1
|
Choi YJ, Kim MJ, Lee YJ, Choi M, Shim WS, Park M, Kim YC, Kang KW. Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors. Theranostics 2025; 15:875-893. [PMID: 39776795 PMCID: PMC11700852 DOI: 10.7150/thno.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment. Methods: Here, we utilized two mouse strains and two organ-targeted radiotherapy models to uncover the mechanisms underlying the development of the radiotherapy-induced microenvironment. Results: Radiotherapy-induced tissue damage stimulates infiltration of monocyte-derived macrophages and their differentiation into M2 macrophages, ultimately leading to fibrosis and the formation of a pro-tumorigenic microenvironment. Notably, SRC family kinases (SFKs) emerged as crucial factors in the formation of the radiotherapy-induced pro-tumorigenic microenvironment. SFKs activation in epithelial cells and fibroblasts was triggered by direct exposure to irradiation or M2 macrophage cytokines. Remarkably, the administration of SFK-targeted inhibitors reversed myofibroblast activation, effectively ameliorating fibrosis and the pro-tumorigenic microenvironment in radiated tissues. Further, combined administration of radiotherapy and SFK-targeted inhibitors significantly enhanced the survival of tumor-bearing mice. Conclusions: Reshaping the tissue microenvironment by targeting SFKs is a potential strategy for preventing metastasis and recurrence following radiotherapy. The finding that clinically imperceptible damage can trigger a pro-tumorigenic microenvironment suggests the need for combining SFK-targeted inhibitors with radiotherapy.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Jun Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Park
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Ojha M, Smith NJ, Devine AJ, Joshi R, Goodman EM, Fan Q, Schuman R, Porollo A, Wells JM, Tiwary E, Batie MR, Gray J, Deshmukh H, Borchers MT, Ammerman SA, Varisco BM. Anti-CELA1 antibody KF4 prevents emphysema by inhibiting stretch-mediated remodeling. JCI Insight 2024; 9:e169189. [PMID: 38193533 PMCID: PMC10906462 DOI: 10.1172/jci.insight.169189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non-AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1-/- mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix-stabilizing therapy in emphysema.
Collapse
Affiliation(s)
- Mohit Ojha
- Lincoln Medical Center and Mental Health Center, New York, New York, USA
| | - Noah J. Smith
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew J. Devine
- Heritage College of Osteopathic Medicine, Ohio University, Athens Ohio, USA
| | - Rashika Joshi
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily M. Goodman
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard Schuman
- Antibody and Immunoassay Consultants, Rockville, Maryland, USA
| | - Aleksey Porollo
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - J. Michael Wells
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | - Ekta Tiwary
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | | | - Jerilyn Gray
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hitesh Deshmukh
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Borchers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Brian M. Varisco
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Gracioso Martins AM, Snider DB, Popowski KD, Schuchard KG, Tenorio M, Akunuri S, Wee J, Peters KJ, Jansson A, Shirwaiker R, Cheng K, Freytes DO, Cruse GP. Low-dose intrapulmonary drug delivery device for studies on next-generation therapeutics in mice. J Control Release 2023; 359:287-301. [PMID: 37301267 PMCID: PMC10527740 DOI: 10.1016/j.jconrel.2023.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Although nebulizers have been developed for delivery of small molecules in human patients, no tunable device has been purpose-built for targeted delivery of modern large molecule and temperature-sensitive therapeutics to mice. Mice are used most of all species in biomedical research and have the highest number of induced models for human-relevant diseases and transgene models. Regulatory approval of large molecule therapeutics, including antibody therapies and modified RNA highlight the need for quantifiable dose delivery in mice to model human delivery, proof-of-concept studies, efficacy, and dose-response. To this end, we developed and characterized a tunable nebulization system composed of an ultrasonic transducer equipped with a mesh nebulizer fitted with a silicone restrictor plate modification to control the nebulization rate. We have identified the elements of design that influence the most critical factors to targeted delivery to the deep lungs of BALB/c mice. By comparing an in silico model of the mouse lung with experimental data, we were able to optimize and confirm the targeted delivery of over 99% of the initial volume to the deep portions of the mouse lung. The resulting nebulizer system provides targeted lung delivery efficiency far exceeding conventional nebulizers preventing waste of expensive biologics and large molecules during proof-of-concept and pre-clinical experiments involving mice. (Word Count =207).
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Karl G Schuchard
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
| | - Matias Tenorio
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Sandip Akunuri
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Junghyun Wee
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kara J Peters
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Anton Jansson
- Analytical Instrumentation Facility, Monteith Research Center, North Carolina State University, Raleigh, NC, USA
| | - Rohan Shirwaiker
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA; Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Donald O Freytes
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Shimizu K, Kimura H, Tanabe N, Chubachi S, Sato S, Suzuki M, Tanimura K, Iijima H, Oguma A, Ito YM, Wakazono N, Takimoto-Sato M, Matsumoto-Sasaki M, Abe Y, Takei N, Makita H, Nishimura M, Konno S. Relationships of computed tomography-based small vessel indices of the lungs with ventilation heterogeneity and high transfer coefficients in non-smokers with asthma. Front Physiol 2023; 14:1137603. [PMID: 36935740 PMCID: PMC10014854 DOI: 10.3389/fphys.2023.1137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Background: The mechanism of high transfer coefficients of the lungs for carbon monoxide (Kco) in non-smokers with asthma is explained by the redistribution of blood flow to the area with preserved ventilation, to match the ventilation perfusion. Objectives: To examine whether ventilation heterogeneity, assessed by pulmonary function tests, is associated with computed tomography (CT)-based vascular indices and Kco in patients with asthma. Methods: Participants were enrolled from the Hokkaido-based Investigative Cohort Analysis for Refractory Asthma (Hi-CARAT) study that included a prospective asthmatic cohort. Pulmonary function tests including Kco, using single breath methods; total lung capacity (TLC), using multiple breath methods; and CT, were performed on the same day. The ratio of the lung volume assessed using single breath methods (alveolar volume; VA) to that using multiple breath methods (TLC) was calculated as an index of ventilation heterogeneity. The volume of the pulmonary small vessels <5 mm2 in the whole lung (BV5 volume), and number of BV5 at a theoretical surface area of the lungs from the plural surface (BV5 number) were evaluated using chest CT images. Results: The low VA/TLC group (the lowest quartile) had significantly lower BV5 number, BV5 volume, higher BV5 volume/BV5 number, and higher Kco compared to the high VA/TLC group (the highest quartile) in 117 non-smokers, but not in 67 smokers. Multivariable analysis showed that low VA/TLC was associated with low BV5 number, after adjusting for age, sex, weight, lung volume on CT, and CT emphysema index in non-smokers (not in smokers). Conclusion: Ventilation heterogeneity may be associated with low BV5 number and high Kco in non-smokers (not in smokers). Future studies need to determine the dynamic regional system in ventilation, perfusion, and diffusion in asthma.
