1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
3
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
4
|
González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10020507. [PMID: 35203715 PMCID: PMC8962419 DOI: 10.3390/biomedicines10020507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
- Correspondence: (A.G.-J.); (A.M.C.)
| | - Walter Vásquez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Gabriela Cifuentes-Riveros
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Rafaela Martínez-Pando
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Correspondence: (A.G.-J.); (A.M.C.)
| |
Collapse
|
5
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Bellezza I, Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. Reductive stress in striated muscle cells. Cell Mol Life Sci 2020; 77:3547-3565. [PMID: 32072237 PMCID: PMC11105111 DOI: 10.1007/s00018-020-03476-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine β-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario Di Ricerca Sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
7
|
N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice. Int J Mol Sci 2020; 21:ijms21124293. [PMID: 32560255 PMCID: PMC7352960 DOI: 10.3390/ijms21124293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Dysferlinopathy is an autosomal recessive muscular dystrophy resulting from mutations in the dysferlin gene. Absence of dysferlin in the sarcolemma and progressive muscle wasting are hallmarks of this disease. Signs of oxidative stress have been observed in skeletal muscles of dysferlinopathy patients, as well as in dysferlin-deficient mice. However, the contribution of the redox imbalance to this pathology and the efficacy of antioxidant therapy remain unclear. Here, we evaluated the effect of 10 weeks diet supplementation with the antioxidant agent N-acetylcysteine (NAC, 1%) on measurements of oxidative damage, antioxidant enzymes, grip strength and body mass in 6 months-old dysferlin-deficient Bla/J mice and wild-type (WT) C57 BL/6 mice. We found that quadriceps and gastrocnemius muscles of Bla/J mice exhibit high levels of lipid peroxidation, protein carbonyls and superoxide dismutase and catalase activities, which were significantly reduced by NAC supplementation. By using the Kondziela’s inverted screen test, we further demonstrated that NAC improved grip strength in dysferlin deficient animals, as compared with non-treated Bla/J mice, without affecting body mass. Together, these results indicate that this antioxidant agent improves skeletal muscle oxidative balance, as well as muscle strength and/or resistance to fatigue in dysferlin-deficient animals.
Collapse
|
8
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
9
|
Zhang M, Zhang M, Wang L, Yu T, Jiang S, Jiang P, Sun Y, Pi J, Zhao R, Guan D. Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling. Life Sci 2019; 230:55-67. [PMID: 31128135 DOI: 10.1016/j.lfs.2019.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
AIMS Cannabinoid type 2 (CB2) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB2 receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown. MAIN METHODS We evaluated the in vivo effect of CB2 receptor activation by the CB2 receptor agonist AM1241 on IR-induced skeletal muscle damage and early myogenesis. We also assessed the effects of CB2 receptor activation on C2C12 myoblasts differentiation and H2O2-induced C2C12 myoblasts damage in vitro, with a focus on the mechanism of Nrf2 signaling. KEY FINDINGS Our results showed that CB2 receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in H2O2-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB2 receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2. SIGNIFICANCE Overall, CB2 receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cannabinoids/pharmacology
- Cell Survival/drug effects
- Heme Oxygenase-1/metabolism
- Hydrogen Peroxide/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Development/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Myoblasts/metabolism
- NF-E2-Related Factor 2/drug effects
- NF-E2-Related Factor 2/physiology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Cannabinoid/physiology
- Reperfusion Injury/metabolism
- Reperfusion Injury/prevention & control
- Signal Transduction
Collapse
Affiliation(s)
- Mengzhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Tianshui Yu
- Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China
| | - Shukun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China
| | - Penghao Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Yingfu Sun
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, China Medical University School of Public Health, Shenyang 110122, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China.
