1
|
Young MJ, Heanue S, Kanki M, Moneghetti KJ. Circadian disruption and its impact on the cardiovascular system. Trends Endocrinol Metab 2024:S1043-2760(24)00316-3. [PMID: 39706759 DOI: 10.1016/j.tem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Circadian rhythms are highly conserved biorhythms of ~24 h that govern many fundamental biological processes, including cardiovascular (CV) homeostasis. Disrupting the timing of cellular oscillators promotes cellular stress, and induction of pathogenic pathways underpins the pathogenesis of many CV diseases (CVDs). Thus, shift work, late eating, sleep disturbances, and other disruptors can result in an elevated risk of heart disease and increased incidence of adverse CV events. Here, we discuss the importance of circadian rhythms for CV homeostasis, recent developments in understanding the impact of disrupted circadian rhythms on CV health and disease progression, and how understanding the interactions between circadian and CV physiology is crucial for improving interventions to mitigate CVD, especially in populations impacted by disrupted circadian rhythms.
Collapse
Affiliation(s)
- Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Seamus Heanue
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Monica Kanki
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kegan J Moneghetti
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Lun R, Sreekrishnan A, Liu HY, Albers GW. Ischemic core volumes and collateral status have diurnal fluctuations - A retrospective cohort study of 18,137 patients. J Stroke Cerebrovasc Dis 2024; 33:107965. [PMID: 39187216 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
INTRODUCTION Recent observations suggest that circadian rhythms are implicated in the timing of stroke onset and the speed of infarct progression. We aimed to replicate these observations in a large, multi-center, automated imaging database. METHODS The RAPID Insights database was queried from 02/01/2016 to 01/31/2022 for patients with perfusion imaging and automated detection of an ischemic stroke due to a presumed large vessel occlusion. Exclusion criteria included: patient age ≤25, mismatch volume of <0 cc, and failure to register a positive value on either relative cerebral blood flow (rCBF) reduction of 38% less than normal or total mismatch volume. Imaging time was subdivided into three epochs: Night: 23:00h-06:59h and Day: 07:00h-14:59h, and Evening: 15:00h-22:59h. Perfusion parameters were defined using standard conventions for core volume, penumbra, and collateral circulation (measured via the Hypoperfusion Intensity Ratio, HIR). Statistical significance was tested using a sinusoidal regression analysis. RESULTS A total of 18,137 cases were analyzed. The peak incidence of stroke imaging of patients with LVOs occurred around noon. A sinusoidal pattern was present, with larger ischemic core volumes and higher HIR during the night compared to the day: peak ischemic core volume of 23.4 cc occurred with imaging performed at 3:56 AM (p<0.001) and peak HIR of 0.35 at 3:40 AM (p<0.001). CONCLUSION We found that ischemic core volumes were larger and collateral status worse at nighttime compared to daytime in this large national database. These findings support prior data suggesting that poor collateral recruitment with subsequent larger ischemic stroke volumes may occur at night.
Collapse
Affiliation(s)
- Ronda Lun
- Department of Neurology, Stanford Hospital, Palo Alto, CA, United States.
| | - Anirudh Sreekrishnan
- Department of Neurology, Stanford Hospital, Palo Alto, CA, United States; Department of Neurology, University of California, San Francisco, United States.
| | - Hung-Yu Liu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA, United States.
| |
Collapse
|
3
|
Fatima G, Parvez S, Tuomainen P, Fedacko J, Kazmi DH, Elkilany GEN. Amalgamation of Circadian Clock Gene with Incidence of Myocardial Infarction. INDIAN JOURNAL OF CARDIOVASCULAR DISEASE IN WOMEN 2024; 9:155-161. [DOI: 10.25259/ijcdw_69_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Objectives:
The present study included 40 participants to investigate the association of circadian locomotor output cycles kaput (CLOCK) rs4580704 polymorphism with myocardial infarction (MI) cases.
Materials and Methods:
In this study, we enrolled 20 male and 20 female cases with MI. Genomic DNA extraction was done from lymphocytes using conventional techniques, employing the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) from lymphocytes. Genotyping was conducted through TaqMan single-nucleotide polymorphism genotyping assays, employing real-time polymerase chain reaction (PCR) on a 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). This streamlined approach ensures accurate and efficient analysis of genetic markers associated with MI across gender groups.
