1
|
Rosanaly S, Apalama ML, Bringart M, Giraud P, Allard B, Veeren B, Meilhac O, Couprie J, Rondeau P. Production, characterization and biodistribution of therapeutic high-density lipoprotein-like nanoparticles reconstituted with or without histidine-tagged recombinant ApoA1. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159606. [PMID: 39986649 DOI: 10.1016/j.bbalip.2025.159606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
High-density lipoproteins (HDLs) are known for their cardiovascular protection due to apolipoprotein A-1 (ApoA1), their primary protein. ApoA1 promotes cholesterol reverse transport and exhibits antioxidant and anti-inflammatory properties. Although increasing HDL levels has not consistently reduced cardiovascular mortality in clinical trials, reconstituted HDL (rHDL) nanoparticles containing ApoA1 show potential in treating acute inflammation, such as in ischemic stroke, sepsis, and even COVID-19. ApoA1 is commonly produced in bacteria due to its simplicity and potential therapeutic optimisation. Addition of a histidine tag to recombinant ApoA1 may improve purification, stability and therapeutic efficacy, although its functional impact remains a subject of debate. In this study, ApoA1 with a poly-histidine tag (His-rApoA1) was produced in a clear coli system for simplified purification, followed by an evaluation of the tag's effects on rHDL nanoparticle properties. rHDL and His-rHDL nanoparticles were prepared using the sodium cholate dialysis method, combining recombinant rApoA1 or His-rApoA1 with phosphatidylcholine at a 1:75 M ratio. Nuclear magnetic resonance confirmed that both forms of rApoA1 structurally resembled plasma ApoA1, whether lipid-free or in nanoparticle form. Dynamic light scattering and electron microscopy revealed nanoparticle sizes around 7 nm with native HDL-like morphology. Testing on endothelial cells (EA.hy926) showed rapid uptake of rHDL and His-rHDL while preserving cell viability. Additionally, both nanoparticles reduced interleukin-6 and ICAM-1 expression in cells, demonstrating their anti-inflammatory and protective effects, unaffected by the poly-histidine tag. Intravenous injection in mice shows homogeneous distribution of His-rHDL in the liver, lungs, and spleen, with no cytotoxicity, indicating potential use for treating inflammatory diseases.
Collapse
Affiliation(s)
- Sarah Rosanaly
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Marie Laurine Apalama
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Matthieu Bringart
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Pierre Giraud
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Benoit Allard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France; Centre hospitalier universitaire de La Réunion, Saint-Pierre, France.
| | - Joël Couprie
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
| |
Collapse
|
2
|
Apalama ML, Begue F, Tanaka S, Cournot M, Couret D, Meilhac O, Pokeerbux MR. High density lipoproteins and COVID-19: preparing the next pandemic. J Lipid Res 2025:100779. [PMID: 40090619 DOI: 10.1016/j.jlr.2025.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
High-density lipoproteins (HDLs) are heterogeneous particles with pleiotropic functions including anti-inflammatory and anti-infectious effects. In clinical studies, lower HDL-associated cholesterol (HDL-C) concentration has been associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, severity and mortality. A reduction in the number of HDL particles, particularly small ones has been observed with alterations in their protein and lipid composition impairing their functions. These observations have supported HDL supplementation with promising results in small preliminary studies. This review summarizes available evidence on these different aspects to better understand the two-way interaction between HDLs and Coronavirus disease 2019 (COVID-19) and guiding future HDL-based therapies for preparing the next pandemic.
Collapse
Affiliation(s)
- Marie Laurine Apalama
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France
| | - Floran Begue
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; USMD, Délégation de la Recherche Clinique et de l'Innovation, CHU de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Sébastien Tanaka
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; AP-HP, Service d'Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 75018 Paris, France
| | - Maxime Cournot
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; Clinique Les Orchidées, Groupe de santé Clinifutur, 97420 Le Port, La Réunion, France
| | - David Couret
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; Service de Neuroréanimation, CHU de la Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; INSERM CIC1410, Plateforme de Recherche Clinique et Translationnelle, CHU de La Réunion, 97410 Saint-Pierre, La Réunion, France.
