1
|
Hu Y, Tuo B. The function of chloride channels in digestive system disease (Review). Int J Mol Med 2025; 55:99. [PMID: 40314091 DOI: 10.3892/ijmm.2025.5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025] Open
Abstract
Cation channels have been extensively studied in the context of digestive disorders, but comparatively little attention has been given to anions and their associated channels. Chloride ions, the most abundant anions in the human body, act as signaling molecules, modulating cellular behavior and playing a key role in regulating multiorgan physiological and pathophysiological mechanisms. The intra‑ and extracellular distributions of chloride ions are primarily controlled by various chloride channels and transporters. Currently, these chloride channels are classified into several groups: The chloride channels family, cystic fibrosis transmembrane conductance regulator, calcium‑activated chloride channels, volume‑regulated anion channels, proton‑activated chloride channels and ligand‑gated anion channels. This review aims to summarize the roles of chloride ion channels and transporter proteins in digestive system diseases, providing a theoretical basis for future research and offering potential new strategies for disease treatment.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Rugi M, Hofschröer V, Pethő Z, Soret B, Loeck T, Schwab A. K 2P2.1 channels modulate the pH- and mechanosensitivity of pancreatic stellate cells. Pflugers Arch 2025; 477:147-157. [PMID: 39325089 PMCID: PMC11711774 DOI: 10.1007/s00424-024-03021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic stellate cells (PSCs) are central in the development of acute pancreatitis and tumor fibrosis in pancreatic ductal adenocarcinoma (PDAC). Fibrosis and a unique pH landscape represent characteristic properties of the PDAC microenvironment. Mechanosensitive ion channels are involved in the activation of PSCs. Among these channels, K2P2.1 has not yet been studied in PSCs. K2P2.1 channels are pH- and mechanosensitive. We confirmed K2P2.1 expression in PSCs by RT-qPCR and immunofluorescence. PSCs from K2P2.1+/+ and K2P2.1-/- mice were studied under conditions mimicking properties of the PDAC microenvironment (acidic extracellular pH (pHe), ambient pressure elevated by + 100 mmHg). Migration and the cell area were taken as surrogates for PSC activation and evaluated with live cell imaging. pHe-dependent changes of the membrane potential of PSCs were investigated with DiBAC4(3), a voltage-sensitive fluorescent dye. We observed a correlation between morphological activation and progressive hyperpolarization of the cells in response to changes in pHe and pressure. The effect was in part dependent on the expression of K2P2.1 channels because the membrane potential of K2P2.1+/+ PSCs was always more hyperpolarized than that of K2P2.1-/- PSCs. Cell migration velocity of K2P2.1+/+ cells decreased upon pressure application when cells were kept in an acidic medium (pHe 6.6). This was not the case in K2P2.1-/- PSCs. Taken together, our study highlights the critical role of K2P2.1 channels in the combined sensing of environmental pressure and pHe by PSCs and in coordinating cellular morphology with membrane potential dynamics. Thus, K2P2.1 channels are important mechano-sensors in murine PSCs.
Collapse
Affiliation(s)
- Micol Rugi
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany
| | - Verena Hofschröer
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany
| | - Zoltán Pethő
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany
| | - Benjamin Soret
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany
- Laboratory of Cell Physiology, INSERM U 1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650, Villeneuve d'Ascq, France
| | - Thorsten Loeck
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany
| | - Albrecht Schwab
- Institut Für Physiologie II, Robert-Koch-Str. 27B, 48149, Münster, Germany.
