1
|
Kim KY, Hwang YL, Yeom S, Kwon SH, Jeon SH. Pss knockdown in the midgut causes growth retardation in Drosophila similar to that in human LMHD. Dev Dyn 2025. [PMID: 40401988 DOI: 10.1002/dvdy.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Phosphatidylserine synthase (PSS), localized in the mitochondrial membrane, synthesizes phosphatidylserine. In humans, mutations in Pss lead to Lenz-Majewski hyperostotic dwarfism, a disorder affecting growth and development. The effects of Pss mutations on the growth of Drosophila melanogaster are not fully known. Hence, this study was conducted to investigate the effects of Pss knockdown on the growth and development of D. melanogaster. RESULTS Enterocyte (EC)-specific Pss knockdown resulted in reduced cell size in the gut via reduced Akt signaling. EC-specific Pss knockdown was associated with a decrease in gut size, a change in gut pH, and reduced food intake. These abnormalities affected normal nutrient metabolism in larvae, leading to decreased secretion of Drosophila insulin-like peptides. Consequently, the reduced systemic Akt signaling at the organismal level resulted not only in impaired gut growth but also in abnormal organismal growth and development. CONCLUSION These findings highlight the significant role of the Pss gene in the growth and development of D. melanogaster.
Collapse
Affiliation(s)
- Kwan-Young Kim
- Center for Educational Research, Seoul National University, Seoul, Republic of Korea
| | - You-Lim Hwang
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| | - Sunwoo Yeom
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, Republic of Korea
| | - Sang-Hak Jeon
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
3
|
Qush A, Yassine HM, Zeidan A, Kamareddine L. Diet-induced mechanical stress promotes immune and metabolic alterations in the Drosophila melanogaster digestive tract. J Invertebr Pathol 2025; 211:108348. [PMID: 40320046 DOI: 10.1016/j.jip.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
A fundamental query in immunology is how cells recognize danger in the tissue milieu. For many years, standpoints were mainly centered around damaged cells or structures of invading pathogens, like lipopolysaccharide, being the initiators of danger signals to activate immunity. Today, rising evidence presents "biophysical signals" as potential regulators of immune cell functions too. This emerging notion of the ability of tissue mechanotransduction to tune the immunological system appears to likewise exist in other body system, among which is the metabolic system, where startling connection between mechanotransduction and enzymesknown to regulate metabolism have been also reported. Being continuously subjected to mechanical forces, and owing to its multifaceted role in not only absorbing and digesting nutrients, but also in supporting important immunological defense strategies as well as metabolic responses, attention has been lately given to organs making up the gastrointestinal (GI) tract, predominantly the intestine, with growing interest in unravelling the impact of mechanotransduction on the intestinal environment is on the rise. As such, we investigated in this study the impact of mechanical stress introduced by ingesting diet containing the indigestible fiber methylcellulose (MC) on gut immune and metabolic activities using the Drosophila melanogaster model organism. Our findings reveal that feeding on MC-containing diet causes consequential alterations in the fly gut environment manifested by enlargement of the midgut diameter, remodeling of the microbiota community, activation of immune responses, differential regulation of the tachykinin (Tk) peptide hormone expression and modulation of lipometabolism. Particularly, we show that feeding on MC-containing diet promotes a marked increase in the relative abundance of Leuconostocaceae/Leuconostoc, microbiota-dependent Reactive Oxygen Species (ROS) production, IMD pathway activation, and IMD-dependent elevation in Tk expression. We also demonstrate that maintaining flies on MC-containing diet for several days leads to a reduction in body weight and in systemic glucose and triacylglycerol levels and modulates lipid droplets accumulation and storage in the gut and fat body. Taken together, these findings provide novel insight into the effect of diet induced-mechanical forces on the intestinal physiology and pathology.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Bai S, Yao Z, Cai Z, Ma Q, Guo Q, Zhang P, Zhou Q, Gu J, Liu S, Lemaitre B, Li X, Zhang H. Bacterial-induced Duox-ROS regulates the Imd immune pathway in the gut by modulating the peritrophic matrix. Cell Rep 2025; 44:115404. [PMID: 40053451 DOI: 10.1016/j.celrep.2025.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The Duox-reactive oxygen species (ROS) system and the immune deficiency (Imd) pathway play a major role in insect gut immunity. However, their interaction to accomplish an effective immune response is still unclear. Here, we show that Duox regulates the peritrophic matrix (PM) and further affects the Imd immune response to pathogens in Bactrocera dorsalis. This regulation requires a nuanced ROS balance: low H2O2 increases PM permeability, while higher H2O2 damages the PM during infection. Importantly, we found that gut commensal bacteria ensured proper Duox-dependent ROS production and PM stability, thus preventing Imd pathway overactivation in response to pathogens. We conclude that gut commensal bacteria-induced Duox-ROS is crucial for maintaining PM structural homeostasis, and the PM, in turn, regulates Imd pathway activation and protects intestinal epithelial cells. Thus, our study reveals a crosstalk between the PM barrier and Imd-mediated antibacterial function to ensure host defense in the gut.
Collapse
Affiliation(s)
- Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Qiongke Ma
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiongyu Guo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ping Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Gu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Siying Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Zhang R, Liu W, Zhang Z. miR-306-5p is involved in chitin metabolism in Aedes albopictus pupae via linc8338-miR-306-5p-XM_019678125.2 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105811. [PMID: 38582583 DOI: 10.1016/j.pestbp.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/08/2024]
Abstract
Aedes albopictus can transmit several lethal arboviruses. This mosquito has become a sever public health threat due to its rapidly changing global distribution. Chitin, which is the major component of the cuticle and peritrophic membrane (PM), is crucial for the growth and development of insect. microRNAs (miRNAs) play important roles in the posttranscriptional level regulation of gene expression, thereby influencing many biological processes in insects. In this study, an attempt was made to evaluate the role of miR-306-5p in regulating chitin metabolism in Ae. albopictus pupae. Overexpression of miR-306-5p resulted in a significantly reduced survival rate in pupae and an increased malformation rate in adults. Both in vivo and in vitro evidence confirmed the presence of the competing endogenous RNA (ceRNA) regulatory axis (linc8338-miR-306-5p-XM_019678125.2). RNAi of linc8338 and XM_019678125.2 had effects on pupae similar to those of miR-306-5p. The highest expression level of miR-306-5p was found in the midgut, and alteration in the expression of miR-306-5p, XM_019678125.2 and linc8338 induced increased transcript levels of chitin synthase 2 (AaCHS2) and decreased chitinase 10 (AaCht10); as well as increased thickness of the midgut and enlarged midgut epithelial cells. The results of this study highlight the potential of miR-306-5p as a prospective target in mosquito control and confirm that the ceRNA mechanism is involved in chitin metabolism. These findings will provide a basis for further studies to uncover the molecular mechanisms through which ncRNAs regulate chitin metabolism.