| | - Mohammad Ryadh Pokeerbux
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, 97410 Saint-Pierre, La Réunion, France; Service de Médecine Interne et Polyvalente, CHU de la Réunion, 97410 Saint-Pierre, La Réunion, France
| |
Collapse
|
3
|
Sirtori CR, Cincotto G, Castiglione S, Pavanello C. HDL-replacement therapy: From traditional to emerging clinical applications. ATHEROSCLEROSIS PLUS 2025; 59:68-79. [PMID: 40103705 PMCID: PMC11914826 DOI: 10.1016/j.athplu.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The unique and multifaceted properties of high-density lipoproteins (HDL)-ranging from cholesterol efflux to anti-inflammatory, anti-oxidant, and immunomodulatory effects-have prompted their direct use, particularly in cardiovascular ischemic conditions. Recent advances have extended the interest in HDL-based treatments to novel applications, from improving stent biocompatibility, to treatment of heart failure to central nervous system (CNS) disorders. Strategies to harness HDL's therapeutic potential have evolved from the direct use of isolated HDL in animal models to reconstituted HDL (rHDL) in humans. For these latter, the use of isolated apoA-I associated with different phospholipids has been the most frequent approach, also involving apparently beneficial mutants, such as the apo A-I Milano (AIM). From the initial very promising results, particularly with this mutant in coronary patients, later studies have mostly been non-confirmatory, although issues such as possible inadequate dose/response and unexpected immunological properties have come to light. Most recently a study on isolated plasma HDL in coronary patients (AEGIS-II) provided overall negative findings, but a clear fall of major cardiovascular events was recorded when restricting analysis to hypercholesterolemic patients. Emerging approaches, including gene therapy and plant-derived recombinant HDL formulations, hold promise for enhancing the accessibility and efficacy of HDL-based interventions. At this time, an improved approach to heart failure treatment also appears feasible, and a better understanding of the role played by HDL in the CNS may lead to significant improvements in the handling of some dramatic diseases at this level. While challenges persist, the evolving landscape of HDL replacement therapies offers hope for significant progress in addressing both cardiovascular and non-cardiovascular conditions.
Collapse
Affiliation(s)
- Cesare Riccardo Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulia Cincotto
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Sofia Castiglione
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Mo R, Zhang Z, Zhou Y, Wang Y, Yin P, Zhang C, Fu H, Qian C, Xiang X, Yin R, Xie Q. A new prognostic model based on serum apolipoprotein AI in patients with HBV-ACLF and acutely decompensated liver cirrhosis. Lipids Health Dis 2025; 24:35. [PMID: 39901194 PMCID: PMC11789380 DOI: 10.1186/s12944-025-02434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND/AIM To investigate the prognostic value of circulating apolipoprotein AI (apoAI) levels and develop a new prognostic model in individuals with acute-on-chronic liver failure (ACLF) and acute decompensation (AD) of liver cirrhosis caused by hepatitis B virus (HBV) infection. METHODS Baseline levels of serum lipids were measured, and data concerning the presence of complications were collected from 561 HBV-ACLF and AD patients. Survival analysis was conducted by log-rank test. Proportional hazards model was used to perform multivariate analysis. The dynamics of serum apoAI levels were also explored in 37 HBV-ACLF patients. RESULTS In the cohort, the negatively correlation was found between the Model for End-Stage Liver Disease (MELD) score and serum apoAI levels (r = -0.7946, P < 0.001). Circulating apoAI concentration was an independent risk factor for 90-day survival according to Cox multivariate analysis. A new prognostic score-integrated serum lipid profile for ACLF patients (Lip-ACLF score = 0.86×International Normalized Ratio (INR) + 0.0034×total bilirubin (TBIL) (µmol/L) + 0.99× hepatorenal syndrome (HRS) (HRS: no/1; with/2) + 0.50×hepatic encephalopathy (HE) (grade/ponint: no/1; 1-2/2; 3-4/3) - 2.97×apoAI (g/L) + 5.2) was subsequently designed for the derivation cohort. Compared to MELD score, Child-Turcotte-Pugh (CTP) score or apoAI, Lip-ACLFs was superior for the prediction of 90-day outcomes (receiver operating characteristic curve (ROC): 0.930 vs. 0.885, 0.833 or 0.856, all P < 0.01), as was the validation cohort (ROC 0.906 vs. 0.839, 0.857 or 0.837, all P < 0.05). In Kaplan‒Meier survival analysis, low apoAI levels (< 0.42 g/L) at baseline indicated poor prognosis in ACLF and AD patients. Among the 37 patients, the deceased individuals were characterised with significantly decreased serum apoAI levels during the follow-up test compared with those at baseline (P < 0.05), whereas in patients with a good prognosis, the serum apoAI levels remained stable during the follow-up. CONCLUSION In HBV-ACLF and AD patients, lower serum apoAI levels suggest greater disease severity and 90-day mortality risk. For predicting the short-term prognosis of these patients, the new Lip-ACLF score might serve as a potential model.