| |
Collapse
|
3
|
Pethő Z, Najder K, Beel S, Fels B, Neumann I, Schimmelpfennig S, Sargin S, Wolters M, Grantins K, Wardelmann E, Mitkovski M, Oeckinghaus A, Schwab A. Acid-base homeostasis orchestrated by NHE1 defines the pancreatic stellate cell phenotype in pancreatic cancer. JCI Insight 2023; 8:e170928. [PMID: 37643024 PMCID: PMC10619433 DOI: 10.1172/jci.insight.170928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) progresses in an organ with a unique pH landscape, where the stroma acidifies after each meal. We hypothesized that disrupting this pH landscape during PDAC progression triggers pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) to induce PDAC fibrosis. We revealed that alkaline environmental pH was sufficient to induce PSC differentiation to a myofibroblastic phenotype. We then mechanistically dissected this finding, focusing on the involvement of the Na+/H+ exchanger NHE1. Perturbing cellular pH homeostasis by inhibiting NHE1 with cariporide partially altered the myofibroblastic PSC phenotype. To show the relevance of this finding in vivo, we targeted NHE1 in murine PDAC (KPfC). Indeed, tumor fibrosis decreased when mice received the NHE1-inhibitor cariporide in addition to gemcitabine treatment. Moreover, the tumor immune infiltrate shifted from granulocyte rich to more lymphocytic. Taken together, our study provides mechanistic evidence on how the pancreatic pH landscape shapes pancreatic cancer through tuning PSC differentiation.
Collapse
Affiliation(s)
| | | | - Stephanie Beel
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Benedikt Fels
- Institute of Physiology II and
- Institute of Physiology, University of Lübeck, Lübeck, Germany
| | | | | | | | - Maria Wolters
- Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
| | - Klavs Grantins
- Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | | |
Collapse
|
4
|
Di Molfetta D, Cannone S, Greco MR, Caroppo R, Piccapane F, Carvalho TMA, Altamura C, Saltarella I, Tavares Valente D, Desaphy JF, Reshkin SJ, Cardone RA. ECM Composition Differentially Regulates Intracellular and Extracellular pH in Normal and Cancer Pancreatic Duct Epithelial Cells. Int J Mol Sci 2023; 24:10632. [PMID: 37445810 DOI: 10.3390/ijms241310632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.
Collapse
Affiliation(s)
- Daria Di Molfetta
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Piccapane
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Diana Tavares Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jean Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
5
|
Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflugers Arch 2023; 475:361-379. [PMID: 36534232 PMCID: PMC9908661 DOI: 10.1007/s00424-022-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.
Collapse
|
6
|
Acid Adaptation Promotes TRPC1 Plasma Membrane Localization Leading to Pancreatic Ductal Adenocarcinoma Cell Proliferation and Migration through Ca 2+ Entry and Interaction with PI3K/CaM. Cancers (Basel) 2022; 14:cancers14194946. [PMID: 36230869 PMCID: PMC9563726 DOI: 10.3390/cancers14194946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally, with a 5-year overall survival of less than 10%. The development and progression of PDAC are linked to its fluctuating acidic tumor microenvironment. Ion channels act as important sensors of this acidic tumor microenvironment. They transduce extracellular signals and regulate signaling pathways involved in all hallmarks of cancer. In this study, we evaluated the interplay between a pH-sensitive ion channel, the calcium (Ca2+) channel transient receptor potential C1 (TRPC1), and three different stages of the tumor microenvironment, normal pH, acid adaptation, and acid recovery, and its impact on PDAC cell migration, proliferation, and cell cycle progression. In acid adaptation and recovery conditions, TRPC1 localizes to the plasma membrane, where it interacts with PI3K and calmodulin, and permits Ca2+ entry, which results in downstream signaling, leading to proliferation and migration. Thus, TRPC1 exerts a more aggressive role after adaptation to the acidic tumor microenvironment. Abstract Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a low overall survival rate of less than 10% and limited therapeutic options. Fluctuations in tumor microenvironment pH are a hallmark of PDAC development and progression. Many ion channels are bona fide cellular sensors of changes in pH. Yet, the interplay between the acidic tumor microenvironment and ion channel regulation in PDAC is poorly understood. In this study, we show that acid adaption increases PANC-1 cell migration but attenuates proliferation and spheroid growth, which are restored upon recovery. Moreover, acid adaptation and recovery conditions favor the plasma membrane localization of the pH-sensitive calcium (Ca2+) channel transient receptor potential C1 (TRPC1), TRPC1-mediated Ca2+ influx, channel interaction with the PI3K p85α subunit and calmodulin (CaM), and AKT and ERK1/2 activation. Knockdown (KD) of TRPC1 suppresses cell migration, proliferation, and spheroid growth, notably in acid-recovered cells. KD of TRPC1 causes the accumulation of cells in G0/G1 and G2/M phases, along with reduced expression of CDK6, −2, and −1, and cyclin A, and increased expression of p21CIP1. TRPC1 silencing decreases the basal Ca2+ influx in acid-adapted and -recovered cells, but not in normal pH conditions, and Ca2+ chelation reduces cell migration and proliferation solely in acid adaptation and recovery conditions. In conclusion, acid adaptation and recovery reinforce the involvement of TRPC1 in migration, proliferation, and cell cycle progression by permitting Ca2+ entry and forming a complex with the PI3K p85α subunit and CaM.