Results:
The study revealed significant associations between body mass index (BMI), hypertension, obesity, current smoking, and type 2 diabetes among both male and female MI patients. However, age, systolic blood pressure (SBP), and diastolic blood pressure (DBP) did not exhibit significant differences between genders. Analysis of CLOCK rs4580704 polymorphism indicated no variance in genotype and allele frequencies between male and female MI patients. When considering both genders, CLOCK rs4580704 polymorphism was significantly associated with BMI, hypertension, obesity, current smoking, and type 2 diabetes (P = 0.02, P = 0.02, P = 0.04, and P = 0.02, respectively). Nevertheless, logistic regression analysis showed no significant differences among MI cases across the various models of CLOCK rs4580704 polymorphism.
Conclusion:
No significant association was found between CLOCK rs4580704 polymorphism and MI in both genders. However, significant links were identified between this polymorphism and various cardiovascular risk factors including BMI, SBP, DBP, hypertension, obesity, current smoking, and type 2 diabetes in MI cases. These findings underscore the potential influence of CLOCK rs4580704 polymorphism on cardiovascular risk profiles among individuals with MI.
Collapse
Affiliation(s)
- Ghizal Fatima
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Uttar Pradesh, India
| | - Sidrah Parvez
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Uttar Pradesh, India
| | - Petri Tuomainen
- Department of Cardiology, University of Eastern Finland, Centre for Medicine and Clinical Research, Kuopio, Finland
| | - Jan Fedacko
- Department of Gerontology and Geriatric, Medipark, University Research Park, PJ Safarik University, Kosice, Slovakia
| | - Danish Hasan Kazmi
- Department of Cardiology, Medanta Heart Institute, Amar Shaheed Path, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Yu Y, Liu JY, Yang HJ, Luo XQ, Gao XP, Huang XX, Tang AX, Mary Cheng HY, Liu WC, Zhang P. Circadian disruption during fetal development promotes pathological cardiac remodeling in male mice. iScience 2024; 27:109008. [PMID: 38352228 PMCID: PMC10863319 DOI: 10.1016/j.isci.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Disruption of circadian rhythms during fetal development may predispose mice to developing heart disease later in life. Here, we report that male, but not female, mice that had experienced chronic circadian disturbance (CCD) in utero were more susceptible to pathological cardiac remodeling compared with mice that had developed under normal intrauterine conditions. CCD-treated males showed ventricular chamber dilatation, enhanced myocardial fibrosis, decreased contractility, higher rates of induced tachyarrhythmia, and elevated expression of biomarkers for heart failure and myocardial remodeling. In utero CCD exposure also triggered sex-dependent changes in cardiac gene expression, including upregulation of the secretoglobin gene, Scgb1a1, in males. Importantly, cardiac overexpression of Scgb1a1 was sufficient to induce myocardial hypertrophy in otherwise naive male mice. Our findings reveal that in utero CCD exposure predisposes male mice to pathological remodeling of the heart later in life, likely as a consequence of SCGB1A1 upregulation.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hui-Jiao Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Qin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ping Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Xin Huang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ao-Xue Tang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Wei-Chao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
5
|
Rabinovich-Nikitin I, Kirshenbaum LA. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2024; 34:1-7. [PMID: 36150629 DOI: 10.1016/j.tcm.2022.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Circadian mechanisms have been associated with the pathogenesis of a variety of cardiovascular diseases, including myocardial ischemia-reperfusion injury (I-R). Myocardial ischemia resulting from impaired oxygen delivery to cardiac muscle sets into motion a cascade of cellular events that paradoxically triggers greater cardiac dysfunction upon reinstitution of coronary blood supply, a phenomenon known as I-R. I-R injury has been attributed to a number of cellular defects including increased reactive oxygen species (ROS), increased intracellular calcium and impaired mitochondrial bioenergetics that ultimately lead to cardiac cell death, ventricular remodeling and heart failure. Emerging evidence has identified a strong correlation between cellular defects that underlie I-R and the disrupted circadian. In fact, recent studies have shown that circadian dysfunction exacerbates cardiac injury following MI from impaired cellular quality control mechanisms such as autophagy, which are vital in the clearance of damaged cellular proteins and organelles such as mitochondria from the cell. The accumulation of cellular debris is posited as the central underlying cause of excessive cardiac cell death and ventricular dysfunction following MI. The complexities that govern the interplay between circadian biology and I-R injury following MI is at its infancy and understanding how circadian misalignment, such as in shift workers impacts I-R injury is of great scientific and clinical importance toward development of new therapeutic strategies using chronotherapy and circadian regulation to mitigate cardiac injury and improve cardiac outcomes after injury. In this review, we highlight recent advances in circadian biology and adaptive cellular quality control mechanisms that influence cardiac injury in response to MI injury with a specific focus on how circadian biology can be utilized to further cardiovascular medicine and patient care.