Collapse
Affiliation(s)
- Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenglan Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
- Department of Infectious Diseases, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Yanmei Zhou
- Department of Infectious Diseases, Xing'an people's Hospital, 78 Guishan street, Xing'an county, Guilin, 541399, Guangxi, China
| | - Yue Wang
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, No. 10 Guangqian Road, Xiangcheng District, Suzhou, 215131, China
| | - Pengbo Yin
- Department of Infectious Diseases, Luohe Central Hospital, No. 56 East People Road, Yuanhui District, Luohe, 462003, Henan, China
| | - Chenxi Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Haoshuang Fu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Cong Qian
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China.
| | - Rongkun Yin
- Department of Infectious Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, Changning District, Shanghai, 200336, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
6
|
Cho KH, Bahuguna A, Lee Y, Lee SH, Dominguez-Horta MDC, Martinez-Donato G. Synergistic Anti-Inflammatory Activity of Lipid-Free Apolipoprotein (apo) A-I and CIGB-258 in Acute-Phase Zebrafish via Stabilization of the apoA-I Structure to Enhance Anti-Glycation and Antioxidant Activities. Int J Mol Sci 2024; 25:5560. [PMID: 38791598 PMCID: PMC11121824 DOI: 10.3390/ijms25105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Yunki Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Sang Hyuk Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | - Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology, Ave 31, e/158 y 190, Playa, La Havana 10600, Cuba
| |
Collapse
|
7
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
8
|
Rani A, Stadler JT, Marsche G. HDL and SARS CoV-2: emerging theragnostic implications. Trends Mol Med 2024; 30:425-428. [PMID: 38431503 DOI: 10.1016/j.molmed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
High-density lipoproteins (HDLs) are complex particles with multiple functions. They are thought to have evolved as part of the body's innate defense system against infection. Recent research suggests that HDL levels influence susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the severity of associated complications, making it a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
9
|
Wang J, Wang R, Zhou Y, Ma Y, Xiong C. The relationship between lactate dehydrogenase and Apolipoprotein A1 levels in patients with severe pneumonia. J Med Biochem 2024; 43:290-298. [PMID: 38699695 PMCID: PMC11062332 DOI: 10.5937/jomb0-45782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 05/05/2024] Open
Abstract
Background To investigate the relationship between lactate dehydrogenase and apolipoprotein A1 levels and the condition and prognosis of patients with severe pneumonia. Methods Data was collected from 204 patients with severe pneumonia who were hospitalized from January 1, 2019 to December 1, 2021 in Zhaotong First People's Hospital (respiratory intensive care unit (RICU)), and divided into survival group (160 patients) and death group (44 patients) according to their hospitalization outcome. The relationship between lactate dehydrogenase and apolipoprotein A1 levels and general information, disease, and treatment needs of patients with severe pneumonia was analyzed, and lactate dehydrogenase, apolipoprotein A1, neutrophil-to-lymphocyte ratio, hematocrit, C-reactive protein, calcitoninogen, D-dimer, Acute Physiology and Chronic Health Status Rating System II, and Pneumonia Severity Index scores were compared between the survival and death groups. The value of these indicators in determining the prognosis of patients was analyzed using subject operating characteristic (ROC) curves. Logistic regression was used to analyze the risk factors for death from severe pneumonia.