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China.
| |
Collapse
|
10
|
Qiu YL, Cheng XN, Bai F, Fang LY, Hu HZ, Sun DQ. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother 2018; 106:192-199. [PMID: 29958143 DOI: 10.1016/j.biopha.2018.05.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Aucubin (Ai), a natural compound isolated from plants, including Aucuba japonica and Eucommia ulmoides, shows significant anti-inflammatory and anti-oxidative bioactivities. Here, we attempted to explore the protect effects of Ai on LPS-induced acute lung injury (ALI). Our results indicated that Ai increased the survival rate and ameliorated pathogenic processes in lipopolysaccharide (LPS)-induced mice. However, nuclear factor erythroid 2-related factor 2 (Nrf2) deletion may impede protective effect of Ai. Additionally, Ai reduced oxidative stress by down-regulating malondialdehyde (MDA) and O2· activity, and enhancing Nrf2-targeted signals, including heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1). Also, Ai inhibited pro-inflammatory cytokines and phosphorylated-nuclear factor-κB (NF-κB) expression in LPS-administrated mice. However, these protective effects of Ai were suppressed in Nrf2-knockout mice. Importantly, Nrf2-deficiency showed no effects on phosphorylated AMP-activated protein kinase (p-AMPK) expression in mice treated with LPS and Ai. Similarly, in LPS-induced macrophages, Ai reduced reactive oxygen species (ROS) generation, elevated NQO-1 and HO-1 expression. LPS-stimulated pro-inflammatory cytokines and p-NF-κB were reversed by Ai. Of note, we found that Ai-induced Nrf2 activation was dependent on AMPK activation. Suppression of AMPK levels may inhibit Nrf2 activation, finally leading to up regulation of inflammatory response and oxidative stress. Thus, our findings indicated the crosstalk between Nrf2 and AMPK signaling pathways, and the interaction was essential for the anti-oxidant and anti-inflammatory effects of Ai in LPS-induced macrophages, which might be beneficial for finding new treatments against ALI.
Collapse
Affiliation(s)
- Yan-Ling Qiu
- Department of Pediatric, Baoji Maternal and Child Health Hospital, Baoji City 721000, Shaanxi, China
| | - Xiao-Ning Cheng
- Department of Pediatric, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China
| | - Feng Bai
- Department of Child Healthcare, Northwest Women and Children Hospital, Xi'an, 716000, China
| | - Li-Yun Fang
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China
| | - Hui-Zhong Hu
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China
| | - Da-Qing Sun
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China.
| |
Collapse
|
11
|
Nrf2-Keap1 signaling in oxidative and reductive stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:721-733. [PMID: 29499228 DOI: 10.1016/j.bbamcr.2018.02.010] [Citation(s) in RCA: 1190] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Nrf2 and its endogenous inhibitor, Keap1, function as a ubiquitous, evolutionarily conserved intracellular defense mechanism to counteract oxidative stress. Sequestered by cytoplasmic Keap1 and targeted to proteasomal degradation in basal conditions, in case of oxidative stress Nrf2 detaches from Keap1 and translocates to the nucleus, where it heterodimerizes with one of the small Maf proteins. The heterodimers recognize the AREs, that are enhancer sequences present in the regulatory regions of Nrf2 target genes, essential for the recruitment of key factors for transcription. In the present review we briefly introduce the Nrf2-Keap1 system and describe Nrf2 functions, illustrate the Nrf2-NF-κB cross-talk, and highlight the effects of the Nrf2-Keap1 system in the physiology and pathophysiology of striated muscle tissue taking into account its role(s) in oxidative stress and reductive stress.
Collapse
|
12
|
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling. Sci Rep 2018; 8:2446. [PMID: 29402993 PMCID: PMC5799251 DOI: 10.1038/s41598-018-20901-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency.