Collapse
Affiliation(s)
- Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Canada; Department of Pharmacology and Therapeutics Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2H6, Canada.
| |
Collapse
|
6
|
Fernandes BF, Kock KDS. Acute coronary syndrome in a hospital in southern Brazil: peak of hospitalizations on Mondays and severe cases on weekends and at night. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2022; 12:307-314. [PMID: 36743513 PMCID: PMC9890198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Ischemic heart disease is the leading cause of death in Brazil and worldwide. The term acute coronary syndrome (ACS) generically represents the acute myocardial ischemic events. These events are clinically divided into three types: acute myocardial infarction (AMI) with ST-segment elevation, AMI without ST-segment elevation, and unstable angina. Although cardiovascular ischemic events occur acutely, studies describe cyclic patterns of ACS, mainly on circadian and weekly variation. OBJECTIVE The aim of this study was to analyze the circadian and weekly variation of hospitalizations for ACS in a hospital in southern Brazil in 2019. METHODS Observational, cross-sectional type study. The population was the patients hospitalized at the Nossa Senhora da Conceição Hospital (NSCH) in Tubarão (SC, Brazil) with the international classification of diseases (ICD) code referring to ACS in the year 2019, corresponding to 579 patients. RESULTS After applying the exclusion criteria, 512 patients hospitalized for ACS were analyzed, 55.1% were male with a median (p25-p75) age of 62.0 (56.0-69.0) years. The main ICDs of hospitalization were: I20.0 (76.2%), I21.9 (16.6%), I21.3 (3.1%) and the most prevalent comorbidities were high blood pressure (82.6%), diabetes (30.1%) and previous AMI (23.6%). The median (p25-p75) time of admission was 14 h (10-18) h and length of stay was 5 (3-9) days. Death occurred in 18 hospitalizations (3.5%) of cases. CONCLUSION We conclude that in the present study there was a peak of hospitalizations for ACS on Mondays, proportionally reducing throughout the week and with a significant decrease on the weekend.
Collapse
|
7
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
8
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
9
|
Delisle BP, George AL, Nerbonne JM, Bass JT, Ripplinger CM, Jain MK, Hermanstyne TO, Young ME, Kannankeril PJ, Duffy JF, Goldhaber JI, Hall MH, Somers VK, Smolensky MH, Garnett CE, Anafi RC, Scheer FA, Shivkumar K, Shea SA, Balijepalli RC. Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects. Circ Arrhythm Electrophysiol 2021; 14:e010181. [PMID: 34719240 PMCID: PMC8815462 DOI: 10.1161/circep.121.010181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period.