Collapse
Affiliation(s)
- Jiang Wang
- Zhaotong First People's Hospital, Pulmonary and Critical Care Medicine, Zhaotong, China
| | - Ronghua Wang
- Zhaotong First People's Hospital, Pulmonary and Critical Care Medicine, Zhaotong, China
| | - Ying Zhou
- Zhaotong First People's Hospital, Pulmonary and Critical Care Medicine, Zhaotong, China
| | - Yao Ma
- Zhaotong First People's Hospital, Pulmonary and Critical Care Medicine, Zhaotong, China
| | - Chunyan Xiong
- Zhaotong First People's Hospital, Pulmonary and Critical Care Medicine, Zhaotong, China
| |
Collapse
|
10
|
Stadler JT, Habisch H, Prüller F, Mangge H, Bärnthaler T, Kargl J, Pammer A, Holzer M, Meissl S, Rani A, Madl T, Marsche G. HDL-Related Parameters and COVID-19 Mortality: The Importance of HDL Function. Antioxidants (Basel) 2023; 12:2009. [PMID: 38001862 PMCID: PMC10669705 DOI: 10.3390/antiox12112009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Sabine Meissl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Stasi A, Fiorentino M, Franzin R, Staffieri F, Carparelli S, Losapio R, Crovace A, Lacitignola L, Cimmarusti MT, Murgolo F, Stufano M, Cafiero C, Castellano G, Sallustio F, Ferrari C, Ribezzi M, Brienza N, Schirinzi A, Di Serio F, Grasso S, Pontrelli P, Tupin C, Barbaras R, Keyserling-Peyrottes C, Crovace A, Gesualdo L. Beneficial effects of recombinant CER-001 high-density lipoprotein infusion in sepsis: results from a bench to bedside translational research project. BMC Med 2023; 21:392. [PMID: 37915050 PMCID: PMC10621167 DOI: 10.1186/s12916-023-03057-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Sepsis is characterized by a dysregulated immune response and metabolic alterations, including decreased high-density lipoprotein cholesterol (HDL-C) levels. HDL exhibits beneficial properties, such as lipopolysaccharides (LPS) scavenging, exerting anti-inflammatory effects and providing endothelial protection. We investigated the effects of CER-001, an engineered HDL-mimetic, in a swine model of LPS-induced acute kidney injury (AKI) and a Phase 2a clinical trial, aiming to better understand its molecular basis in systemic inflammation and renal function. METHODS We carried out a translational approach to study the effects of HDL administration on sepsis. Sterile systemic inflammation was induced in pigs by LPS infusion. Animals were randomized into LPS (n = 6), CER20 (single dose of CER-001 20 mg/kg; n = 6), and CER20 × 2 (two doses of CER-001 20 mg/kg; n = 6) groups. Survival rate, endothelial dysfunction biomarkers, pro-inflammatory mediators, LPS, and apolipoprotein A-I (ApoA-I) levels were assessed. Renal and liver histology and biochemistry were analyzed. Subsequently, we performed an open-label, randomized, dose-ranging (Phase 2a) study included 20 patients with sepsis due to intra-abdominal infection or urosepsis, randomized into Group A (conventional treatment, n = 5), Group B (CER-001 5 mg/kg BID, n = 5), Group C (CER-001 10 mg/kg BID, n = 5), and Group D (CER-001 20 mg/kg BID, n = 5). Primary outcomes were safety and efficacy in preventing AKI onset and severity; secondary outcomes include changes in inflammatory and endothelial dysfunction markers. RESULTS CER-001 increased median survival, reduced inflammatory mediators, complement activation, and endothelial dysfunction in endotoxemic pigs. It enhanced LPS elimination through the bile and preserved liver and renal parenchyma. In the clinical study, CER-001 was well-tolerated with no serious adverse events related to study treatment. Rapid ApoA-I normalization was associated with enhanced LPS removal and immunomodulation with improvement of clinical outcomes, independently of the type and gravity of the sepsis. CER-001-treated patients had reduced risk for the onset and progression to severe AKI (stage 2 or 3) and, in a subset of critically ill patients, a reduced need for organ support and shorter ICU length of stay. CONCLUSIONS CER-001 shows promise as a therapeutic strategy for sepsis management, improving outcomes and mitigating inflammation and organ damage. TRIAL REGISTRATION The study was approved by the Agenzia Italiana del Farmaco (AIFA) and by the Local Ethic Committee (N° EUDRACT 2020-004202-60, Protocol CER-001- SEP_AKI_01) and was added to the EU Clinical Trials Register on January 13, 2021.