Collapse
|
13
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
14
|
Increased Circulating Levels of Interleukin-6 Induce Perturbation in Redox-Regulated Signaling Cascades in Muscle of Dystrophic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1987218. [PMID: 28845212 PMCID: PMC5563418 DOI: 10.1155/2017/1987218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease in which dystrophin gene is mutated, resulting in dysfunctional or absent dystrophin protein. The pathology of dystrophic muscle includes degeneration, necrosis with inflammatory cell invasion, regeneration, and fibrous and fatty changes. Nevertheless, the mechanisms by which the absence of dystrophin leads to muscle degeneration remain to be fully elucidated. An imbalance between oxidant and antioxidant systems has been proposed as a secondary effect of DMD. However, the significance and precise extent of the perturbation in redox signaling cascades is poorly understood. We report that mdx dystrophic mice are able to activate a compensatory antioxidant response at the presymptomatic stage of the disease. In contrast, increased circulating levels of IL-6 perturb the redox signaling cascade, even prior to the necrotic stage, leading to severe features and progressive nature of muscular dystrophy.
Collapse
|
15
|
Lin XH, Pan JB, Zhang XJ. WITHDRAWN: Anti-inflammatory and anti-oxidant effects of apigetrin on LPS-induced acute lung injury by regulating Nrf2 and AMPK pathways. Biochem Biophys Res Commun 2017:S0006-291X(17)31413-4. [PMID: 28712867 DOI: 10.1016/j.bbrc.2017.07.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiang-Hua Lin
- Department of Respiratory, Henan Provincial People's Hospital, Zhengzhou University, 7 Weiwu Road, 450003 Zhengzhou, China
| | - Jin-Bing Pan
- Department of Respiratory, Henan Provincial People's Hospital, Zhengzhou University, 7 Weiwu Road, 450003 Zhengzhou, China
| | - Xiao-Ju Zhang
- Department of Respiratory, Henan Provincial People's Hospital, Zhengzhou University, 7 Weiwu Road, 450003 Zhengzhou, China
| |
Collapse
|
16
|
Peter AK, Miller G, Capote J, DiFranco M, Solares-Pérez A, Wang EL, Heighway J, Coral-Vázquez RM, Vergara J, Crosbie-Watson RH. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F. Skelet Muscle 2017; 7:11. [PMID: 28587652 PMCID: PMC5461684 DOI: 10.1186/s13395-017-0127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. METHODS Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. RESULTS Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd-/-) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. CONCLUSIONS Alternative splicing of proteins from the SG-SSPN complex produces δ-SG3, microspan, and nanospan that localize to the ZSR and the triadic SR, where they may play a role in regulating resting calcium levels as supported by previous studies (Estrada et al., Biochem Biophys Res Commun 340:865-71, 2006). Thus, alternative splicing of SSPN mRNA generates three protein isoforms (SSPN, microspan, and nanospan) that differ in the number of transmembrane domains affecting subcellular membrane association into distinct protein complexes.
Collapse
Affiliation(s)
- Angela K Peter
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Present Address: Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Gaynor Miller
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Present Address: Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Joana Capote
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marino DiFranco
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alhondra Solares-Pérez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emily L Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Jim Heighway
- Cancer Communications and Consultancy Ltd, Knutsford, Cheshire, UK
| | - Ramón M Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julio Vergara
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Robison P, Prosser BL. Microtubule mechanics in the working myocyte. J Physiol 2017; 595:3931-3937. [PMID: 28116814 DOI: 10.1113/jp273046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022] Open
Abstract
The mechanical role of cardiac microtubules (MTs) has been a topic of some controversy. Early studies, which relied largely on pharmacological interventions that altered the MT cytoskeleton as a whole, presented no consistent role. Recent advances in the ability to observe and manipulate specific properties of the cytoskeleton have strengthened our understanding. Direct observation of MTs in working myocytes suggests a spring-like function, one that is surprisingly tunable by post-translational modification (PTM). Specifically, detyrosination of MTs facilitates an interaction with intermediate filaments that complex with the sarcomere, altering myocyte stiffness, contractility, and mechanosignalling. Such results support a paradigm of cytoskeletal regulation based on not only polymerization, but also associations with binding partners and PTMs that divide the MT cytoskeleton into functionally distinct subsets. The evolutionary costs and benefits of tuning cytoskeletal mechanics remain an open question, one that we discuss herein. Nevertheless, mechanically distinct MT subsets provide a rich new source of therapeutic targets for a variety of phenomena in the heart.