Collapse
|
7
|
Hagelund S, Trauzold A. Impact of Extracellular pH on Apoptotic and Non-Apoptotic TRAIL-Induced Signaling in Pancreatic Ductal Adenocarcinoma Cells. Front Cell Dev Biol 2022; 10:768579. [PMID: 35281089 PMCID: PMC8907891 DOI: 10.3389/fcell.2022.768579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important mediator of tumor immune surveillance. In addition, its potential to kill cancer cells without harming healthy cells led to the development of TRAIL receptor agonists, which however did not show the desired effects in clinical trials. This is caused mainly by apoptosis resistance mechanisms operating in primary cancer cells. Meanwhile, it has been realized that in addition to cell death, TRAIL also induces non-apoptotic pro-inflammatory pathways that may enhance tumor malignancy. Due to its late detection and resistance to current therapeutic options, pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest types of cancer worldwide. A dysregulated pH microenvironment contributes to PDAC development, in which the cancer cells become highly dependent on to maintain their metabolism. The impact of extracellular pH (pHe) on TRAIL-induced signaling in PDAC cells is poorly understood so far. To close this gap, we analyzed the effects of acidic and alkaline pHe, both in short-term and long-term settings, on apoptotic and non-apoptotic TRAIL-induced signaling. We found that acidic and alkaline pHe differentially impact TRAIL-induced responses, and in addition, the duration of the pHe exposition also represents an important parameter. Thus, adaptation to acidic pHe increases TRAIL sensitivity in two different PDAC cell lines, Colo357 and Panc1, one already TRAIL-sensitive and the other TRAIL-resistant, respectively. However, the latter became highly TRAIL-sensitive only by concomitant inhibition of Bcl-xL. None of these effects was observed under other pHe conditions studied. Both TRAIL-induced non-apoptotic signaling pathways, as well as constitutively expressed anti-apoptotic proteins, were regulated by acidic pHe. Whereas the non-apoptotic pathways were differently affected in Colo357 than in Panc1 cells, the impact on the anti-apoptotic protein levels was similar in both cell lines. In Panc1 cells, adaptation to either acidic or alkaline pHe blocked the activation of the most of TRAIL-induced non-apoptotic pathways. Interestingly, under these conditions, significant downregulation of the plasma membrane levels of TRAIL-R1 and TRAIL-R2 was observed. Summing up, extracellular pH influences PDAC cells’ response to TRAIL with acidic pHe adaptation, showing the ability to strongly increase TRAIL sensitivity and in addition to inhibit TRAIL-induced pro-inflammatory signaling.
