
2
|
Igudesman D, Yu G, Dutta T, Carnero EA, Krajmalnik-Brown R, Smith SR, Corbin KD. Global metabolite profiling in feces, serum, and urine yields insights into energy balance phenotypes induced by diet-driven microbiome remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.05.25321733. [PMID: 39974023 PMCID: PMC11838622 DOI: 10.1101/2025.02.05.25321733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Preclinical literature and behavioral human data suggest that diet profoundly impacts the human gut microbiome and energy absorption-a key determinant of energy balance. To determine whether these associations are causal, domiciled controlled feeding studies with precise measurements of dietary intake and energy balance are needed. Metabolomics-a functional readout of microbiome modulation-can help identify putative mechanisms mediating these effects. We previously demonstrated that a high-fiber, minimally processed Microbiome Enhancer Diet (MBD) fed at energy balance decreased energy absorption and increased microbial biomass relative to a calorie-matched fiber-poor, highly processed Western Diet (WD). Objective To identify metabolic signatures distinguishing MBD from WD feeding and potential metabolomic mechanisms mediating the MBD-induced negative energy balance. Methods We deployed global metabolomics in feces, serum, and urine using samples collected at the end of a randomized crossover controlled feeding trial delivering 22 days of an MBD and a WD to 17 persons without obesity. Samples were collected while participants were domiciled on a metabolic ward and analyzed using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy. Linear mixed effects models tested metabolite changes by diet. Weighted gene network correlation analysis identified metabolite modules correlated with energy balance phenotypes. Results Numerous metabolites consistently altered in the feces, fasting serum, and/or urine may serve as putative dietary biomarkers of MBD feeding. Fecal diet-microbiota co-metabolites decreased by an MBD correlated with reduced energy absorption and increased microbial biomass. An MBD shifted the urinary metabolome from sugar degradation to ketogenesis-evidence of negative energy balance. Conclusions Precisely controlled diets disparate in microbiota-accessible substrates led to distinct metabolomic signatures in feces, fasting serum, and/or urine. These diet-microbiota co-metabolites may be biomarkers of a "fed" (MBD) or "starved" (WD) gut microbiota associated with energy balance. These findings lay the foundation for unveiling causal pathways linking diet-microbiota co-metabolism to energy absorption.
Collapse
|
3
|
Chero‐Sandoval L, Higuera‐Gómez A, Martínez‐Urbistondo M, Castejón R, Mellor‐Pita S, Moreno‐Torres V, de Luis D, Cuevas‐Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2025; 55:e14339. [PMID: 39468772 PMCID: PMC11744921 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero‐Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
| | - Andrea Higuera‐Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
| | | | - Raquel Castejón
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Susana Mellor‐Pita
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Víctor Moreno‐Torres
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
| | - Amanda Cuevas‐Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
- CIBERobn Physiopathology of Obesity and NutritionInstitute of Health Carlos III (ISCIII)MadridSpain
| |
Collapse
|
4
|
Gao Y, Liang X, Zhang N, Zhang X, Li X, Gao W. Untargeted Profiling of Shenfu Qiangxin Pills Based on High-Resolution Mass Spectrometry and Absolute Quantitation of Multiple Components Using Parallel Reaction Monitoring. J Sep Sci 2024; 47:e70025. [PMID: 39648269 DOI: 10.1002/jssc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
Shenfu Qiangxin (SFQX) pills are proprietary traditional Chinese medicine used for the treatment of chronic heart failure with significant clinical effects. However, the systematic identification and quantification of complexed components in SFQX have not been reported yet. In this work, a reliable and comprehensive method for a rapid identification of chemical components was developed by data dependent acquisition using ultra performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-Q Exactive-Orbitrap-MS). A total of 104 compounds mainly including flavonoids, saponins, alkaloids, anthraquinones, coumarins, and phenolic acids were identified through database searching. The identified compounds were further ascribed to herb species in SFQX pills, such as Ginseng Radis et Rhizoma, Aconiti Lateralis Radix Praeparata (processed), Mori Cortex, Lepidii Semen, Rhei Radix et Rhizoma, and Polyporus. Thirty-two representative compounds were elaborated with cleavage pathways and characteristic fragments in MS/MS spectrum of commercially available standards. A quantification method based on parallel reaction monitoring technique was established, and absolute quantification of 28 components in SFQX pills was then carried out. This work constitutes a basis and methodological reference for the quality control, consistency evaluation, and standardization of similar proprietary Chinese medicines.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xv Liang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Nihui Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Xie Y, Li X, Meng Q, Li J, Wang X, Zhu L, Wang W, Li X. Interplay between gut microbiota and tryptophan metabolism in type 2 diabetic mice treated with metformin. Microbiol Spectr 2024; 12:e0029124. [PMID: 39162538 PMCID: PMC11448047 DOI: 10.1128/spectrum.00291-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