Collapse
Affiliation(s)
- Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Miragoli M, Cabassi A. Mitochondrial Mechanosensor Microdomains in Cardiovascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:247-264. [PMID: 28551791 DOI: 10.1007/978-3-319-55330-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cardiomyocytes populating the 'working myocardium' are highly organized and such organization ranges from macroscale (e.g. the geometrical rod shape) to microscale (dyad/t-tubules) domains. This meticulous level of organization is imperative for assuring the normal and physiological pump-function of the heart. In the pathological cardiac tissue, the domains-related architecture is partially lost, resulting in morphological, electrical and metabolic remodeling and promoting cardiovascular diseases including heart failure and arrhythmias. Indeed, arrhythmogenesis during heart failure is a major clinical problem. Arrhythmias have been extensively studied from an electrical etiology, but only recently, physiologists and scientists have focused their attention on cellular and subcellular mechanosensors. We and others have investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. This chapter highlights the recent findings in the field, especially the role of mitochondria function and alignment in failing cardiomyocytes interrogated via nanomechanical stimuli.
Collapse
Affiliation(s)
- Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, 43124, Italy. .,Humanitas Clinical and Research Center, Rozzano, MI, Italy.
| | - Aderville Cabassi
- Department of Medicine and Surgery, University of Parma, Parma, 43124, Italy
| |
Collapse
|
19
|
Duleh S, Wang X, Komirenko A, Margeta M. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol Commun 2016; 4:115. [PMID: 27799074 PMCID: PMC5088660 DOI: 10.1186/s40478-016-0384-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022] Open
Abstract
Nrf2 (nuclear factor [erythroid-derived 2]-like 2; the transcriptional master regulator of the antioxidant stress response) is regulated through interaction with its cytoplasmic inhibitor Keap1 (Kelch-like ECH-associated protein 1), which under basal conditions targets Nrf2 for proteasomal degradation. Sequestosome 1 (SQSTM1)/p62–a multifunctional adapter protein that accumulates following autophagy inhibition and can serve as a diagnostic marker for human autophagic vacuolar myopathies (AVMs)–was recently shown to compete with Nrf2 for Keap1 binding, resulting in activation of the Nrf2 pathway. In this study, we used 55 human muscle biopsies divided into five groups [normal control, hydroxychloroquine- or colchicine-treated non-AVM control, hydroxychloroquine- or colchicine-induced toxic AVM, polymyositis, and inclusion body myositis (IBM)] to evaluate whether Keap1-SQSTM1 interaction led to increased Nrf2 signaling in human AVMs. In toxic AVMs and IBM, but not in control muscle groups or polymyositis, Keap1 antibody labeled sarcoplasmic protein aggregates that can be used as an alternate diagnostic marker for both AVM types; these Keap1-positive aggregates were co-labeled with the antibody against SQSTM1 but not with the antibody against autophagosome marker LC3 (microtubule-associated protein 1 light chain 3). In human AVM muscle, sequestration of Keap1 into the SQSTM1-positive protein aggregates was accompanied by an increase in mRNA and protein levels of Nrf2 target genes; similarly, treatment of differentiated C2C12 myotubes with autophagy inhibitor chloroquine led to an increase in the nuclear Nrf2 protein level and an increase in expression of the Nrf2-regulated genes. Taken together, our findings demonstrate that Nrf2 signaling is upregulated in autophagic muscle disorders and raise the possibility that autophagy disruption in skeletal muscle leads to dysregulation of cellular redox homeostasis.