Collapse
Affiliation(s)
- Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China; School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| | - Wenjuan Liu
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| |
Collapse
|
7
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
9
|
Qush A, Al Khatib HA, Rachid H, Al-Tamimi H, Al-Eshaq A, Al-Adwi S, Yassine HM, Kamareddine L. Intake of caffeine containing sugar diet remodels gut microbiota and perturbs Drosophila melanogaster immunity and lifespan. Microbes Infect 2023; 25:105149. [PMID: 37169244 DOI: 10.1016/j.micinf.2023.105149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hajar Rachid
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hend Al-Tamimi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Alyaa Al-Eshaq
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shaima Al-Adwi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Raval D, Daley L, Eleftherianos I. Drosophila melanogaster larvae are tolerant to oral infection with the bacterial pathogen Photorhabdus luminescens. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000938. [PMID: 37711508 PMCID: PMC10498274 DOI: 10.17912/micropub.biology.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
The fruit fly Drosophila melanogaster is an excellent model for dissecting the molecular and functional bases of bacterial pathogenicity and host antibacterial immune response. The Gram-negative bacterium Photorhabdus luminescens is an insect-specific pathogen that forms a mutualistic relationship with the entomopathogenic nematode Heterorhabditis bacteriophora . Here we find that oral infection of D. melanogaster larvae with P. luminescens moderately reduces their survival ability while the bacteria replicate efficiently in the infected insects. This information will contribute towards understanding host gut immunity against potent bacterial pathogens.
Collapse
Affiliation(s)
- Dhaivat Raval
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Lillia Daley
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Dong H, Li H, Fang L, Zhang A, Liu X, Xue F, Chen Y, Liu W, Chi Y, Wang W, Sun T, Ju M, Dai X, Yang R, Fu R, Zhang L. Increased reactive oxygen species lead to overactivation of platelets in essential thrombocythemia. Thromb Res 2023; 226:18-29. [PMID: 37087805 DOI: 10.1016/j.thromres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Platelet function, rather than platelet count, plays a crucial role in thrombosis in essential thrombocythemia (ET). However, little is known about the abnormal function of platelets in ET. Here, we investigated the functional characteristics of platelets in ET hemostasis to explore the causes of ET platelet dysfunction and new therapeutic strategies for ET. MATERIALS AND METHODS We analyzed platelet aggregation, activation, apoptosis, and reactive oxygen species (ROS) in ET patients and JAK2V617F-positive ET-like mice. The effects of ROS on platelet function and the underlying mechanism were investigated by inhibiting ROS using N-acetylcysteine (NAC). RESULTS Platelet aggregation, activation, apoptosis, ROS, and clot retraction were elevated in ET. No significant differences were observed between ET patients with JAK2V617F or CALR mutations. Increased ROS activated the JAK-STAT pathway, which may further influence platelet function. Inhibition of platelet ROS by NAC reduced platelet aggregation, activation, and apoptosis, and prolonged bleeding time. Furthermore, NAC treatment reduced platelet count in ET-like mice by inhibiting platelet production from megakaryocytes. CONCLUSIONS Elevated ROS in ET platelets resulted in enhanced platelet activation, function and increased risk of thrombosis. NAC offers a potential therapeutic strategy for reducing platelet count.
Collapse
Affiliation(s)
- Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
12
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
14
|
Sukkar D, Laval-Gilly P, Bonnefoy A, Malladi S, Azoury S, Kanso A, Falla-Angel J. Differential Production of Nitric Oxide and Hydrogen Peroxide among Drosophila melanogaster, Apis mellifera, and Mamestra brassicae Immune-Activated Hemocytes after Exposure to Imidacloprid and Amitraz. INSECTS 2023; 14:174. [PMID: 36835742 PMCID: PMC9966094 DOI: 10.3390/insects14020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.
Collapse
Affiliation(s)
- Dani Sukkar
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Philippe Laval-Gilly
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Antoine Bonnefoy
- Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), Institut Universitaire de Technologie de Thionville-Yutz, Université de Lorraine, 57970 Yutz, France
| | - Sandhya Malladi
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| | - Sabine Azoury
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Ali Kanso
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Jairo Falla-Angel
- Laboratoire Sols et Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
15
|
Talyuli OAC, Oliveira JHM, Bottino-Rojas V, Silveira GO, Alvarenga PH, Barletta ABF, Kantor AM, Paiva-Silva GO, Barillas-Mury C, Oliveira PL. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase. PLoS Pathog 2023; 19:e1011149. [PMID: 36780872 PMCID: PMC9956595 DOI: 10.1371/journal.ppat.1011149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/24/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.