Collapse
|
8
|
Zhang S, Han Z, Zhang Y, Gao X, Zheng S, Wang R, Wu D. Proton Pump Inhibitors Were Associated With Reduced Pseudocysts in Acute Pancreatitis: A Multicenter Cohort Study. Front Pharmacol 2022; 12:772975. [PMID: 34970144 PMCID: PMC8712680 DOI: 10.3389/fphar.2021.772975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Acute pancreatitis (AP) is a systemic inflammatory disorder with a wide spectrum of clinical symptoms that can range from mild to severe. Previous preclinical study results suggest that proton pump inhibitors (PPIs) can inhibit exocrine pancreatic secretion and exert anti-inflammatory properties, which might in turn improve the outcome of AP. Aim: We conducted this multicenter, retrospective cohort study to investigate the potential effects of PPIs on the mortality, and total duration of hospital stay and local complication occurrence of patients with AP. Methods: A total of 858 patients with AP were included. All patients presented to the hospital within 48 h of symptom onset and were divided into the following two groups: patients who were treated with PPIs (n = 684) and those not treated with PPIs (n = 174). We used propensity score matching (PSM) analysis to reduce confounding bias before comparing the outcomes between the two groups. Results: Before PSM analysis, there were significant differences in a number of parameters between the two groups, including age, sex, hematocrit, blood urea nitrogen, peritonitis signs, Ranson’s score, and Acute Physiology Chronic Health Evaluation II score and organ failure occurrence. Before PSM, the PPIs group had a higher rate of mortality than the control group [RR = 1.065; 95% confidence ratio (CI) 1.045–1.086; p = 0.001]. After PSM, there was no significant difference in mortality (RR = 1.009; 95% CI, 0.999–1.019; p = 0.554) or total hospital stay (p = 0.856), although the PPIs group had a lower occurrence of pancreatic pseudocyst (RR = 0.416; 95% CI 0.221–0.780; p = 0.005). Conclusion: This study showed that PPIs therapy was not associated with reduced mortality or total hospital stay, but was associated with a reduction in the occurrence of pseudocysts in patients with acute pancreatitis.
Collapse
Affiliation(s)
- Shengyu Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziying Han
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Epidemiology Unit, International Clinical Epidemiology Network, Beijing, China
| | - Xiaomao Gao
- Department of Gastroenterology, The Sixth Hospital of Beijing, Beijing, China
| | - Shicheng Zheng
- Department of Gastroenterology, West China Longquan Hospital Sichuan University, Chengdu, China
| | - Ruifeng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Epidemiology Unit, International Clinical Epidemiology Network, Beijing, China
| |
Collapse
|
9
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
11
|
Tawfik D, Zaccagnino A, Bernt A, Szczepanowski M, Klapper W, Schwab A, Kalthoff H, Trauzold A. The A818-6 system as an in-vitro model for studying the role of the transportome in pancreatic cancer. BMC Cancer 2020; 20:264. [PMID: 32228510 PMCID: PMC7106758 DOI: 10.1186/s12885-020-06773-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background The human pancreatic cancer cell line A818–6 can be grown in vitro either as a highly malignant, undifferentiated monolayer (ML) or as three-dimensional (3D) single layer hollow spheres (HS) simulating a benign, highly differentiated, duct-like pancreatic epithelial structure. This characteristic allowing A818–6 cells to switch from one phenotype to another makes these cells a unique system to characterize the cellular and molecular modifications during differentiation on one hand and malignant transformation on the other hand. Ion channels and transport proteins (transportome) have been implicated in malignant transformation. Therefore, the current study aimed to analyse the transportome gene expression profile in the A818–6 cells growing as a monolayer or as hollow spheres. Methods & Results The study identified the differentially expressed transportome genes in both cellular states of A818–6 using Agilent and Nanostring arrays and some targets were validated via immunoblotting. Additionally, these results were compared to a tissue Affymetrix microarray analysis of pancreatic adenocarcinoma patients’ tissues. The overall transcriptional profile of the ML and HS cells confirmed the formerly described mesenchymal features of ML and epithelial nature of HS which was further verified via high expression of E-cadherin and low expression of vimentin found in HS in comparison to ML. Among the predicted features between HS and ML was the involvement of miRNA-9 in this switch. Importantly, the bioinformatics analysis also revealed substantial number (n = 126) of altered transportome genes. Interestingly, three genes upregulated in PDAC tissue samples (GJB2, GJB5 and SLC38A6) were found to be also upregulated in ML and 3 down-regulated transportome genes (KCNQ1, TRPV6 and SLC4A) were also reduced in ML. Conclusion This reversible HS/ML in vitro system might help in understanding the pathophysiological impact of the transportome in the dedifferentiation process in pancreatic carcinogenesis. Furthermore, the HS/ML model represents a novel system for studying the role of the transportome during the switch from a more benign, differentiated (HS) to a highly malignant, undifferentiated (ML) phenotype.