Collapse
Affiliation(s)
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jeanne M. Nerbonne
- Departments of Medicine, Cardiovascular Division, and Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Joseph T. Bass
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Martin E. Young
- Department of Medicine, University of Alabama, Birmingham, AL
| | | | | | | | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Ron C. Anafi
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Kalyanam Shivkumar
- Departement of Medicine, David Greffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven A. Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
10
|
Liu ZC, Yu WW, Zhou HC, Lan ZC, Wu T, Xiong SM, Yan L, Liu HB. Lycium barbarum polysaccharides ameliorate LPS-induced inflammation of RAW264.7 cells and modify the behavioral score of peritonitis mice. J Food Biochem 2021; 45:e13889. [PMID: 34426988 DOI: 10.1111/jfbc.13889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
In the present study, the anti-inflammatory effect of Lycium barbarum polysaccharide (LBP) and the possible molecular mechanism thereof were examined, so as to perceive the pharmacological action of LBP. With acute peritonitis in mice as the inflammatory model, the protective effect of LBP on peritonitis mice was evaluated by recording the effect of behavioral scores, studying the pathological damage of intestine and liver, and detecting the levels of inflammatory cytokines. Additionally, by establishing an lipopolysaccharide (LPS)-induced RAW264.7 macrophage model, the effect of LBP on RAW264.7 cell phenotype and culture supernatant inflammatory markers was observed. Finally, the activation of inflammation-related target genes, such as iNOS, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) p65, and IκBα, were further detected. The results reveal that pretreatment with LBP could decrease the behavioral score of inflammatory mice, inhibit the secretion of pro-inflammatory factors, and reduce liver and intestine injury. LBP can regulate the effect of lipopolysaccharide on the polarization of RAW264.7 cells, and reduce the production of NO and cytokines (TNF-α, IL-1β, IL-6). Further, LBP pretreatment was found to be able to significantly reduce the expression of iNOS, TLR4, NF-κB p65, and IκBα in macrophages. The present research provides evidence that LBP exerts potential anti-inflammatory activity in LPS-induced RAW264.7 macrophages via inhibiting TLR4 and NF-κB inflammatory sites and improving the behavior score of peritonitis mice. PRACTICAL APPLICATIONS: In recent years, the number of deaths worldwide has continued to rise as a result of inflammation. Despite said rise in deaths, many synthetic drugs with anti-inflammatory properties are significantly expensive and also have a host of side effects. Thus, the development of new anti-inflammatory drugs derived from medicinal plants has broad application potential. As such, in the present study, lipopolysaccharide (LPS)-induced macrophages were used to establish inflammatory cell models to verify the anti-inflammatory effect of Lycium barbarum polysaccharides (LBP). Findings were made that LBP could reduce the expression levels of inflammatory cytokines and NO by regulating macrophage polarization and NF-κB translocation, and thus, could exert anti-inflammatory activity. In addition, by intraperitoneal injection of LPS to establish peritonitis mice models, LBP pretreatment was found to have significantly modified the behavioral score of mice, while decreasing the secretion of inflammatory factors and the damage to several organs. The present study provides a basis for further understanding the effects of LBP in acute inflammation.
Collapse
Affiliation(s)
- Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zheng-Cang Lan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Tong Wu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Shi-Meng Xiong
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
11
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
12
|
Zhang J, Sun R, Jiang T, Yang G, Chen L. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules 2021; 11:biom11060868. [PMID: 34207942 PMCID: PMC8230716 DOI: 10.3390/biom11060868] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Ruoyu Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
- Correspondence: ; Tel.: +86-411-86118984
| |
Collapse
|
13
|
Circadian rhythms: influence on physiology, pharmacology, and therapeutic interventions. J Pharmacokinet Pharmacodyn 2021; 48:321-338. [PMID: 33797011 PMCID: PMC8015932 DOI: 10.1007/s10928-021-09751-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are ubiquitous phenomena that recur daily in a self-sustaining, entrainable, and oscillatory manner, and orchestrate a wide range of molecular, physiological, and behavioral processes. Circadian clocks are comprised of a hierarchical network of central and peripheral clocks that generate, sustain, and synchronize the circadian rhythms. The functioning of the peripheral clock is regulated by signals from autonomic innervation (from the central clock), endocrine networks, feeding, and other external cues. The critical role played by circadian rhythms in maintaining both systemic and tissue-level homeostasis is well established, and disruption of the rhythm has direct consequence for human health, disorders, and diseases. Circadian oscillations in both pharmacokinetics and pharmacodynamic processes are known to affect efficacy and toxicity of several therapeutic agents. A variety of modeling approaches ranging from empirical to more complex systems modeling approaches have been applied to characterize circadian biology and its influence on drug actions, optimize time of dosing, and identify opportunities for pharmacological modulation of the clock mechanisms and their downstream effects. In this review, we summarize current understanding of circadian rhythms and its influence on physiology, pharmacology, and therapeutic interventions, and discuss the role of chronopharmacometrics in gaining new insights into circadian rhythms and its applications in chronopharmacology.