Collapse
Affiliation(s)
- Octavio A. C. Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departments of Microbiology and Molecular Genetics and of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Gilbert O. Silveira
- Laboratório de Expressão Genica em Eucariotos, Instituto Butantan and Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia H. Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana Beatriz F. Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Asher M. Kantor
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Wang Z, Luo J, Feng K, Zhou Y, Tang F. Prophenoloxidase of Odontotermes formosanus (Shiraki) (Blattodea: Termitidae) Is a Key Gene in Melanization and Has a Defensive Role during Bacterial Infection. Int J Mol Sci 2022; 24:ijms24010406. [PMID: 36613850 PMCID: PMC9820534 DOI: 10.3390/ijms24010406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Melanization mediated by the prophenoloxidase (PPO)-activating system is an important innate immunity to fight pathogens in insects. In this study, the in vitro time-dependent increase in the intensity of melanization and phenoloxidase (PO) activity from the hemolymph of Odontotermes formosanus (Shiraki) challenged by pathogenic bacteria was detected. PPO is one of the key genes in melanization pathway, whereas the molecular characteristics and functions of O. formosanus PPO are unclear. The OfPPO gene was cloned and characterized. The open reading frame of OfPPO is 2085 bp in length and encodes a 79.497 kDa protein with 694 amino acids. A BLASTx search and phylogenetic analyses revealed that OfPPO shares a high degree of homology to the Blattodea PPOs. Moreover, real-time fluorescent quantitative PCR analysis showed that OfPPO is ubiquitously expressed in all castes and tissues examined, with the highest expression in workers and variable expression patterns in tissues of different termite castes. Furthermore, the expression of OfPPO was significantly induced in O. formosanus infected by pathogenic bacteria. Intriguingly, in combination with silencing of OfPPO expression, pathogenic bacteria challenge caused greatly increased mortality of O. formosanus. These results suggest that OfPPO plays a role in defense against bacteria and highlight the novel termite control strategy combining pathogenic bacteria application with termite PPO silencing.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-138-1396-6269
| |
Collapse
|
17
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
18
|
Prakash A, Monteith KM, Vale PF. Mechanisms of damage prevention, signalling and repair impact disease tolerance. Proc Biol Sci 2022; 289:20220837. [PMID: 35975433 PMCID: PMC9382215 DOI: 10.1098/rspb.2022.0837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The insect gut is frequently exposed to pathogenic threats and must not only clear these potential infections, but also tolerate relatively high microbe loads. In contrast to the mechanisms that eliminate pathogens, we currently know less about the mechanisms of disease tolerance. We investigated how well-described mechanisms that prevent, signal, control or repair damage during infection contribute to the phenotype of disease tolerance. We established enteric infections with the bacterial pathogen Pseudomonas entomophila in transgenic lines of Drosophila melanogaster fruit flies affecting dcy (a major component of the peritrophic matrix), upd3 (a cytokine-like molecule), irc (a negative regulator of reactive oxygen species) and egfr1 (epithelial growth factor receptor). Flies lacking dcy experienced the highest mortality, while loss of function of either irc or upd3 reduced tolerance in both sexes. The disruption of egfr1 resulted in a severe loss in tolerance in male flies but had no substantial effect on the ability of female flies to tolerate P. entomophila infection, despite carrying greater microbe loads than males. Together, our findings provide evidence for the role of damage limitation mechanisms in disease tolerance and highlight how sexual dimorphism in these mechanisms could generate sex differences in infection outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M. Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
19
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
20
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
21
|
Ahmed S, Sajjadian SM, Kim Y. HMGB1-Like Dorsal Switch Protein 1 Triggers a Damage Signal in Mosquito Gut to Activate Dual Oxidase via Eicosanoids. J Innate Immun 2022; 14:657-672. [PMID: 35512659 PMCID: PMC9801255 DOI: 10.1159/000524561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023] Open
Abstract
Several mosquitoes transmit human pathogens by blood feeding, with the gut being the main entrance for the pathogens. Thus, the gut epithelium defends the pathogens by eliciting potent immune responses. However, it was unclear how the mosquito gut discriminates pathogens among various microflora in the lumen. This study proposed a hypothesis that a damage signal might be specifically induced by pathogens in the gut. The Asian tiger mosquito, Aedes albopictus, encodes dorsal switch protein 1 (Aa-DSP1) as a putative damage-associated molecular pattern (DAMP). Aa-DSP1 was localized in the nucleus of the midgut epithelium in naïve larvae. Upon infection by a pathogenic bacterium, Serratia marcescens, Aa-DSP1 was released to hemocoel and activated phospholipase A2 (PLA2). The activated PLA2 increased the level of prostaglandin E2 (PGE2) in the gut and subsequently increased Ca2+ signal to produce reactive oxygen species (ROS) via dual oxidase (Duox). Inhibition of Aa-DSP1 via RNA interference or specific inhibitor treatment failed to increase PGE2/Ca2+ signal upon the bacterial infection. Thus, the inhibitors specifically targeting eicosanoid biosynthesis significantly prevented the upregulation of ROS production in the gut and enhanced mosquito mortality after the bacterial infection. However, such inhibitory effects were rescued by adding PGE2. These suggest that Aa-DSP1 plays an important role in immune response of the mosquito gut as a DAMP during pathogen infection by triggering a signaling pathway, DSP1/PLA2/Ca2+/Duox.
Collapse
|
22
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Sina Rahme B, Lestradet M, Di Venanzio G, Ayyaz A, Yamba MW, Lazzaro M, Liégeois S, Garcia Véscovi E, Ferrandon D. The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model. Sci Rep 2022; 12:3068. [PMID: 35197500 PMCID: PMC8866479 DOI: 10.1038/s41598-022-06780-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence.
Collapse
Affiliation(s)
- Bechara Sina Rahme
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Matthieu Lestradet
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Gisela Di Venanzio
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Arshad Ayyaz
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Miriam Wennida Yamba
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Martina Lazzaro
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Samuel Liégeois
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Eleonora Garcia Véscovi
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Dominique Ferrandon
- Université de Strasbourg, Strasbourg, France.