Collapse
Affiliation(s)
- Doaa Tawfik
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Angela Zaccagnino
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Alexander Bernt
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Monika Szczepanowski
- Clinic for Internal Medicine II, Christian-Albrechts-University of Kiel, UKSH, Kiel, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University of Kiel, UKSH, Kiel, Germany
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
12
|
Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H +, K +-ATPases in Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2020; 12:cancers12030640. [PMID: 32164284 PMCID: PMC7139746 DOI: 10.3390/cancers12030640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic duct cells are equipped with acid/base transporters important for exocrine secretion. Pancreatic ductal adenocarcinoma (PDAC) cells may utilize such transporters to acidify extracellular tumor microenvironment, creating a niche favoring cell proliferation, fibrosis and resistance to chemotherapy-all contributing to the notoriously bad prognosis of this disease. Here, we report that gastric and non-gastric H+, K+-ATPases (coded by ATP4A and ATP12A) are overexpressed in human and murine pancreatic cancer and that we can target them specifically with proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) in in vitro models of PDAC. Focusing on pantoprazole, we show that it significantly reduced human cancer cell proliferation by inhibiting cellular H+ extrusion, increasing K+ conductance and promoting cyclin D1-dependent cell cycle arrest and preventing STAT3 activation. Pantoprazole also decreased collagen secretion from pancreatic stellate cells. Importantly, in vivo studies show that pantoprazole treatment of tumor-bearing mice reduced tumor size, fibrosis and expression of angiogenic markers. This work provides the first evidence that H+, K+-ATPases contribute to PDAC progression and that these can be targeted by inhibitors of these pumps, thus proving a promising therapeutic strategy.
Collapse
|
13
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
14
|
O'Malley Y, Rotti PG, Thornell IM, Vanegas Calderón OG, Febres-Aldana C, Durham K, Yao J, Li X, Zhu Z, Norris AW, Zabner J, Engelhardt JF, Uc A. Development of a polarized pancreatic ductular cell epithelium for physiological studies. J Appl Physiol (1985) 2018; 125:97-106. [PMID: 29517421 PMCID: PMC6086968 DOI: 10.1152/japplphysiol.00043.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductular epithelial cells comprise the majority of duct cells in pancreas, control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate ([Formula: see text]) secretion, but are difficult to grow as a polarized monolayer. Using NIH-3T3-J2 fibroblast feeder cells and a Rho-associated kinase inhibitor, we produced well-differentiated and polarized porcine pancreatic ductular epithelial cells. Cells grown on semipermeable filters at the air-liquid interface developed typical epithelial cell morphology and stable transepithelial resistance and expressed epithelial cell markers (zona occludens-1 and β-catenin), duct cell markers (SOX-9 and CFTR), but no acinar (amylase) or islet cell (chromogranin) markers. Polarized cells were studied in Ussing chambers bathed in Krebs-Ringer [Formula: see text] solution at 37°C gassed with 5% CO2 to measure short-circuit currents ( Isc). Ratiometric measurement of extracellular pH was performed with fluorescent SNARF-conjugated dextran at 5% CO2. Cells demonstrated a baseline Isc (12.2 ± 3.2 μA/cm2) that increased significantly in response to apical forskolin-IBMX (∆ Isc: 35.4 ± 3.8 μA/cm2, P < 0.001) or basolateral secretin (∆ Isc: 31.4 ± 2.5 μA/cm2, P < 0.001), both of which increase cellular levels of cAMP. Subsequent addition of apical GlyH-101, a CFTR inhibitor, decreased the current (∆ Isc: 20.4 ± 3.8 μA/cm2, P < 0.01). Extracellular pH and [Formula: see text] concentration increased significantly after forskolin-IBMX (pH: 7.18 ± 0.23 vs. 7.53 ± 0.19; [Formula: see text] concentration, 14.5 ± 5.9 vs. 31.8 ± 13.4 mM; P < 0.05 for both). We demonstrate the development of a polarized pancreatic ductular epithelial cell epithelium with CFTR-dependent [Formula: see text] secretion in response to secretin and cAMP. This model is highly relevant, as porcine pancreas physiology is very similar to humans and pancreatic damage in the cystic fibrosis pig model recapitulates that of humans. NEW & NOTEWORTHY Pancreas ductular epithelial cells control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion. Their function is critical because when CFTR is deficient in cystic fibrosis bicarbonate secretion is lost and the pancreas is damaged. Mechanisms that control pancreatic bicarbonate secretion are incompletely understood. We generated well-differentiated and polarized porcine pancreatic ductular epithelial cells and demonstrated feasibility of bicarbonate secretion. This novel method will advance our understanding of pancreas physiology and mechanisms of bicarbonate secretion.