Collapse
|
14
|
Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8815349. [PMID: 33488934 PMCID: PMC7790555 DOI: 10.1155/2020/8815349] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Cardiac remodeling describes a series of structural and functional changes in the heart after myocardial infarction (MI). Adverse post-MI cardiac remodeling directly jeopardizes the recovery of cardiac functions and the survival rate in MI patients. Several classes of drugs are proven to be useful to reduce the mortality of MI patients. However, it is an ongoing challenge to prevent the adverse effects of cardiac remodeling. The present review aims to identify the pharmacological therapies from the existing clinical drugs for the treatment of adverse post-MI cardiac remodeling. Post-MI cardiac remodeling is a complex process involving ischemia/reperfusion, inflammation, cell death, and deposition of extracellular matrix (ECM). Thus, the present review included two parts: (1) to examine the basic pathophysiology in the cardiovascular system and the molecular basis of cardiac remodeling and (2) to identify the pathological aspects of cardiac remodeling and the potential of the existing pharmacotherapies. Ultimately, the present review highlights drug repositioning as a strategy to discover effective therapies from the existing drugs against post-MI cardiac remodeling.
Collapse
|
15
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
16
|
Lee T, Cho CH, Kim WR, Moon JH, Kim S, Geum D, In HP, Lee HJ. Development of model based on clock gene expression of human hair follicle cells to estimate circadian time. Chronobiol Int 2020; 37:993-1001. [PMID: 32654537 DOI: 10.1080/07420528.2020.1777150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Considering the effects of circadian misalignment on human pathophysiology and behavior, it is important to be able to detect an individual's endogenous circadian time. We developed an endogenous Clock Estimation Model (eCEM) based on a machine learning process using the expression of 10 circadian genes. Hair follicle cells were collected from 18 healthy subjects at 08:00, 11:00, 15:00, 19:00, and 23:00 h for two consecutive days, and the expression patterns of 10 circadian genes were obtained. The eCEM was designed using the inverse form of the circadian gene rhythm function (i.e., Circadian Time = F(gene)), and the accuracy of eCEM was evaluated by leave-one-out cross-validation (LOOCV). As a result, six genes (PER1, PER3, CLOCK, CRY2, NPAS2, and NR1D2) were selected as the best model, and the error range between actual and predicted time was 3.24 h. The eCEM is simple and applicable in that a single time-point sampling of hair follicle cells at any time of the day is sufficient to estimate the endogenous circadian time.
Collapse
Affiliation(s)
- Taek Lee
- Department of Convergence Security Engineering, Sungshin University , Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Chungnam National University , Daejeon, Republic of Korea
| | | | - Joung Ho Moon
- Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| | | | | | - Hoh Peter In
- Department of Computer Science, Korea University College of Information , Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Biomedical Sciences.,Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| |
Collapse
|
17
|
Škrlec I, Milić J, Steiner R. The Impact of the Circadian Genes CLOCK and ARNTL on Myocardial Infarction. J Clin Med 2020; 9:484. [PMID: 32050674 PMCID: PMC7074039 DOI: 10.3390/jcm9020484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm regulates various physiological mechanisms, and its disruption can promote many disorders. Disturbance of endogenous circadian rhythms enhances the chance of myocardial infarction (MI), showing that circadian clock genes could have a crucial function in the onset of the disease. This case-control study was performed on 1057 participants. It was hypothesized that the polymorphisms of one nucleotide (SNP) in three circadian clock genes (CLOCK, ARNTL, and PER2) could be associated with MI. Statistically significant differences, estimated by the Chi-square test, were found in the distribution of alleles and genotypes between MI and no-MI groups of the CLOCK (rs6811520 and rs13124436) and ARNTL (rs3789327 and rs12363415) genes. According to the results of the present study, the polymorphisms in the CLOCK and ARNTL genes could be related to MI.
Collapse
Affiliation(s)
- Ivana Škrlec
- Histology, Genetics, Cellular, and Molecular Biology Laboratory, Department of Biology and Chemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia
| | - Jakov Milić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Robert Steiner
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
- Clinical Department of Cardiovascular Diseases and Intensive Care, Clinic for Internal Medicine, University Hospital Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
18
|
Škrlec I, Milić J, Heffer M, Wagner J, Peterlin B. Circadian clock genes and circadian phenotypes in patients with myocardial infarction. Adv Med Sci 2019; 64:224-229. [PMID: 30818221 DOI: 10.1016/j.advms.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Human physiological activities and diseases are under the control of the circadian rhythm. There are strong epidemiological associations between disrupted circadian rhythms, sleep duration and diseases. Sleep disorders are associated with vascular outcomes, such as myocardial infarction (MI). METHODS We conducted an association study of genotype-phenotype interaction, to determine which circadian clock gene variants might be associated with the circadian phenotypes in patients with MI. In the present study, we analyzed the allele frequencies of 10 single nucleotide polymorphisms in four circadian clock genes in two independent samples: MI patients and controls. Chronotype was assessed using the Morningness - Eveningness Questionnaire (MEQ) and daytime sleepiness using the Epworth Sleepiness Scale (ESS). RESULTS Chronotype was associated with the ARNTL genetic variant rs12363415 in MI patients. The polymorphisms rs11932595 of the CLOCK gene and rs934945 of the PER2 gene were associated with daytime sleepiness in the patient group. CONCLUSION Our data suggest that genetic variations in some circadian clock genes might be related to circadian phenotype (i.e., chronotype and daytime sleepiness) in patients with myocardial infarction.