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France.
| |
Collapse
|
25
|
Prakash A, Khan I. Why do insects evolve immune priming? A search for crossroads. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104246. [PMID: 34453994 DOI: 10.1016/j.dci.2021.104246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Until recently, it was assumed that insects lack immune memory since they do not have vertebrate-like specialized memory cells. Therefore, their most well studied evolutionary response against pathogens was increased basal immunity. However, growing evidence suggests that many insects also exhibit a form of immune memory (immune priming), where prior exposure to a low dose of infection confers protection against subsequent infection by the same pathogen that acts both within and across generations. Most strikingly, they can rapidly evolve as a highly parallel and mutually exclusive strategy from basal immunity, under different selective conditions and with divergent evolutionary trade-offs. However, the relative importance of priming as an optimal immune strategy also has contradictions, primarily because supporting mechanisms are still unclear. In this review, we adopt a comparative approach to highlight several emerging evolutionary, ecological and mechanistic features of priming vs basal immune responses that warrant immediate attention for future research.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom.
| | - Imroze Khan
- Department of Biology, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
26
|
Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc Natl Acad Sci U S A 2021; 118:2020922118. [PMID: 33649233 DOI: 10.1073/pnas.2020922118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most animals harbor a gut microbiota that consists of potentially pathogenic, commensal, and mutualistic microorganisms. Dual oxidase (Duox) is a well described enzyme involved in gut mucosal immunity by the production of reactive oxygen species (ROS) that antagonizes pathogenic bacteria and maintains gut homeostasis in insects. However, despite its nonspecific harmful activity on microorganisms, little is known about the role of Duox in the maintenance of mutualistic gut symbionts. Here we show that, in the bean bug Riptortus pedestris, Duox-dependent ROS did not directly contribute to epithelial immunity in the midgut in response to its mutualistic gut symbiont, Burkholderia insecticola Instead, we found that the expression of Duox is tracheae-specific and its down-regulation by RNAi results in the loss of dityrosine cross-links in the tracheal protein matrix and a collapse of the respiratory system. We further demonstrated that the establishment of symbiosis is a strong oxygen sink triggering the formation of an extensive network of tracheae enveloping the midgut symbiotic organ as well as other organs, and that tracheal breakdown by Duox RNAi provokes a disruption of the gut symbiosis. Down-regulation of the hypoxia-responsive transcription factor Sima or the regulators of tracheae formation Trachealess and Branchless produces similar phenotypes. Thus, in addition to known roles in immunity and in the formation of dityrosine networks in diverse extracellular matrices, Duox is also a crucial enzyme for tracheal integrity, which is crucial to sustain mutualistic symbionts and gut homeostasis. We expect that this is a conserved function in insects.
Collapse
|
27
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Martinson VG. Rediscovering a Forgotten System of Symbiosis: Historical Perspective and Future Potential. Genes (Basel) 2020; 11:E1063. [PMID: 32916942 PMCID: PMC7563122 DOI: 10.3390/genes11091063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations (Candida auris) has highlighted the importance of better understanding animal-fungus interactions. Regardless of their prominence there are few animal-fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems. Here, I review a forgotten system of animal-fungus interactions: the beetle-fungus symbioses of Drugstore and Cigarette beetles with their symbiont Symbiotaphrina. As pioneering systems for the study of mutualistic symbioses, they were heavily researched between 1920 and 1970, but have received only sporadic attention in the past 40 years. Several features make them unique research organisms, including (1) the symbiont is both extracellular and intracellular during the life cycle of the host, and (2) both beetle and fungus can be cultured in isolation. Specifically, fungal symbionts intracellularly infect cells in the larval and adult beetle gut, while accessory glands in adult females harbor extracellular fungi. In this way, research on the microbiota, pathogenesis/infection, and mutualism can be performed. Furthermore, these beetles are economically important stored-product pests found worldwide. In addition to providing a historical perspective of the research undertaken and an overview of beetle biology and their symbiosis with Symbiotaphrina, I performed two analyses on publicly available genomic data. First, in a preliminary comparative genomic analysis of the fungal symbionts, I found striking differences in the pathways for the biosynthesis of two B vitamins important for the host beetle, thiamine and biotin. Second, I estimated the most recent common ancestor for Drugstore and Cigarette beetles at 8.8-13.5 Mya using sequence divergence (CO1 gene). Together, these analyses demonstrate that modern methods and data (genomics, transcriptomes, etc.) have great potential to transform these beetle-fungus systems into model systems again.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
29
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Colombani J, Andersen DS. The
Drosophila
gut: A gatekeeper and coordinator of organism fitness and physiology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e378. [DOI: 10.1002/wdev.378] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Colombani
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| | - Ditte S. Andersen
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
31
|
Davoodi S, Foley E. Host-Microbe-Pathogen Interactions: A Review of Vibrio cholerae Pathogenesis in Drosophila. Front Immunol 2020; 10:3128. [PMID: 32038640 PMCID: PMC6993214 DOI: 10.3389/fimmu.2019.03128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Most animals maintain mutually beneficial symbiotic relationships with their intestinal microbiota. Resident microbes in the gastrointestinal tract breakdown indigestible food, provide essential nutrients, and, act as a barrier against invading microbes, such as the enteric pathogen Vibrio cholerae. Over the last decades, our knowledge of V. cholerae pathogenesis, colonization, and transmission has increased tremendously. A number of animal models have been used to study how V. cholerae interacts with host-derived resources to support gastrointestinal colonization. Here, we review studies on host-microbe interactions and how infection with V. cholerae disrupts these interactions, with a focus on contributions from the Drosophila melanogaster model. We will discuss studies that highlight the connections between symbiont, host, and V. cholerae metabolism; crosstalk between V. cholerae and host microbes; and the impact of the host immune system on the lethality of V. cholerae infection. These studies suggest that V. cholerae modulates host immune-metabolic responses in the fly and improves Vibrio fitness through competition with intestinal microbes.