Collapse
|
20
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
21
|
Hernández-Ochoa EO, Vanegas C, Iyer SR, Lovering RM, Schneider MF. Alternating bipolar field stimulation identifies muscle fibers with defective excitability but maintained local Ca(2+) signals and contraction. Skelet Muscle 2016; 6:6. [PMID: 26855765 PMCID: PMC4743112 DOI: 10.1186/s13395-016-0076-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Most cultured enzymatically dissociated adult myofibers exhibit spatially uniform (UNI) contractile responses and Ca2+ transients over the entire myofiber in response to electric field stimuli of either polarity applied via bipolar electrodes. However, some myofibers only exhibit contraction and Ca2+ transients at alternating (ALT) ends in response to alternating polarity field stimulation. Here, we present for the first time the methodology for identification of ALT myofibers in primary cultures and isolated muscles, as well as a study of their electrophysiological properties. Results We used high-speed confocal microscopic Ca2+ imaging, electric field stimulation, microelectrode recordings, immunostaining, and confocal microscopy to characterize the properties of action potential-induced Ca2+ transients, contractility, resting membrane potential, and staining of T-tubule voltage-gated Na+ channel distribution applied to cultured adult myofibers. Here, we show for the first time, with high temporal and spatial resolution, that normal control myofibers with UNI responses can be converted to ALT response myofibers by TTX addition or by removal of Na+ from the bathing medium, with reappearance of the UNI response on return of Na+. Our results suggest disrupted excitability as the cause of ALT behavior and indicate that the ALT response is due to local depolarization-induced Ca2+ release, whereas the UNI response is triggered by action potential propagation over the entire myofiber. Consistent with this interpretation, local depolarizing monopolar stimuli give uniform (propagated) responses in UNI myofibers, but only local responses at the electrode in ALT myofibers. The ALT responses in electrically inexcitable myofibers are consistent with expectations of current spread between bipolar stimulating electrodes, entering (hyperpolarizing) one end of a myofiber and leaving (depolarizing) the other end of the myofiber. ALT responses were also detected in some myofibers within intact isolated whole muscles from wild-type and MDX mice, demonstrating that ALT responses can be present before enzymatic dissociation. Conclusions We suggest that checking for ALT myofiber responsiveness by looking at the end of a myofiber during alternating polarity stimuli provides a test for compromised excitability of myofibers, and could be used to identify inexcitable, damaged or diseased myofibers by ALT behavior in healthy and diseased muscle. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0076-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| | - Camilo Vanegas
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| |
Collapse
|
22
|
Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS, Raiteri R, Prosser BL, Ward CW. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 2015; 6:8526. [PMID: 26446751 PMCID: PMC4633818 DOI: 10.1038/ncomms9526] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca(2+) signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca(2+) homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics. In the mdx mouse model of DMD, the pharmacological reduction of detyrosination in vitro ablates aberrant X-ROS and Ca(2+) signalling, and in vivo it protects against hallmarks of DMD, including workload-induced arrhythmias and contraction-induced injury in skeletal muscle. We conclude that detyrosinated microtubules increase cytoskeletal stiffness and mechanotransduction in striated muscle and that targeting this post-translational modification may have broad therapeutic potential in muscular dystrophies.