Collapse
Affiliation(s)
- Ivana Škrlec
- Department of Biology and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia; Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia.
| | - Jakov Milić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Jasenka Wagner
- Department of Biology and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia; Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 2018; 113:26. [PMID: 29868933 PMCID: PMC5986831 DOI: 10.1007/s00395-018-0686-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3–6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA
| | - Osvaldo J Rivera Gonzalez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Romain Harmancey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA. .,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
20
|
Cannistraci CV, Nieminen T, Nishi M, Khachigian LM, Viikilä J, Laine M, Cianflone D, Maseri A, Yeo KK, Bhindi R, Ammirati E. "Summer Shift": A Potential Effect of Sunshine on the Time Onset of ST-Elevation Acute Myocardial Infarction. J Am Heart Assoc 2018; 7:JAHA.117.006878. [PMID: 29626152 PMCID: PMC6015398 DOI: 10.1161/jaha.117.006878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background ST‐elevation acute myocardial infarction (STEMI) represents one of the leading causes of death. The time of STEMI onset has a circadian rhythm with a peak during diurnal hours, and the occurrence of STEMI follows a seasonal pattern with a salient peak of cases in the winter months and a marked reduction of cases in the summer months. Scholars investigated the reason behind the winter peak, suggesting that environmental and climatic factors concur in STEMI pathogenesis, but no studies have investigated whether the circadian rhythm is modified with the seasonal pattern, in particular during the summer reduction in STEMI occurrence. Methods and Results Here, we provide a multiethnic and multination epidemiological study (from both hemispheres at different latitudes, n=2270 cases) that investigates whether the circadian variation of STEMI onset is altered in the summer season. The main finding is that the difference between numbers of diurnal (6:00 to 18:00) and nocturnal (18:00 to 6:00) STEMI is markedly decreased in the summer season, and this is a prodrome of a complex mechanism according to which the circadian rhythm of STEMI time onset seems season dependent. Conclusions The “summer shift” of STEMI to the nocturnal interval is consistent across different populations, and the sunshine duration (a measure related to cloudiness and solar irradiance) underpins this season‐dependent circadian perturbation. Vitamin D, which in our results seems correlated with this summer shift, is also primarily regulated by the sunshine duration, and future studies should investigate their joint role in the mechanisms of STEMI etiogenesis.
Collapse
Affiliation(s)
- Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, Technische Universität Dresden, Dresden, Germany .,Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Tuomo Nieminen
- Internal Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,South Karelia Central Hospital, Lappeenranta, Finland
| | - Masahiro Nishi
- Department of Cardiology, Omihachiman Community Medical Center, Omihachiman, Japan
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Juho Viikilä
- Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mika Laine
- Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | - Enrico Ammirati
- De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
21
|
Circadian dependence of manual thrombus aspiration benefit in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Clin Res Cardiol 2017; 107:338-346. [DOI: 10.1007/s00392-017-1189-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
|
22
|
Kolomeichuk SN, Ilyukha VV, Korneva VA, Kuznetsova TY. PER3 VNTR circadian gene is associated with arterial stiffness variable in healthy subjects. BIOL RHYTHM RES 2017; 48:239-242. [DOI: 10.1080/09291016.2016.1251948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Wu Y, Tang D, Liu N, Xiong W, Huang H, Li Y, Ma Z, Zhao H, Chen P, Qi X, Zhang EE. Reciprocal Regulation between the Circadian Clock and Hypoxia Signaling at the Genome Level in Mammals. Cell Metab 2017; 25:73-85. [PMID: 27773697 DOI: 10.1016/j.cmet.2016.09.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 09/23/2016] [Indexed: 01/06/2023]
Abstract
Circadian regulation is critically important in maintaining metabolic and physiological homeostasis. However, little is known about the possible influence of the clock on physiological abnormalities occurring under pathological conditions. Here, we report the discovery that hypoxia, a condition that causes catastrophic bodily damage, is gated by the circadian clock in vivo. Hypoxia signals conversely regulate the clock by slowing the circadian cycle and dampening the amplitude of oscillations in a dose-dependent manner. ChIP-seq analyses of hypoxia-inducible factor HIF1A and the core clock component BMAL1 revealed crosstalk between hypoxia and the clock at the genome level. Further, severe consequences caused by acute hypoxia, such as those that occur with heart attacks, were correlated with defects in circadian rhythms. We propose that the clock plays functions in fine-tuning hypoxic responses under pathophysiological conditions. We argue that the clock can, and likely should, be exploited therapeutically to reduce the severity of fatal hypoxia-related diseases.