Collapse
Affiliation(s)
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Bou Sleiman M, Frochaux MV, Andreani T, Osman D, Guigo R, Deplancke B. Enteric infection induces Lark-mediated intron retention at the 5' end of Drosophila genes. Genome Biol 2020; 21:4. [PMID: 31948480 PMCID: PMC6966827 DOI: 10.1186/s13059-019-1918-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/09/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RNA splicing is a key post-transcriptional mechanism that generates protein diversity and contributes to the fine-tuning of gene expression, which may facilitate adaptation to environmental challenges. Here, we employ a systems approach to study alternative splicing changes upon enteric infection in females from classical Drosophila melanogaster strains as well as 38 inbred lines. RESULTS We find that infection leads to extensive differences in isoform ratios, which results in a more diverse transcriptome with longer 5' untranslated regions (5'UTRs). We establish a role for genetic variation in mediating inter-individual splicing differences, with local splicing quantitative trait loci (local-sQTLs) being preferentially located at the 5' end of transcripts and directly upstream of splice donor sites. Moreover, local-sQTLs are more numerous in the infected state, indicating that acute stress unmasks a substantial number of silent genetic variants. We observe a general increase in intron retention concentrated at the 5' end of transcripts across multiple strains, whose prevalence scales with the degree of pathogen virulence. The length, GC content, and RNA polymerase II occupancy of these introns with increased retention suggest that they have exon-like characteristics. We further uncover that retained intron sequences are enriched for the Lark/RBM4 RNA binding motif. Interestingly, we find that lark is induced by infection in wild-type flies, its overexpression and knockdown alter survival, and tissue-specific overexpression mimics infection-induced intron retention. CONCLUSION Our collective findings point to pervasive and consistent RNA splicing changes, partly mediated by Lark/RBM4, as being an important aspect of the gut response to infection.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institue of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Vincent Frochaux
- Laboratory of System Biology and Genetics and Swiss Institute of Bioinformatics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Andreani
- Computational Biology and Data Mining Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300 Lebanon
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia Spain
| | - Bart Deplancke
- Laboratory of Integrative Systems Physiology, Institue of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Abstract
Two areas of research that have greatly increased in attention are: dipterans as vectors and the microbes they are capable of vectoring. Because it is the front-end of the fly that first encounters these microbes, this review focuses on the legs, mouthparts, and foregut, which includes the crop as major structures involved in dipteran vectoring ability. The legs and mouthparts are generally involved in mechanical transmission of microbes. However, the crop is involved in more than just mechanical transmission, for it is within the lumen of the crop that microbes are taken up with the meal of the fly, stored, and it is within the lumen that horizontal transmission of bacterial resistance has been demonstrated. In addition to storage of microbes, the crop is also involved in depositing the microbes via a process known as regurgitation. Various aspects of crop regulation are discussed and specific examples of crop involvement with microorganisms are discussed. The importance of biofilm and biofilm formation are presented, as well as, some physical parameters of the crop that might either facilitate or inhibit biofilm formation. Finally, there is a brief discussion of dipteran model systems for studying crop microbe interactions.
Collapse
Affiliation(s)
- John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
34
|
Nainu F, Trenerry A, Johnson KN. Wolbachia-mediated antiviral protection is cell-autonomous. J Gen Virol 2019; 100:1587-1592. [PMID: 31599711 DOI: 10.1099/jgv.0.001342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vector-borne viral diseases pose significant risks to human health. To control the transmission of these viruses, a number of approaches are required. The ability of the intracellular bacteria Wolbachia to limit viral accumulation and transmission in some arthropod hosts, highlights its potential as a biocontrol agent. Whilst Wolbachia can reduce the transmission of several epidemiologically important viruses, protection is not consistent amongst all insects, viruses and strains of Wolbachia, which confounds elucidation of the mechanisms that underly this protection. Evidence of different mechanisms has emerged, but is not always consistent, suggesting the tripartite interaction may be complex. Here we provide evidence that Wolbachia-mediated antiviral protection is dependent on the presence of Wolbachia in individual cells, and cannot be conferred to surrounding cells. Our results suggest that protection is cell-autonomous, and this has several mechanistic implications, which can direct future research.
Collapse
Affiliation(s)
- Firzan Nainu
- School of Biological Sciences, University of Queensland, Brisbane, Australia.,Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Alice Trenerry
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Karyn N Johnson
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Harsh S, Heryanto C, Eleftherianos I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biol Open 2019; 8:bio.039040. [PMID: 31278163 PMCID: PMC6679391 DOI: 10.1242/bio.039040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of Drosophila adult flies with non-pathogenic Escherichia coli, the extracellular bacterial pathogen Photorhabdus luminescens or the facultative intracellular pathogen Photorhabdus asymbiotica results in intestinal steatosis marked by lipid accumulation in the midgut. Accumulation of LDs in the midgut also correlates with increased whole-body lipid levels characterized by increased expression of genes regulating lipogenesis. The lipid-enriched midgut further displays reduced expression of the enteroendocrine-secreted hormone, Tachykinin. The observed lipid accumulation requires the Gram-negative cell wall pattern recognition molecule, PGRP-LC, but not PGRP-LE, for the humoral immune response. Altogether, our findings indicate that Drosophila LDs are inducible organelles, which can serve as markers for inflammation and, depending on the nature of the challenge, they can dictate the outcome of the infection. Summary: Lipid droplets are inducible organelles, act as inflammatory markers and, depending on the nature of challenge, can dictate the outcome of the infection.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Christa Heryanto
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
36
|
