1
|
Sun L, Zhu Y, Yuan Y. NLRs in tumor chemotherapy resistance: A double-edged sword. Chem Biol Interact 2025; 414:111499. [PMID: 40180110 DOI: 10.1016/j.cbi.2025.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/16/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a numerous family of cytoplasmic proteins. Members of this family not only function as innate immune sensors, but also serve as transcriptional regulators of major histocompatibility complex class II (MHC II) and major histocompatibility complex class I (MHC I) genes to activate adaptive immunity. Furthermore, NLRs are involved in mediating various signaling pathways, including the inflammasome. To date, extensive research has been conducted on the contradictory roles and mechanisms of NLRs in the occurrence, development, invasion, and metastasis of tumors within the tumor microenvironment (TME). The double-edged sword effect (either positive or negative role) of NLRs in the treatment of malignant tumors has attracted increasing attention in recent years, making these a promising bidirectional therapeutic target for such tumors. Rational utilization of the double-edged sword nature of NLRs can provide a feasible solution for improving the efficacy of malignant tumor treatment and overcoming chemotherapy resistance. This article provides a systematic review of the influence of the NLR family on chemosensitivity in different malignant tumors and the regulatory mechanisms of their upstream and downstream signaling pathways. In doing do, we aim to elucidate the dual role of NLRs in promoting and combating tumor chemotherapy resistance, and elucidate their application value in tumor chemotherapy resistance.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China; Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Zhang M, Zhang M. Role of NLRC3 in modulating inflammatory responses in neonates. BMC Pediatr 2025; 25:428. [PMID: 40437402 PMCID: PMC12117676 DOI: 10.1186/s12887-025-05766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
OBJECTIVE This study sought to investigate the role and molecular mechanisms of nucleotide-binding oligomerization domain (NOD)-like receptor family caspase activation and recruitment domain (CARD)-containing 3 (NLRC3) in the inflammatory responses of neonates, thereby developing new clinical insights into the occurrence and prevention of neonatal infections. METHODS Peripheral blood samples were collected from full-term infants (n = 49) and preterm infants (n = 41) without any signs of intrauterine infection, as well as from healthy non-pregnant adults (n = 45). A real-time polymerase chain reaction was used to assess the expression levels of NLRC3 and NOD-containing protein 1 (NOD1) in the isolated mononuclear cells. Whole blood from the adults, full-term infants, and preterm infants was stimulated for four hours with a mixture of herpes simplex virus type 60 DNA (HSV-60 DNA) and lipopolysaccharides (LPS) or LPS alone or blank medium. An enzyme-linked immunosorbent assay was employed to measure the tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1 beta (IL-1β) levels in the supernatant. RESULTS The gene expression levels of NLRC3 were significantly lower in the full-term and preterm infants than in the adults, with the preterm infants showing notably lower levels when compared with the full-term infants. A positive correlation was found between the NLRC3 and NOD1 expression levels in the neonates (both full-term and preterm), indicating lower NLRC3 expression to be associated with lower NOD1 expression. After LPS stimulation, the production of TNF-α, IL-6, and IL-1β in the whole blood of the preterm and full-term infants was significantly lower than in that of the adults. Moreover, stimulation with a combination of LPS and HSV-60 DNA resulted in similar TNF-α, IL-6, and IL-1β production across the blood samples from preterm infants, full-term infants, and adults. When compared with LPS stimulation alone, the LPS and HSV-60 DNA mixture significantly reduced the release of TNF-α, IL-6, and IL-1β in the adults. In the neonates, however, only the release of TNF-α was significantly reduced, as no notable difference was observed in the IL-6 and IL-1β levels. CONCLUSION The reduced expression and functional impairment of NOD-like receptors, such as NLRC3 and NOD1, in neonates, may contribute to their heightened susceptibility to severe infections. This finding indicates new avenues for the prevention and treatment of neonatal infections.