Tryptophan (TRP) metabolites have been identified as potent biomarkers for complications of type 2 diabetes mellitus (T2DM). However, it remains unclear whether the therapeutic effect of metformin in T2DM is related to the modulation of TRP metabolic pathway. This study aims to investigate whether metformin affects TRP metabolism in T2DM mice through the gut microbiota. A liquid chromatography-tandem mass spectrometry method was established to determine 16 TRP metabolites in the serum, colon content, urine, and feces of T2DM mice, and the correlations between metabolites and the T2DM mice gut microbiota were performed. The method demonstrated acceptable linearity (R2 > 0.996), with the limit of quantification ranging from 0.29 to 69.444 nmol/L for 16 analytes, and the limit of detection ranging from 0.087 to 20.833 nmol/L. In T2DM mice, metformin treatment effectively restored levels of indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), and the ILA/IPA ratio, along with several aryl hydrocarbon receptor ligands in the serum, with a notable impact in the colon but not in the urine. This restoration was accompanied by a shift in the relative abundance of Dubosiella, Turicibacter, RF39, Clostridia_UCG-014, and Alistipes. Spearman's correlation analysis revealed positive correlations between Turicibacter and Alistipes with IPA and indole-3-acetic acid. Conversely, these genera displayed negative correlations with ILA and kynurenine. In addition, our study revealed the presence of endogenous indole pathway in germ-free mice, and the impact of metformin on endogenous TRP metabolism in T2DM mice cannot be disregarded. Further research is needed to investigate the regulation of TRP metabolism by metformin. IMPORTANCE This study provides valuable insights into the interrelationship between metformin administration, changes in the tryptophan (TRP) metabolome, and gut microbiota in type 2 diabetes mellitus (T2DM) mice. Indole-3-lactic acid (ILA)/indole-3-propionic acid (IPA) emerges as a potential biomarker for the development of T2DM and prediction of therapeutic response. While the indole metabolic pathway has long been associated exclusively with the gut microbiome, recent research has demonstrated the ability of host interleukin-4-induced-1 to metabolize TRP. The detection of indole derivatives in the serum of germ-free mice suggests the existence of inherent endogenous indole metabolic pathways. These findings deepen our understanding of metformin's efficacy in correcting TRP metabolic disorders and provide valuable directions for further investigation. Moreover, this knowledge may pave the way for the development of targeted treatment strategies for T2DM, focusing on the gut microbiome and restoration of associated TRP metabolism.
Collapse
Affiliation(s)
- Yvhao Xie
- College of Animal Science, Shanxi Agricultural University, Taigu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinxin Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Zhu F, Liu H, Cao Y, Dai B, Wu H, Li W. The combination of Butyricicoccus pullicaecorum and 3-hydroxyanthranilic acid prevents postmenopausal osteoporosis by modulating gut microbiota and Th17/Treg. Eur J Nutr 2024; 63:1945-1959. [PMID: 38753171 PMCID: PMC11329681 DOI: 10.1007/s00394-024-03400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) is a chronic condition characterized by decreased bone strength. This study aims to investigate the effects and mechanisms of the combination of Butyricicoccus pullicaecorum (Bp) and 3-hydroxyanthranilic acid (3-HAA) on PMO. METHODS The effects of Bp and 3-HAA on PMO were evaluated in ovariectomized (OVX) rats by assessing stereological parameters, femur microstructure, and autophagy levels. The T helper (Th) 17/Regulatory T (Treg) cells of rats were detected using flow cytometric analysis. Furthermore, the impact of Bp and 3-HAA on the gut microbiota of rats was assessed using 16S rRNA gene sequencing. The correlation between the gut microbiota of rats and Th17/Treg immune factors, as well as femoral stereo parameters, was separately assessed using Spearman rank correlation analysis. RESULTS Bp and 3-HAA treatments protected OVX rats by promoting osteogenesis and inhibiting autophagy. Compared to the Sham group, OVX rats showed an increase in Th17 cells and a decrease in Treg cells. Bp and 3-HAA reversed these changes. Enterorhabdus and Pseudomonas were significantly enriched in OVX rats. Bp and 3-HAA regulated the gut microbiota of OVX rats, enriching pathways related to nutrient metabolism and immune function. There was a correlation between the gut microbiota and the Th17/Treg, as well as femoral stereo parameters. The concurrent administration of Bp and 3-HAA medication facilitated the enrichment of gut microbiota associated with the improvement of PMO. CONCLUSION The combination therapy of Bp and 3-HAA can prevent PMO by modulating the gut microbiota and restoring Th17/Treg immune homeostasis.