Ozakman Y, Eleftherianos I. TGF-β Signaling Interferes With the Drosophila Innate Immune and Metabolic Response to Parasitic Nematode Infection. Front Physiol 2019; 10:716. [PMID: 31316388 PMCID: PMC6611403 DOI: 10.3389/fphys.2019.00716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/23/2019] [Indexed: 01/23/2023] Open
Abstract
The common fruit fly, Drosophila melanogaster, is an outstanding model to study the molecular basis of anti-pathogen immunity. The parasitic nematode Heterorhabditis gerrardi, together with its mutualistic bacteria Photorhabdus asymbiotica, infects a wide range of insects, including D. melanogaster. Recently, we have shown that transforming growth factor-β (TGF-ß) signaling in D. melanogaster is regulated in response to parasitic nematode infection. In the current study, we investigated the contribution of two TGF-ß signaling branches, the activin and the bone morphogenetic protein (BMP), to D. melanogaster immune function against H. gerrardi. We used D. melanogaster larvae carrying mutations in the genes coding for the TGF-ß extracellular ligands daw and dpp. We have demonstrated that the number of circulating hemocytes in uninfected daw and dpp mutants decreases twofold compared to background controls, yet no significant changes in hemocyte numbers and survival of the TGF-ß mutants are observed upon nematode infection. However, we have shown that nematode-infected daw mutants express Dual oxidase at higher levels and phenoloxidase activity at lower levels compared to their background controls. To elucidate the contribution of TGF-ß signaling in the metabolic response of D. melanogaster to parasitic nematodes, we estimated lipid and carbohydrate levels in daw and dpp mutant larvae infected with H. gerrardi. We have found that both nematode-infected mutants contain lipid droplets of larger size, with daw mutant larvae also containing elevated glycogen levels. Overall, our findings indicate that the regulation of activin and BMP branches of TGF-ß signaling can alter the immune and metabolic processes in D. melanogaster during response to parasitic nematode infection. Results from this study shed light on the molecular signaling pathways insects activate to regulate mechanisms for fighting potent nematode parasites, which could lead to the identification of novel management strategies for the control of damaging pests.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
37
|
Xu X, Pan J, Li X, Cui Y, Mao Z, Wu B, Xu H, Zhou W, Liu Y. Inhibition of Methamphetamine Self-Administration and Reinstatement by Central Blockade of Angiotensin II Receptor in Rats. J Pharmacol Exp Ther 2019; 369:244-258. [PMID: 30867225 DOI: 10.1124/jpet.118.255729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism and treatment of methamphetamine (METH) use disorder remain unclear. The current study aimed to investigate the role of central angiotensin II receptor (ATR) in drug taking and seeking behavior associated with METH use disorder. The effect of an ATR type 1 (AT1R) antagonist, candesartan cilexetil, on the reinforcing and motivational effects of METH was first assessed using the animal model of METH self-administration (SA) and reinstatement. The levels of dopamine D2 receptor (D2R) and AT1R were subsequently examined. Furthermore, the present study determined the expression of microRNAs (miRNAs) by comparing METH SA, METH-yoked, and Saline-yoked groups. The target miRNAs were further overexpressed in the nucleus accumbens (NAc) via a lentivirus vector to investigate the effects of target miRNAs on METH SA maintained under a fixed ratio 1, progressive ratio, and cue/drug reinstatement of METH SA. The potential role of the AT1R-PLCβ-CREB signaling pathway was finally investigated. The results suggest that AT1R blockade effectively reduced METH SA and reinstatement, in conjunction with the counter-regulation of D2R and AT1R. A total of 17 miRNAs targeting Ang II in NAc were found to be associated with the voluntary intake of METH. Furthermore, overexpression of specific miR-219a-5p targeting AT1R-regulated METH SA and reinstatement. The AT1R-PLCβ-CREB signaling pathway was found to be associated with the effect of AT1R on the drug-taking and drug-seeking behavior involving METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Jian Pan
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Xingxing Li
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Yan Cui
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Zijuan Mao
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Boliang Wu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Huachong Xu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Wenhua Zhou
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Yu Liu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| |
Collapse
|
38
|
De Loof A, Schoofs L. Intraluminal Farnesol and Farnesal in the Mealworm's Alimentary Canal: An Unusual Storage Site Uncovering Hidden Eukaryote Ca 2+-Homeostasis-Dependent "Golgicrine" Activities. Front Endocrinol (Lausanne) 2019; 10:885. [PMID: 31920991 PMCID: PMC6930878 DOI: 10.3389/fendo.2019.00885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Farnesol, the sesquiterpenoid precursor of the six presently known insect juvenile hormones (JHs) was for the first time chemically identified in 1961, not in JH synthesizing glands or whole body extracts, but in excrements of the mealworm Tenebrio molitor. This finding was thought to be irrelevant and remained unexplored. In 1970, it was reported that the fall to zero of the JH titer in both prediapausing adults and in last instar larvae of the Colorado potato beetle causes severe malfunctioning of the Golgi system in the fat body, among various other effects. This endomembrane system in the cytoplasm resides at the intersection of the secretory, lysosomal, and endocytic pathways and is required for the processing of secretory proteins. Why the Golgi needs farnesol-like endogenous sesquiterpenoids (FLS) for its proper functioning has also never been further investigated. In 1999, farnesol was found to be a natural endogenous ligand for particular types of voltage-gated Ca2+ channels in mammalian cells, a finding that also remained undervalued. Only since 2014 more attention has been paid to the functional research of the "noble unknown" farnesol, in particular to its Ca2+-homeostasis-related juvenilizing and anti-apoptotic activities. Here, we introduce the term "Golgicrine activity" that addresses the secretory activity of the RER-Golgi system from its role in Ca2+-homeostasis rather than from its conventional role in mere protein secretion. Golgicrine activity attributes the so far forgotten role of farnesol-like sesquiterpenoids in proper Golgi functioning, and unites the endocrine, exocrine and enterocrine functions of these sesquiterpenoids. This out of the box view may open novel perspectives for the better understanding of particular inflammatory bowel diseases and of neurodegenerative diseases as well, because the early initiation of Alzheimer's disease may possibly result from malfunctioning of the mevalonate-farnesol-cholesterol biosynthetic pathway and thus might be a farnesol- and Ca2+-homeostasis-dependent Golgicrine issue.