Collapse
Affiliation(s)
- Meng Zhang
- Pediatric Outpatient Infusion Room, Xuzhou Central Hospital, Xuzhou, 221009, Jiangsu, China
| | - Mingming Zhang
- Department of Pediatrics, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China.
| |
Collapse
|
3
|
Raghuraman P, Ramireddy S, Raman G, Park S, Sudandiradoss C. Understanding a point mutation signature D54K in the caspase activation recruitment domain of NOD1 capitulating concerted immunity via atomistic simulation. J Biomol Struct Dyn 2025; 43:3766-3782. [PMID: 38415678 DOI: 10.1080/07391102.2024.2322618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Point mutation D54K in the human N-terminal caspase recruitment domain (CARD) of nucleotide-binding oligomerization domain -1 (NOD1) abrogates an imperative downstream interaction with receptor-interacting protein kinase (RIPK2) that entails combating bacterial infections and inflammatory dysfunction. Here, we addressed the molecular details concerning conformational changes and interaction patterns (monomeric-dimeric states) of D54K by signature-based molecular dynamics simulation. Initially, the sequence analysis prioritized D54K as a pathogenic mutation, among other variants, based on a sequence signature. Since the mutation is highly conserved, we derived the distant ortholog to predict the sequence and structural similarity between native and mutant. This analysis showed the utility of 33 communal core residues associated with structural-functional preservation and variations, concurrently served to infer the cryptic hotspots Cys39, Glu53, Asp54, Glu56, Ile57, Leu74, and Lys78 determining the inter helical fold forming homodimers for putative receptor interaction. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural alteration that takes place in the N-terminal mutant CARD where coils changed to helices (45 α3- L4-α4-L6- α683) in contrast to native (45T2-L4-α4-L6-T483). Likewise, the C-terminal helices 93T1-α7105 connected to the loops distorted compared to native 93α6-L7105 may result in conformational misfolding that promotes functional regulation and activation. These structural perturbations of D54K possibly destabilize the flexible adaptation of critical homotypic NOD1CARD-CARDRIPK2 interactions (α4Asp42-Arg488α5 and α6Phe86-Lys471α4) is consistent with earlier experimental reports. Altogether, our findings unveil the conformational plasticity of mutation-dependent immunomodulatory response and may aid in functional validation exploring clinical investigation on CARD-regulated immunotherapies to prevent systemic infection and inflammation.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Sriroopreddy Ramireddy
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Genetics and Molecular Biology, School of Health Sciences, The Apollo University, Chittoor, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - C Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Han J, Shao H, Sun M, Gao F, Hu Q, Yang G, Jafari H, Li N, Dang R. Genomic insights into the genetic diversity and genetic basis of body height in endangered Chinese Ningqiang ponies. BMC Genomics 2025; 26:292. [PMID: 40128652 PMCID: PMC11934595 DOI: 10.1186/s12864-025-11484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Genetic diversity in livestock and poultry is critical for adapting production systems to future challenges. However, inadequate management practices, particularly in developing countries, have led to the extinction or near extinction of several species. Understanding the genetic composition and historical background of local breeds is essential for their effective conservation and sustainable use. This study compared the genomes of 30 newly sequenced Ningqiang ponies with those of 56 other ponies and 104 horses to investigate genetic diversity, genetic differentiation, and the genetic basis of body height differences. RESULT Population structure and genetic diversity analyses revealed that Ningqiang ponies belong to southwestern Chinese ponies. They exhibit a moderate level of inbreeding compared to other pony and horse breeds. Mitochondrial DNA analysis indicated that Ningqiang and Debao ponies share the dominant haplogroups A and C, suggesting a likely common maternal origin. Our study identified low genetic differentiation and detectable gene flow between Ningqiang ponies and Datong horses. The study also indicated the effective population size of Ningqiang ponies showed a downward trend. These findings potentially reflect the historical formation of Ningqiang ponies and population size changes. A selection signal scan (CLR and θπ) within Ningqiang ponies detected several key genes associated with bone development (ANKRD11, OSGIN2, JUNB, and RPL13) and immune response (RIPK2). The combination of genome-wide association analysis and selective signature analysis (FST) revealed significant single nucleotide polymorphisms and selective genes associated with body height, with the most prominent finding being the TBX3 gene on equine chromosome (ECA) 8. Additionally, TBX5, ASAP1, CDK12, CA10, and CSMD1 were identified as important candidate genes for body height differences between ponies and horses. CONCLUSION The results of this study elucidate the genetic diversity, genetic differentiation, and effective population size of Ningqiang ponies compared to other ponies and horses, further deepen the understanding of their small stature, and provide valuable insights into the conservation and breeding of local horse breeds in China.