Collapse
Affiliation(s)
- Yaling Wu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Dingbin Tang
- National Institute of Biological Sciences, Beijing 102206, China; PTN graduate program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Na Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Xiong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yang Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhixiong Ma
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Peihao Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China
| | | |
Collapse
|
24
|
Kamendi H, Zhou Y, Crosby M, Keirstead N, Snow D, Bentley P, Patel N, Barthlow H, Luo W, Dragan Y, Bialecki R. Doxorubicin: Comparison between 3-h continuous and bolus intravenous administration paradigms on cardio-renal axis, mitochondrial sphingolipids and pathology. Toxicol Appl Pharmacol 2015; 289:560-72. [PMID: 26450648 DOI: 10.1016/j.taap.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/22/2015] [Accepted: 10/03/2015] [Indexed: 01/29/2023]
Abstract
Doxorubicin (DOX) is a potent and effective broad-spectrum anthracycline antitumor agent, but its clinical usefulness is restricted by cardiotoxicity. This study compared pharmacokinetic, functional, structural and biochemical effects of single dose DOX bolus or 3-h continuous iv infusion (3-h iv) in the Han–Wistar rat to characterize possible treatment-related differences in drug safety over a 72 h observation period. Both DOX dosing paradigms significantly altered blood pressure, core body temperature and QA interval (indirect measure of cardiac contractility); however, there was no recovery observed in the bolus iv treatment group. Following the 3-h iv treatment, blood pressures and QA interval normalized by 36 h then rose above baseline levels over 72 h. Both treatments induced biphasic changes in heart rate with initial increases followed by sustained decreases. Cardiac injury biomarkers in plasma were elevated only in the bolus iv treatment group. Tissue cardiac injury biomarkers, cardiac mitochondrial complexes I, III and V and cardiac mitochondrial sphingolipids were decreased only in the bolus iv treatment group. Results indicate that each DOX dosing paradigm deregulates sinus rhythm.However, slowing the rate of infusion allows for functional compensation of blood pressure and may decrease the likelihood of cardiac myocyte necrosis via a mechanism associated with reduced mitochondrial damage.
Collapse
Affiliation(s)
- Harriet Kamendi
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Ying Zhou
- Oncology Innovative Medicines and Early Development, AstraZeneca, Waltham, MA 02451, USA.
| | - Meredith Crosby
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | | | - Debra Snow
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Patricia Bentley
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Nilaben Patel
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Herbert Barthlow
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Wenli Luo
- Discovery Sciences, Innovative Medicines, AstraZeneca, Waltham, MA 02451, USA.
| | - Yvonne Dragan
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Russell Bialecki
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| |
Collapse
|
25
|
Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci 2015; 9:74. [PMID: 26005407 PMCID: PMC4424844 DOI: 10.3389/fnsys.2015.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions. We review advances in the understanding of adult SCN function, what has been described about SCN development to date, and the potential of both current and future studies of SCN development to yield important insights into master clock function, dysfunction, and evolution.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Physiology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
26
|
Virag JA. Circadian rhythm complexities in cardiovascular dynamics. Sleep Med 2015; 16:435-6. [DOI: 10.1016/j.sleep.2015.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
27
|
Viola AU, Gabel V, Chellappa SL, Schmidt C, Hommes V, Tobaldini E, Montano N, Cajochen C. Dawn simulation light: a potential cardiac events protector. Sleep Med 2015; 16:457-61. [DOI: 10.1016/j.sleep.2014.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/27/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
|