Collapse
|
39
|
Tetreau G, Wang P. Chitinous Structures as Potential Targets for Insect Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:273-292. [PMID: 31102251 DOI: 10.1007/978-981-13-7318-3_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
40
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
41
|
Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell 2018; 17:e12757. [PMID: 29573324 PMCID: PMC5946070 DOI: 10.1111/acel.12757] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
The African turquoise killifish has recently gained significant traction as a new research organism in the aging field. Our understanding of aging has strongly benefited from canonical research organisms—yeast, C. elegans, Drosophila, zebrafish, and mice. Many characteristics that are essential to understand aging—for example, the adaptive immune system or the hypothalamo‐pituitary axis—are only present in vertebrates (zebrafish and mice). However, zebrafish and mice live more than 3 years and their relatively long lifespans are not compatible with high‐throughput studies. Therefore, the turquoise killifish, a vertebrate with a naturally compressed lifespan of only 4–6 months, fills an essential gap to understand aging. With a recently developed genomic and genetic toolkit, the turquoise killifish not only provides practical advantages for lifespan and longitudinal experiments, but also allows more systematic characterizations of the interplay between genetics and environment during vertebrate aging. Interestingly, the turquoise killifish can also enter a long‐term dormant state during development called diapause. Killifish embryos in diapause already have some organs and tissues, and they can last in this state for years, exhibiting exceptional resistance to stress and to damages due to the passage of time. Understanding the diapause state could give new insights into strategies to prevent the damage caused by aging and to better preserve organs, tissues, and cells. Thus, the African turquoise killifish brings two interesting aspects to the aging field—a compressed lifespan and a long‐term resistant diapause state, both of which should spark new discoveries in the field.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Genetics; Stanford University; Stanford CA USA
| | - Anne Brunet
- Department of Genetics; Stanford University; Stanford CA USA
- Glenn Laboratories for the Biology of Aging; Stanford CA USA
| |
Collapse
|
42
|
Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF. Oral Bacterial Infection and Shedding in Drosophila melanogaster. J Vis Exp 2018. [PMID: 29912178 PMCID: PMC6101445 DOI: 10.3791/57676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The fruit fly Drosophila melanogaster is one of the best developed model systems of infection and innate immunity. While most work has focused on systemic infections, there has been a recent increase of interest in the mechanisms of gut immunocompetence to pathogens, which require methods to orally infect flies. Here we present a protocol to orally expose individual flies to an opportunistic bacterial pathogen (Pseudomonas aeruginosa) and a natural bacterial pathogen of D. melanogaster (Pseudomonas entomophila). The goal of this protocol is to provide a robust method to expose male and female flies to these pathogens. We provide representative results showing survival phenotypes, microbe loads, and bacterial shedding, which is relevant for the study of heterogeneity in pathogen transmission. Finally, we confirm that Dcy mutants (lacking the protective peritrophic matrix in the gut epithelium) and Relish mutants (lacking a functional immune deficiency (IMD) pathway), show increased susceptibility to bacterial oral infection. This protocol, therefore, describes a robust method to infect flies using the oral route of infection, which can be extended to the study of a variety genetic and environmental sources of variation in gut infection outcomes and bacterial transmission.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | | | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Centre for Immunity, Infection and Evolution, University of Edinburgh;
| |
Collapse
|
43
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
44
|
Kenmoku H, Hori A, Kuraishi T, Kurata S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 2017; 10:271-281. [PMID: 28250052 PMCID: PMC5374318 DOI: 10.1242/dmm.027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan .,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-1192, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Lang L, Zhang Z, Jing W, Hwang JS, Lee SC, Wang L. Identification of a novel toll gene (Shtoll3) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium followed by Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:177-190. [PMID: 29017939 DOI: 10.1016/j.fsi.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Toll signaling is essential for expression of immune genes which are important for defense against bacterial, fungal and viral infections in invertebrates. Although several toll genes have been identified in the crustaceans, none of them has been investigated in freshwater crab Sinopotamon henanense. Moreover, the effect of cadmium (Cd) on toll gene expression has never been examined on the freshwater crabs which live in the sediments and are prone to heavy metal bioaccumulation. Our transcriptomic analysis of hepatopancreas tissue reveals that toll3 gene expression has been decreased when treated with Cd. In this study, we cloned one toll gene (hereby designated Shtoll3) from the crab. The full-length cDNA of Shtoll3 was 4488 bp, with an ORF of 3693 bp encoding a putative protein of 1230 amino acids, a 5'-untranslated region of 414 bp and a 3'-untranslated region of 781 bp. Phylogenetic analysis showed that ShToll3 was clustered into the group of DmToll8. The tissue distribution results showed that Shtoll3 was expressed widely in different tissues, with the highest in gills, and the lowest in hemocytes. Shtoll3 expression was down-regulated only in midguts after Aeromonas hydrophila infection. With Cd presence, Shtoll3 expression in response to A. hydrophila were up-regulated in midguts and gills, which was further confirmed by western blotting analysis. Moreover, the mRNA level of two antimicrobial peptides (AMPs) crustin and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll3, were analysised. Thus, we conclude that Cd changes the susceptibility of Shtoll3 to A. hydrophila infection in gills and midguts. This suggest that Shtoll3 may contribute to the innate immune defense of S. henanense to A. hydrophila and Cd can modify the immune function in epithelium.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Shao-Chin Lee
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
46
|
Li JH, Evans JD, Li WF, Zhao YZ, DeGrandi-Hoffman G, Huang SK, Li ZG, Hamilton M, Chen YP. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PLoS One 2017; 12:e0187505. [PMID: 29125851 PMCID: PMC5681286 DOI: 10.1371/journal.pone.0187505] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly clear that gut bacteria play vital roles in the development, nutrition, immunity, and overall fitness of their eukaryotic hosts. We conducted the present study to investigate the effects of gut microbiota disruption on the honey bee's immune responses to infection by the microsporidian parasite Nosema ceranae. Newly emerged adult workers were collected and divided into four groups: Group I-no treatment; Group II-inoculated with N. ceranae, Group III-antibiotic treatment, and Group IV-antibiotic treatment after inoculation with N. ceranae. Our study showed that Nosema infection did not cause obvious disruption of the gut bacterial community as there was no significant difference in the density and composition of gut bacteria between Group I and Group II. However, the elimination of gut bacteria by antibiotic (Groups III and IV) negatively impacted the functioning of the honey bees' immune system as evidenced by the expression of genes encoding antimicrobial peptides abaecin, defensin1, and hymenoptaecin that showed the following ranking: Group I > Group II > Group III > Group IV. In addition, significantly higher Nosema levels were observed in Group IV than in Group II, suggesting that eliminating gut bacteria weakened immune function and made honey bees more susceptible to Nosema infection. Based on Group IV having displayed the highest mortality rate among the four experimental groups indicates that antibiotic treatment in combination with stress, associated with Nosema infection, significantly and negatively impacts honey bee survival. The present study adds new evidence that antibiotic treatment not only leads to the complex problem of antibiotic resistance but can impact honey bee disease resistance. Further studies aimed at specific components of the gut bacterial community will provide new insights into the roles of specific bacteria and possibly new approaches to improving bee health.