Collapse
Affiliation(s)
- Jiale Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Hanrui Shao
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Minhao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Feng Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Qiaoyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Na Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
5
|
Hu CH, Chen Y, Jin TY, Wang Z, Jin B, Liao J, Ding CY, Zhang A, Tang WY, Zhang LX, Xu LY, Ning FM, Liang G, Wei XH, Wang Y. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin 2025; 46:672-686. [PMID: 39443729 PMCID: PMC11845706 DOI: 10.1038/s41401-024-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions primarily affecting the gastrointestinal tract. Previous studies established the role of the NF-κB signaling pathway in the development of IBDs, suggesting that anti-inflammatory therapies might offer a viable treatment strategy. Tanshinone IIA and salviadione, both derived from Salviae Miltiorrhizae Radix et Rhizoma, possess anti-inflammatory and anti-oxidative activities. A series of new compounds were synthesized by hybridizing salviadione with tanshinone. Among these compounds, 15a showed beneficial effects in LPS-induced acute lung injury and diabetes-induced renal injury mouse models. The current study explored the therapeutic efficacy of 15a using both acute and chronic colitis models and elucidated the underlying mechanisms. DSS-induced colitis models were established in mice, where acute colitis was treated with compound 15a (5 or 10 mg·kg-1·d-1) for 8 days, while chronic colitis mice received compound 15a (5 or 10 mg·kg-1·d-1, i.g.) during 2.5% DSS administration. The 15a treatment significantly alleviated DSS-induced pathological and inflammatory damages in both acute and chronic colitis mouse models. In mouse intestinal epithelial cell line MODE-K, pretreatment with compound 15a (5 or 10 μM) significantly suppressed LPS + L18-MDP-induced inflammatory responses. The receptor-interacting serine/threonine kinase 2 (RIPK2) was identified as a direct binding target of compound 15a using microarrays and recombinant human proteins. Moreover, 15a could directly bind to and inhibit the phosphorylation of RIPK2, leading to the suppression of the NF-κB and MAPK signaling pathways. Furthermore, LEU153 and VAL32 were identified within the KD domain of RIPK2 as critical amino residues for the binding of 15a. Briefly, the current findings demonstrate that compound 15a holds promise as a therapeutic agent for managing acute and chronic colitis.
Collapse
Affiliation(s)
- Cheng-Hong Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yue Chen
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bo Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Jing Liao
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Chun-Yong Ding
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ao Zhang
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ling-Xi Zhang
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Lei-Yu Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang-Min Ning
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310051, China
| | - Xiao-Hong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
van Veldhuisen T, Dijkstra RMJ, Koops AA, Cossar PJ, van Hest JCM, Brunsveld L. Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform. J Am Chem Soc 2025; 147:5386-5397. [PMID: 39874979 PMCID: PMC11826995 DOI: 10.1021/jacs.4c17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues. Here, we present a synthetic condensate platform for the study of PPIs and molecular glues in a crowded macromolecular environment that more closely resembles the dense cellular milieu. With this platform, weak PPIs can be enhanced by sequestration. The condensates, based on amylose derivatives, recruit the hub protein 14-3-3 via affinity-based uptake, which results in high local protein concentrations ideal for the efficient screening of molecular glues. Clients of 14-3-3 are sequestered in the condensates based on their enhanced affinity upon treatment with molecular glues. Fine control over the condensate environment is illustrated by modulating the reactivity of dynamic covalent molecular glues by the adjustment of pH and the redox environment. General applicability of the system for screening of molecular glues is highlighted by using the nuclear receptor PPARγ, which recruits coregulators via an allosteric PPI stabilization mechanism. The condensate environment thus provides a unique dense molecular environment to enhance weak PPIs and enable subsequent evaluation of small-molecule stabilization in a molecular setting chemically en route to the cellular interior.