Collapse
Affiliation(s)
- Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Sabrina Carparelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Rosa Losapio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Alberto Crovace
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Maria Teresa Cimmarusti
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Francesco Murgolo
- Division of Anesthesiology and Resuscitation, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Monica Stufano
- Division of Anesthesiology and Resuscitation, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Cesira Cafiero
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Division of Anesthesiology and Resuscitation, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Chiara Ferrari
- Department of Interdisciplinary Medicine-Intensive Care Unit Section, University of Bari, Bari, Italy
| | - Mario Ribezzi
- Department of Interdisciplinary Medicine-Intensive Care Unit Section, University of Bari, Bari, Italy
| | - Nicola Brienza
- Department of Interdisciplinary Medicine-Intensive Care Unit Section, University of Bari, Bari, Italy
| | | | | | - Salvatore Grasso
- Division of Anesthesiology and Resuscitation, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | | | | | | | - Antonio Crovace
- Veterinary Surgery Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy.
| |
Collapse
|
12
|
Ozcan M, Zhu X, Zhang H, Javaheri A. Editorial: Lipids, lipoproteins and COVID-19. Front Cardiovasc Med 2023; 10:1293249. [PMID: 38028441 PMCID: PMC10646584 DOI: 10.3389/fcvm.2023.1293249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Mualla Ozcan
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuewei Zhu
- Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, John J. Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
13
|
Huang T, Fan Y, Xia Y, Xu X, Chen X, Ye H, Chen Y, Wang S. Association of low HDL-c levels with severe symptoms and poor clinical prognosis in patients with severe fever and thrombocytopenia syndrome. Front Microbiol 2023; 14:1239420. [PMID: 37720148 PMCID: PMC10501784 DOI: 10.3389/fmicb.2023.1239420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease caused by a novel bunyavirus, characterized by high fever, thrombocytopenia, and multiple organ damage. Disturbances in lipid metabolism often occur during viral infections, but the changes and clinical significance of lipid profiles in SFTS patients remain unclear. This study aimed to investigate the alterations in lipid profiles and their clinical significance in SFTS patients. Methods A total of 157 SFTS patients and 157 healthy controls were enrolled in this study. Serum lipid levels were collected and analyzed among different groups and prognosis categories. Receiver operating characteristic (ROC) curve analysis was performed to assess the ability of lipid levels in distinguishing between severe and mild cases, as well as surviving and non-surviving patients. Pearson correlation analysis was used to examine the associations between lipid levels and clinical laboratory parameters. Results SFTS patients exhibited significantly lower levels of HDL-c, LDL-c, cholesterol, APoAI, and ApoB compared to healthy controls, while triglyceride levels were significantly higher. Serum HDL-c and ApoAI demonstrated good performance as indicators for distinguishing between survivors and non-survivors (AUC of 0.87 and 0.85, respectively). Multivariate regression analysis indicated that HDL-c independently acts as a protective factor in patients with SFTS. HDL-c levels showed decline in non-survivors but recovered in survivors. Moreover, HDL-c exhibited significant correlations with various clinical laboratory parameters (IL-6, CRP, AST, TT, APTT, PLT, ALB, and CD4). Conclusion This study identified abnormalities in serum lipid metabolism among SFTS patients. HDL-c and ApoAI levels hold potential as biomarkers for distinguishing survivors from non-survivors. Additionally, HDL-c and ApoAI may serve as therapeutic targets for the management of SFTS patients.
Collapse
Affiliation(s)
- Taihong Huang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yinyin Fan
- Department of Pancreatic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xuejing Xu
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xinyue Chen
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hongling Ye
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuxin Chen
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|