Collapse
Affiliation(s)
- Jiang Hong Li
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jay D. Evans
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Wen Feng Li
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Ya Zhou Zhao
- Institute of Apicultural Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | | | - Shao Kang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Guo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michele Hamilton
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hori A, Kurata S, Kuraishi T. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus. Biochem Biophys Res Commun 2017; 495:395-400. [PMID: 29108998 DOI: 10.1016/j.bbrc.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
Abstract
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.
Collapse
Affiliation(s)
- Aki Hori
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
48
|
Romoli O, Saviane A, Bozzato A, D'Antona P, Tettamanti G, Squartini A, Cappellozza S, Sandrelli F. Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Sci Rep 2017; 7:1048. [PMID: 28432358 PMCID: PMC5430696 DOI: 10.1038/s41598-017-01162-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
The domesticated silkworm Bombyx mori has an innate immune system, whose main effectors are the antimicrobial peptides (AMPs). Silkworm strains are commonly grouped into four geographical types (Japanese, Chinese, European and Tropical) and are generally characterised by a variable susceptibility to infections. To clarify the genetic and molecular mechanisms on which the different responses to infections are based, we exposed one silkworm strain for each geographical area to oral infections with the silkworm pathogens Enterococcus mundtii or Serratia marcescens. We detected a differential susceptibility to both bacteria, with the European strain displaying the lowest sensitivity to E. mundtii and the Indian one to S. marcescens. We found that all the strains were able to activate the AMP response against E. mundtii. However, the highest tolerance of the European strain appeared to be related to the specific composition of its AMP cocktail, containing more effective variants such as a peculiar Cecropin B6 isoform. The resistance of the Indian strain to S. marcescens seemed to be associated with its prompt capability to activate the systemic transcription of AMPs. These data suggest that B. mori strains with distinct genetic backgrounds employ different strategies to counteract bacterial infections, whose efficacy appears to be pathogen-dependent.
Collapse
Affiliation(s)
- Ottavia Romoli
- Department of Biology, University of Padova, Padova, Italy
| | - Alessio Saviane
- CREA - Honey Bee and Silkworm Research Unit, Padova Seat, Padova, Italy
| | - Andrea Bozzato
- Department of Biology, University of Padova, Padova, Italy
| | - Paola D'Antona
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | | | | |
Collapse
|
49
|
Maki K, Shibata T, Kawabata SI. Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. J Biol Chem 2017; 292:6369-6380. [PMID: 28258224 DOI: 10.1074/jbc.m117.779579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
In Drosophila, the final immune deficiency (IMD) pathway-dependent signal is transmitted through proteolytic conversion of the nuclear factor-κB (NF-κB)-like transcription factor Relish to the active N-terminal fragment Relish-N. Relish-N is then translocated from the cytosol into the nucleus for the expression of IMD-controlled genes. We previously demonstrated that transglutaminase (TG) suppresses the IMD pathway by polymerizing Relish-N to inhibit its nuclear translocation. Conversely, we also demonstrated that orally ingested synthetic amines, such as monodansylcadaverine (DCA) and biotin-labeled pentylamine, are TG-dependently incorporated into Relish-N, causing the nuclear translocation of modified Relish-N in gut epithelial cells. It remains unclear, however, whether polyamine-containing Relish-N retains transcriptional activity. Here, we used mass spectrometry analysis of a recombinant Relish-N modified with DCA by TG activity after proteolytic digestion and show that the DCA-modified Gln residues are located in the DNA-binding region of Relish-N. TG-catalyzed DCA incorporation inhibited binding of Relish-N to the Rel-responsive element in the NF-κB-binding DNA sequence. Subcellular fractionation of TG-expressing Drosophila S2 cells indicated that TG was localized in both the cytosol and nucleus. Of note, natural polyamines, including spermidine and spermine, competitively inhibited TG-dependent DCA incorporation into Relish-N. Moreover, in vivo experiments demonstrated that Relish-N was modified by spermine and that this modification reduced transcription of IMD pathway-controlled cecropin A1 and diptericin genes. These findings suggest that intracellular TG regulates Relish-N-mediated transcriptional activity by incorporating polyamines into Relish-N and via protein-protein cross-linking.
Collapse
Affiliation(s)
- Kouki Maki
- From the Graduate School of Systems Life Sciences
| | - Toshio Shibata
- Institute for Advanced Study, and.,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Graduate School of Systems Life Sciences, .,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
Damage-Induced Cell Regeneration in the Midgut of Aedes albopictus Mosquitoes. Sci Rep 2017; 7:44594. [PMID: 28300181 PMCID: PMC5353711 DOI: 10.1038/srep44594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/09/2017] [Indexed: 01/28/2023] Open
Abstract
Mosquito-transmitted diseases cause over one million deaths every year. A better characterization of the vector’s physiology and immunity should provide valuable knowledge for the elaboration of control strategies. Mosquitoes depend on their innate immunity to defend themselves against pathogens. These pathogens are acquired mainly through the oral route, which places the insects’ gut at the front line of the battle. Indeed, the epithelium of the mosquito gut plays important roles against invading pathogens acting as a physical barrier, activating local defenses and triggering the systemic immune response. Therefore, the gut is constantly confronted to stress and often suffers cellular damage. In this study, we show that dividing cells exist in the digestive tract of adult A. albopictus and that these cells proliferate in the midgut after bacterial or chemical damage. An increased transcription of signaling molecules that regulate the EGFR and JAK/STAT pathways was also observed, suggesting a possible involvement of these pathways in the regeneration of damaged guts. This work provides evidence for the presence of regenerative cells in the mosquito guts, and paves the way towards a molecular and cellular characterization of the processes required to maintain mosquito’s midgut homeostasis in both normal and infectious conditions.
Collapse
|