Collapse
Affiliation(s)
- Thijs
W. van Veldhuisen
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Renske M. J. Dijkstra
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Auke A. Koops
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J. Cossar
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department
of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
8
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Harati MD, King J, Langer S, Binder F, Heilker R. Recapitulation of NOD/RIPK2 signaling in iPSC-derived macrophages. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100185. [PMID: 39341280 DOI: 10.1016/j.slasd.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Mozhgan Dehghan Harati
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Jim King
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Simon Langer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Florian Binder
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Ralf Heilker
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
10
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
11
|
Zhang J, Luo Y, Wu B, Huang X, Zhao M, Wu N, Miao J, Li J, Zhu L, Wu D, Shen M. Identifying functional dysregulation of NOD2 variant Q902K in patients with Yao syndrome. Arthritis Res Ther 2024; 26:58. [PMID: 38395960 PMCID: PMC10885518 DOI: 10.1186/s13075-024-03286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The study investigated the pathogenesis of Yao syndrome (YAOS), a rare systemic autoinflammatory disease associated with the nucleotide-binding oligomerization domain containing 2 (NOD2) gene variants. METHODS RNA sequencing analyses were used to detect transcriptomic profile changes. Immunoblot and immunohistochemistry were used to examine the NOD2-mediated inflammatory signaling pathways and ELISA was used to detect cytokines. RESULTS Transcriptome analysis of YAOS revealed NOD-like receptor signaling pathway enrichment. Compared with HCs, P-RIP2, p-p65, p-p38, p-ERK, and p-JNK notably increased in PBMCs of a patient with YAOS. P-RIP2, p-p65, and p-p38 elevated in small intestinal mucosa tissues. P-p65 and p-p38 in synovial tissues from YAOS were higher than those in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Serum interleukin (IL)-6 level along with tumor necrosis factor (TNF)-α and IL-6 secreted from PBMCs were markedly higher in patients with YAOS in comparison to healthy controls (HCs). The supernatants of synovial cells from a patient with YAOS showed substantially higher IL-1β and IL-6 levels than those of RA and OA. Canakinumab therapy of a Q902K heterozygous patient with YAOS resulted in notable clinical improvement. CONCLUSION Overproduction of pro-inflammatory cytokines and the hyperactivation of NOD2-mediated signaling pathways were found in the NOD2 variant Q902K patient with YAOS. NOD2-RIP2-MAPK pathway might play a pivotal role in the pathogenesis of YAOS. These results provide new perspectives for targeted therapies in YAOS.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yi Luo
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Bingxuan Wu
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xin Huang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Mengzhu Zhao
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Na Wu
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Junke Miao
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
12
|
Misehe M, Šála M, Matoušová M, Hercík K, Kocek H, Chalupská D, Chaloupecká E, Hájek M, Boura E, Mertlíková-Kaiserová H, Nencka R. Design, synthesis and evaluation of novel thieno[2,3d]pyrimidine derivatives as potent and specific RIPK2 inhibitors. Bioorg Med Chem Lett 2024; 97:129567. [PMID: 38008339 DOI: 10.1016/j.bmcl.2023.129567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.