Collapse
Affiliation(s)
- Jaclyn P. Kerr
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guoli Shi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Alexey I. Bogush
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron M. Kempema
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Joseph K. Hexum
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Natalia Becerra
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Daniel A. Harki
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stuart S. Martin
- Marlene and Stuart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher W. Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
23
|
Yamaguchi M, Murakami S, Yoneda T, Nakamura M, Zhang L, Uezumi A, Fukuda S, Kokubo H, Tsujikawa K, Fukada SI. Evidence of Notch-Hesr-Nrf2 Axis in Muscle Stem Cells, but Absence of Nrf2 Has No Effect on Their Quiescent and Undifferentiated State. PLoS One 2015; 10:e0138517. [PMID: 26418810 PMCID: PMC4587955 DOI: 10.1371/journal.pone.0138517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022] Open
Abstract
Nrf2 is a master regulator of oxidative stresses through the induction of anti-oxidative genes. Nrf2 plays roles in maintaining murine hematopoietic stem cells and fly intestinal stem cells. The canonical Notch signaling pathway is also crucial for maintaining several types of adult stem cells including muscle stem cells (satellite cells). Here, we show that Dll1 induced Nrf2 expression in myogenic cells. In addition, primary targets of Notch signaling, Hesr1 and Hesr3, were involved in the up-regulation of Nrf2 mRNA and expression of its target genes. In vitro, Nrf2 had anti-myogenic and anti-proliferative effects on primary myoblasts. In vivo, although Nrf2-knockout mice showed decreased expression of its target genes in muscle stem cells, adult muscle stem cells of Nrf2-knockout mice did not exhibit the phenotype. Taken together, in muscle stem cells, the Notch-Hesr-Nrf2 axis is a pathway potentially inducing anti-oxidative genes, but muscle stem cells either do not require Nrf2-mediated anti-oxidative gene expression or they have a complementary system compensating for the loss of Nrf2.
Collapse
Affiliation(s)
- Masahiko Yamaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Murakami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Yoneda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Sumiaki Fukuda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- * E-mail:
| |
Collapse
|
24
|
Walsh ME, Bhattacharya A, Liu Y, Van Remmen H. Butyrate prevents muscle atrophy after sciatic nerve crush. Muscle Nerve 2015; 52:859-68. [PMID: 25727783 DOI: 10.1002/mus.24622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Histone deacetylases (HDACs) have been implicated in neurogenic muscle atrophy, but the mechanisms by which HDAC inhibitors might have beneficial effects are not defined. METHODS We used sciatic nerve crush to determine the effect of butyrate on denervation-induced gene expression and oxidative stress. RESULTS Butyrate treatment initiated 3 weeks before injury and continued 1 week after injury increases histone acetylation and reduces muscle atrophy after nerve crush. Butyrate delivered only after nerve crush similarly prevented muscle atrophy. Butyrate had no effect on the increase in histone deacetylase 4 (HDAC4) protein levels following nerve crush but prevented the increase in expression of myogenin, MuRF1, and atrogin-1. Butyrate did not affect mitochondrial reactive oxygen species production, but it increased antioxidant enzyme activity, reduced proteasome activity, and reduced oxidative damage following nerve injury. CONCLUSIONS These data suggest that HDAC inhibitors are promising pharmacological agents for treating neurogenic muscle atrophy. Muscle Nerve 52: 859-868, 2015.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Barshop Institute for Longevity and Aging Studies, San Antonio, Texas, USA
| | - Arunabh Bhattacharya
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Barshop Institute for Longevity and Aging Studies, San Antonio, Texas, USA
| | - Yuhong Liu
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas, USA
| | - Holly Van Remmen
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
25
|
Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Hölzle F, Kan YW, Pufe T, Sönmez TT, Wruck CJ. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 2014; 234:538-47. [DOI: 10.1002/path.4418] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Othman Al-Sawaf
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Christian Rosen
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Nora Keimes
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Elisa Anamaria Liehn
- Institute for Molecular Cardiovascular Research; University Hospital, RWTH Aachen University; Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Yuet Wai Kan
- Department of Laboratory Medicine; University of California; San Francisco CA USA
| | - Thomas Pufe
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| |
Collapse
|
26
|
Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca(2+) homeostasis in skeletal muscle. Front Physiol 2014; 5:89. [PMID: 24639655 PMCID: PMC3944681 DOI: 10.3389/fphys.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/15/2014] [Indexed: 11/13/2022] Open
Abstract
The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin, including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or slow the progression of dysferlinopathy are of the utmost importance. Recent advances in the study of dysferlinopathy have highlighted the necessity for the maintenance of calcium handling in altering or slowing the progression of muscular degeneration resulting from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule structure and function.
Collapse
Affiliation(s)
- Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Christopher W Ward
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|