Collapse
Affiliation(s)
- Yunxia O'Malley
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Pavana G Rotti
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | | | - Christopher Febres-Aldana
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center , Miami Beach, Florida
| | - Katelin Durham
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Jianrong Yao
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Xiaopeng Li
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - Zheng Zhu
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Andrew W Norris
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
15
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|
16
|
The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018; 470:1017-1033. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
Collapse
|
17
|
Bicarbonate : de la physiologie aux applications thérapeutiques pour tout clinicien. Nephrol Ther 2018; 14:13-23. [DOI: 10.1016/j.nephro.2017.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
|
18
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
19
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
20
|
Zaccagnino A, Pilarsky C, Tawfik D, Sebens S, Trauzold A, Novak I, Schwab A, Kalthoff H. In silico analysis of the transportome in human pancreatic ductal adenocarcinoma. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:749-763. [PMID: 27652669 DOI: 10.1007/s00249-016-1171-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022]
Abstract
The altered expression and/or activity of ion channels and transporters (transportome) have been associated with malignant behavior of cancer cells and were proposed to be a hallmark of cancer. However, the impact of altered transportome in epithelial cancers, such as pancreatic ductal adenocarcinoma (PDAC), as well as its pathophysiological consequences, still remains unclear. Here, we report the in silico analysis of 840 transportome genes in PDAC patients' tissues. Our study was focused on the transportome changes and their correlation with functional and behavioral responses in PDAC tumor and stromal compartments. The dysregulated gene expression datasets were filtered using a cut-off of fold-change values ≤-2 or ≥2 (adjusted p value ≤0.05). The dysregulated transportome genes were clearly associated with impaired physiological secretory mechanisms and/or pH regulation, control of cell volume, and cell polarity. Additionally, some down-regulated transportome genes were found to be closely linked to epithelial cell differentiation. Furthermore, the observed decrease in genes coding for calcium and chloride transport might be a mechanism for evasion of apoptosis. In conclusion, the current work provides a comprehensive overview of the altered transportome expression and its association with predicted PDAC malignancy with special focus on the epithelial compartment.
Collapse
Affiliation(s)
- A Zaccagnino
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, UKSH, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - C Pilarsky
- Department of Surgery, University Clinic, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - D Tawfik
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, UKSH, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - S Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, UKSH, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - A Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, UKSH, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - I Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - A Schwab
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27 b, 48149, Muenster, Germany
| | - H Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, UKSH, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
21
|
Han Y, Shewan AM, Thorn P. HCO3- Transport through Anoctamin/Transmembrane Protein ANO1/TMEM16A in Pancreatic Acinar Cells Regulates Luminal pH. J Biol Chem 2016; 291:20345-52. [PMID: 27510033 DOI: 10.1074/jbc.m116.750224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 02/01/2023] Open
Abstract
The identification of ANO1/TMEM16A as the likely calcium-dependent chloride channel of exocrine glands has led to a more detailed understanding of its biophysical properties. This includes a calcium-dependent change in channel selectivity and evidence that HCO3 (-) permeability can be significant. Here we use freshly isolated pancreatic acini that preserve the luminal structure to measure intraluminal pH and test the idea that ANO1/TMEM16A contributes to luminal pH balance. Our data show that, under physiologically relevant stimulation with 10 pm cholesystokinin, the luminal acid load that results from the exocytic fusion of zymogen granules is significantly blunted by HCO3 (-) buffer in comparison with HEPES, and that this is blocked by the specific TMEM16A inhibitor T16inh-A01. Furthermore, in a model of acute pancreatitis, we observed substantive luminal acidification and provide evidence that ANO1/TMEM16A acts to attenuate this pH shift. We conclude that ANO1/TMEM16A is a significant pathway in pancreatic acinar cells for HCO3 (-) secretion into the lumen.