Collapse
Affiliation(s)
- Mbilo Misehe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Kamil Hercík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hugo Kocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Tian E, Zhou C, Quan S, Su C, Zhang G, Yu Q, Li J, Zhang J. RIPK2 inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2023; 259:115683. [PMID: 37531744 DOI: 10.1016/j.ejmech.2023.115683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quanwei Yu
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Wang Y, Jiang Y, Wang J, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Retinopathy as an initial sign of hereditary immunological diseases: report of six families and challenges in eye clinic. Front Immunol 2023; 14:1239886. [PMID: 37711606 PMCID: PMC10498122 DOI: 10.3389/fimmu.2023.1239886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Retinal degenerative or inflammatory changes may occur with hereditary immunological disorders (HID) due to variants in approximately 20 genes. This study aimed to investigate if such retinopathy may present as an initial sign of immunological disorders in eye clinic. Methods The variants in the 20 genes were selected from in-house exome sequencing data from 10,530 individuals with different eye conditions. Potential pathogenic variants were assessed by multistep bioinformatic analysis. Pathogenic variants were defined according to the ACMG/AMP criteria and confirmed by Sanger sequencing, co-segregation analysis, and consistency with related phenotypes. Ocular clinical data were thoroughly reviewed, especially fundus changes. Results A total of seven pathogenic variants in four of the 20 genes were detected in six probands from six families, including three with hemizygous nonsense variants p.(Q308*), p.(Q416*), and p.(R550*) in MSN, one with homozygous nonsense variants p.(R257*) in AIRE, one with compound heterozygous nonsense variants p.(R176*) and p.(T902*) in LAMB2, and one with a known c.1222T>C (p.W408R) heterozygous variant in CBL. Ocular presentation, as the initial signs of the diseases, was mainly retinopathy mimicking other forms of hereditary retinal degeneration, including exudative vitreoretinopathy in the three patients with MSN variants or tapetoretinal degeneration in the other three patients. Neither extraocular symptoms nor extraocular manifestations were recorded at the time of visit to our eye clinic. However, of the 19 families in the literature with retinopathy caused by variants in these four genes, only one family with an AIRE homozygous variant had retinopathy as an initial symptom, while the other 18 families had systemic abnormalities that preceded retinopathy. Discussion This study, for the first time, identified six unrelated patients with retinopathy as their initial and only presenting sign of HID, contrary to the previous reports where retinopathy was the accompanying sign of systemic HID. Recognizing such phenotype of HID may facilitate the clinical care of these patients. Follow-up visits to such patients and additional studies are expected to validate and confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
15
|
Lai Y, Wang X, Sun X, Wu S, Chen X, Yang C, Zhang W, Yu X, Tong Y, Ma F, Zheng H, Zhang X, He S. Discovery of a novel RIPK2 inhibitor for the treatment of inflammatory bowel disease. Biochem Pharmacol 2023:115647. [PMID: 37315817 DOI: 10.1016/j.bcp.2023.115647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD 1/2) are important cytosolic pattern recognition receptors that initiate host immune response. The dysregulation of NOD signaling is highly associated with inflammatory bowel disease (IBD) that needs novel treatment options. Receptor-interacting protein kinase 2 (RIPK2) is a critical mediator of NOD signaling and considered a promising therapeutic target for IBD treatment. However, there are currently no RIPK2 inhibitors available for clinical use. Here, we report the discovery and characterization of Zharp2-1 as a novel and potent RIPK2 inhibitor that effectively blocks RIPK2 kinase function and NOD-mediated NF-κB/MAPK activation in both human and mouse cell lines. Zharp2-1 exhibits significantly superior solubility compared to the non-prodrug form of the advanced RIPK2 inhibitor prodrug GSK2983559. The improved solubility combined with favorable in vitro metabolic stability translated to excellent in vivo pharmacokinetic profiles for Zharp2-1. In addition, Zharp2-1 demonstrates better effects than GSK2983559 in inhibiting the muramyl dipeptide (MDP)-induced production of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and MDP-induced peritonitis in mice. Furthermore, Zharp2-1 markedly reduces Listeria monocytogenes infection-induced cytokines release in both human and mouse cells. Importantly, Zharp2-1 significantly ameliorates DNBS-induced colitis in rats and suppressed pro-inflammatory cytokine release in intestinal specimens from IBD patients. Collectively, our findings indicate that Zharp2-1 is a promising RIPK2 inhibitor with the potential to be further developed for IBD therapy.
Collapse
Affiliation(s)
- Yujun Lai
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xinhui Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xue Sun
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Chen
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Chengkui Yang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Wei Zhang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaoliang Yu
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Yushan Tong
- Xi'an jiaotong-Liverpool University, Suzhou, China
| | - Feng Ma
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|