Collapse
Affiliation(s)
- Fuping Zhu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hui Liu
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yinsheng Cao
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Bing Dai
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hang Wu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Wuping Li
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
7
|
Custers E, Vreeken D, Schuren F, van den Broek TJ, van Dongen L, Geenen B, de Blaauw I, Wiesmann M, Hazebroek EJ, Kleemann R, Kiliaan AJ. Impact of Microbiota and Metabolites on Intestinal Integrity and Inflammation in Severe Obesity. Pharmaceuticals (Basel) 2024; 17:918. [PMID: 39065768 PMCID: PMC11279642 DOI: 10.3390/ph17070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a multifactorial disease associated with low-grade inflammation. The gut is thought to be involved in obesity-related inflammation, as it is continuously exposed to antigens from food, microbiota and metabolites. However, the exact underlying mechanisms are still unknown. Therefore, we examined the relation between gut pathology, microbiota, its metabolites and cytokines in adults with severe obesity. Individuals eligible for bariatric surgery were included. Fecal and plasma samples were collected at surgery timepoint, to assess microbiota and metabolite composition. Jejunal biopsies were collected during surgery and stained for cytotoxic T cells, macrophages, mast cells and tight junction component zonula occludens-1. Based on these stainings, the cohort was divided into four groups: high versus low intestinal inflammation and high versus low intestinal integrity. We found no significant differences in microbiota diversity between groups, nor for individual bacterial species. No significant differences in metabolites were observed between the intestinal inflammatory groups. However, some metabolites and cytokines differed between the intestinal integrity groups. Higher plasma levels of interleukin-8 and tauro-chenodeoxycholic acid were found, whereas isovaleric acid and acetic acid were lower in the high intestinal integrity group. As the results were very subtle, we suggest that our cohort shows very early and minor intestinal pathology.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Frank Schuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Tim J. van den Broek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Lieke van Dongen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Ivo de Blaauw
- Division of Pediatric Surgery, Department of Surgery, Radboudumc-Amalia Children’s Hospital, 6525 GA Nijmegen, The Netherlands;
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
- Division of Human Nutrition and Health, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| |
Collapse
|
8
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
9
|
Ballanti M, Antonetti L, Mavilio M, Casagrande V, Moscatelli A, Pietrucci D, Teofani A, Internò C, Cardellini M, Paoluzi O, Monteleone G, Lefebvre P, Staels B, Mingrone G, Menghini R, Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol Res 2024; 204:107207. [PMID: 38734193 DOI: 10.1016/j.phrs.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.
Collapse
Affiliation(s)
- Marta Ballanti
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marina Cardellini
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Omero Paoluzi
- Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London WC2R 2LS, UK
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
10
|
Wang Y, Sharma A, Weber KM, Topper E, Appleton AA, Gustafson D, Clish CB, Kaplan RC, Burk RD, Qi Q, Peters BA. The menopause-related gut microbiome: associations with metabolomics, inflammatory protein markers, and cardiometabolic health in women with HIV. Menopause 2024; 31:52-64. [PMID: 38086007 PMCID: PMC10841550 DOI: 10.1097/gme.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
OBJECTIVE This study aimed to identify menopause-related gut microbial features, as well as their related metabolites and inflammatory protein markers, and link with cardiometabolic risk factors in women with and without HIV. METHODS In the Women's Interagency HIV Study, we performed shotgun metagenomic sequencing on 696 stool samples from 446 participants (67% women with HIV), and quantified plasma metabolomics and serum proteomics in a subset (~86%). We examined the associations of menopause (postmenopausal vs premenopausal) with gut microbial features in a cross-sectional repeated-measures design and further evaluated those features in relation to metabolites, proteins, and cardiometabolic risk factors. RESULTS Different overall gut microbial composition was observed by menopausal status in women with HIV only. We identified a range of gut microbial features that differed between postmenopausal and premenopausal women with HIV (but none in women without HIV), including abundance of 32 species and functional potentials involving 24 enzymatic reactions and lower β-glucuronidase bacterial gene ortholog. Specifically, highly abundant species Faecalibacterium prausnitzii , Bacteroides species CAG:98 , and Bifidobacterium adolescentis were depleted in postmenopausal versus premenopausal women with HIV. Menopause-depleted species (mainly Clostridia ) in women with HIV were positively associated with several glycerophospholipids, while negatively associated with imidazolepropionic acid and fibroblast growth factor 21. Mediation analysis suggested that menopause may decrease plasma phosphatidylcholine plasmalogen C36:1 and C36:2 levels via reducing abundance of species F. prausnitzii and Acetanaerobacterium elongatum in women with HIV. Furthermore, waist-to-hip ratio was associated with menopause-related microbes, metabolites, and fibroblast growth factor 21 in women with HIV. CONCLUSIONS Menopause was associated with a differential gut microbiome in women with HIV, related to metabolite and protein profiles that potentially contribute to elevated cardiometabolic risk.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Elizabeth Topper
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Allison A. Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Wang J, Zhang X, Yang X, Yu H, Bu M, Fu J, Zhang Z, Xu H, Hu J, Lu J, Zhang H, Zhai Z, Yang W, Wu X, Wang Y, Tong Q. Revitalizing myocarditis treatment through gut microbiota modulation: unveiling a promising therapeutic avenue. Front Cell Infect Microbiol 2023; 13:1191936. [PMID: 37260696 PMCID: PMC10229058 DOI: 10.3389/fcimb.2023.1191936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.
Collapse
Affiliation(s)
- Jingyue Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengmeng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wei Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaodan Wu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|
14
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
15
|
Li Y, Yang S, Jin X, Li D, Lu J, Wang X, Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front Pharmacol 2023; 14:1082817. [PMID: 36733506 PMCID: PMC9886688 DOI: 10.3389/fphar.2023.1082817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yujuan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Min Wu,
| |
Collapse
|