Collapse
Affiliation(s)
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Peter Thorn
- From the School of Biomedical Sciences and the Charles Perkins Centre, John Hopkins Drive, University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
22
|
Monocarboxylate Transporters MCT1 and MCT4 Regulate Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells. Pancreas 2016; 45:1036-47. [PMID: 26765963 DOI: 10.1097/mpa.0000000000000571] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Novel treatments for pancreatic ductal adenocarcinoma (PDAC) are severely needed. The aim of this work was to explore the roles of H-lactate monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in PDAC cell migration and invasiveness. METHODS Monocarboxylate transporter expression, localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. RESULTS MCT1 and MCT4 (messenger RNA, protein) were robustly expressed in all PDAC lines, localizing to the plasma membrane. Lactate influx capacity was highest in AsPC-1 cells and lowest in HPDE cells and was inhibited by the MCT inhibitor α-cyano-4-hydroxycinnamate (4-CIN), MCT1/MCT2 inhibitor AR-C155858, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858 and by MCT1 or MCT4 knockdown. CONCLUSIONS Human PDAC cells exhibit robust MCT1 and MCT4 expression and partially MCT1- and MCT4-dependent lactate flux. PDAC cell migration is partially dependent on MCT4; and invasion, on MCT1 and MCT4. Inhibition of MCT1 and MCT4 may have clinical relevance in PDAC.
Collapse
|
23
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
24
|
Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015; 44:1211-1233. [PMID: 26465950 DOI: 10.1097/mpa.0000000000000421] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
Affiliation(s)
- Petra Pallagi
- From the *First Department of Medicine, University of Szeged; and †Hungarian Academy of Sciences-University of Szeged Translational Gastroenterology Research Group, Szeged, Hungary
| | | | | |
Collapse
|
25
|
ATP release, generation and hydrolysis in exocrine pancreatic duct cells. Purinergic Signal 2015; 11:533-50. [PMID: 26431833 DOI: 10.1007/s11302-015-9472-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide-inactivating and nucleotide-phosphorylating ecto-enzymes. We suggest that extracellular ATP homeostasis in pancreatic ducts may be important in pancreas physiology and potentially in pancreas pathophysiology.
Collapse
|
26
|
Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015; 13:28. [PMID: 26050734 PMCID: PMC4459444 DOI: 10.1186/s12964-015-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Background In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. Results Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells were not depleted of intracellular ATP with CDCA, but acinar cells lost some ATP, as detected by several methods including ATP sensor AT1.03YEMK. In duct cells, CDCA caused reversible increase in the intracellular Ca2+ concentration [Ca2 +]i, which could be significantly inhibited by antagonists of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca2+ signals, but could stimulate Na+/Ca2+ exchange in some conditions. Conclusions CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn increase [Ca2+]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca2+ conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects of BAs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna M Kowal
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Kristian A Haanes
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark. .,Present address: Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.
| | - Nynne M Christensen
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wang J, Barbuskaite D, Tozzi M, Giannuzzo A, Sørensen CE, Novak I. Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases. PLoS One 2015; 10:e0126432. [PMID: 25993003 PMCID: PMC4436373 DOI: 10.1371/journal.pone.0126432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
The mechanism by which pancreas secretes high HCO3- has not been fully resolved. This alkaline secretion, formed in pancreatic ducts, can be achieved by transporting HCO3- from serosa to mucosa or by moving H+ in the opposite direction. The aim of the present study was to determine whether H+/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar localizations in duct cell monolayers (Capan-1) and human pancreas, and notably the gastric pumps are localized on the luminal membranes. In Capan-1 cells, PPIs inhibited recovery of intracellular pH from acidosis. Furthermore, in rats treated with PPIs, pancreatic secretion was inhibited but concentrations of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition it may provide a protective pH buffer zone and K+ recirculation. Furthermore, it seems relevant to re-evaluate whether PPIs should be used in treatment therapies where pancreatic functions are already compromised.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Christiane E. Sørensen
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
28
|
Sauter DRP, Novak I, Pedersen SF, Larsen EH, Hoffmann EK. ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Arch 2014; 467:1495-1508. [PMID: 25163766 PMCID: PMC4464647 DOI: 10.1007/s00424-014-1598-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/22/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst survival rates of all cancers. ANO1 (TMEM16A) is a recently identified Ca2+-activated Cl− channel (CaCC) that is upregulated in several tumors. Although ANO1 was subject to extensive studies in the recent years, its pathophysiological function has only been poorly understood. The aim of the present study is to establish the significance of ANO1 in PDAC behavior and demarcate its roles in PDAC from those of the volume-regulated anion channel (VRAC). We performed qPCR and Western blot measurements on different PDAC cell lines (Panc-1, Mia PaCa 2, Capan-1, AsPC-1, BxPC-3) and compared the results to those obtained in a human pancreatic ductal epithelium (HPDE) cell line. All cancer cell lines showed an upregulation of ANO1 on mRNA and protein levels. Whole-cell patch-clamp recordings identified large Ca2+ and voltage-dependent Cl− currents in PDAC cells. Using siRNA knockdown of ANO1 and three ANO1 inhibitors (T16Ainh-A01, CaCCinh-A01, and NS3728), we found that ANO1 is the main constituent of CaCC current in PDAC cells. We further characterized these three inhibitors and found that they had unspecific effects on the free intracellular calcium concentration. Functional studies on PDAC behavior showed that surprisingly inhibition of ANO1 did not influence cellular proliferation. On the other hand, we found ANO1 channel to be pivotal in PDAC cell migration as assessed in wound healing experiments.
Collapse
Affiliation(s)
- D R P Sauter
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark.
| | - I Novak
- Section for Molecular Integrative Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| | - S F Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - E H Larsen
- Section for Molecular Integrative Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| | - E K Hoffmann
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Kong SC, Giannuzzo A, Gianuzzo A, Novak I, Pedersen SF. Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. Biochem Cell Biol 2014; 92:449-59. [PMID: 25372771 DOI: 10.1139/bcb-2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid tumors are characterized by a microenvironment that is highly acidic, while intracellular pH (pHi) is normal or even elevated. This is the result of elevated metabolic rates in the highly proliferative cancer cells, in conjunction with often greatly increased rates of net cellular acid extrusion. Studies in various cancers have suggested that while the acid extrusion mechanisms employed are generally the same as those in healthy cells, the specific transporters upregulated vary with the cancer type. The main such transporters include Na(+)/H(+) exchangers, various HCO3(-) transporters, H(+) pumps, and lactate-H(+) cotransporters. The mechanisms leading to their dysregulation in cancer are incompletely understood but include changes in transporter expression levels, trafficking and membrane localization, and posttranslational modifications. In turn, accumulating evidence has revealed that in addition to supporting their elevated metabolic rate, their increased acid efflux capacity endows the cancer cells with increased capacity for invasiveness, proliferation, and chemotherapy resistance. The pancreatic duct exhibits an enormous capacity for acid-base transport, rendering pHi dysregulation a potentially very important topic in pancreatic ductal adenocarcinoma (PDAC). PDAC - accounting for about 90% of all pancreatic cancers - has one of the highest cancer mortality rates known, and new diagnostic and treatment options are highly needed. However, very little is known about whether pH regulation is altered in PDAC and, if so, the possible role of this in cancer development. Here, we review current models for pancreatic acid-base transport and pH homeostasis and summarize current views on acid-base dysregulation in cancer, focusing where possible on the few studies to date in PDAC. Finally, we present new data-mining analyses of acid-base transporter expression changes in PDAC and discuss essential directions for future work.
Collapse
Affiliation(s)
- Su Chii Kong
- a Section for Cell and Developmental Biology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|