Collapse
Affiliation(s)
- Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Kaoruko Shimizu,
| | - Hirokazu Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Chubachi
- Department of Medicine, Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Japan
| | - Hiroaki Iijima
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Akira Oguma
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M. Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Nobuyasu Wakazono
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Michiko Takimoto-Sato
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Yuki Abe
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Takei
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
5
|
Ejima A, Abe S, Shimba A, Sato S, Uehata T, Tani-ichi S, Munakata S, Cui G, Takeuchi O, Hirai T, Kato S, Ikuta K. Androgens Alleviate Allergic Airway Inflammation by Suppressing Cytokine Production in Th2 Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1083-1094. [DOI: 10.4049/jimmunol.2200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Asthma is more common in females than males after adolescence. However, the mechanism of the sex bias in the prevalence of asthma remains unknown. To test whether sex steroid hormones have some roles in T cells during development of asthma, we analyzed airway inflammation in T cell–specific androgen receptor (AR)– and estrogen receptor (ER)–deficient mice. T cell–specific AR-deficient male mice developed severer house dust mite–induced allergic airway inflammation than did control male mice, whereas T cell–specific ERα- and ERβ-deficient female mice exhibited a similar degree of inflammation as for control female mice. Furthermore, administration of dihydrotestosterone reduced cytokine production of Th2 cells from control, but not AR-deficient, naive T cells. Transfer of OT-II transgenic AR-deficient Th2 cells into wild-type mice induced severer allergic airway inflammation by OVA than transfer of control Th2 cells. Gene expression profiling suggested that the expression of genes related with cell cycle and Th2 differentiation was elevated in AR-deficient Th2 cells, whereas expression of dual specificity phosphatase (DUSP)-2, a negative regulator of p38, was downregulated. In addition, a chromatin immunoprecipitation assay suggested that AR bound to an AR motif in the 5′ untranslated region of the Dusp2 gene in Th2 cells. Furthermore, the Dusp2 promoter with a wild-type AR motif, but not a mutated motif, was transactivated by dihydrotestosterone in a reporter assay. Finally, forced expression of DUSP-2 by retrovirus vector reduced IL-4 expression in Th2 cells. Thus, these results suggest that androgen signaling suppresses cytokine production of Th2 cells by inducing DUSP-2, explaining, in part, the sex bias of asthma after adolescence.
Collapse
Affiliation(s)
- Aki Ejima
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Uehata
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-ichi
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Munakata
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeaki Kato
- ‖Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
- #Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan; and
- **School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Ikuta
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Mann TS, Larcombe AN, Wang KCW, Shamsuddin D, Landwehr KR, Noble PB, Henry PJ. Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation and airways hyperresponsiveness in mice exposed to house dust mite extract. Am J Physiol Lung Cell Mol Physiol 2022; 322:L683-L698. [PMID: 35348023 DOI: 10.1152/ajplung.00487.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive production, secretion and retention of abnormal mucus is a pathologic feature of many obstructive airways diseases including asthma, chronic obstructive pulmonary disease, cystic fibrosis and bronchiectasis. Azithromycin is an antibiotic that also possesses immunomodulatory and mucoregulatory activities, which may contribute to the clinical effectiveness of azithromycin in these obstructive airway diseases. The current study investigated these non-antibiotic activities of azithromycin (or saline) in mice exposed daily to intranasal house dust mite (HDM) extract (or SHAM inoculation) for 10 days. HDM-exposed mice exhibited airways hyperresponsiveness to aerosolised methacholine, a pronounced mixed eosinophilic and neutrophilic inflammatory response, increased airway smooth muscle (ASM) thickness and elevated levels of epithelial mucin staining (compared to SHAM mice). Azithromycin (50 mg/kg s.c., 2 h prior to each HDM exposure) significantly attenuated HDM-induced airways hyperresponsiveness to methacholine, airways inflammation (bronchoalveolar lavage eosinophil and neutrophils numbers, and cytokine/chemokine levels), and epithelial mucin staining (mucous metaplasia) (P<0.05, 2-way ANOVA). Isolated tracheal segments of HDM-exposed mice secreted Muc5ac and Muc5b (above baseline levels) in response to exogenous ATP. Moreover, ATP-induced secretion of mucins was significantly attenuated in segments obtained from azithromycin-treated, HDM-exposed mice (P<0.05, 2-way ANOVA). In additional ex vivo studies, ATP-induced secretion of Muc5ac from HDM-exposed tracheal segments was inhibited by in vitro exposure to azithromycin. In vitro azithromycin also inhibited ATP-induced secretion of Muc5ac and Muc5b in tracheal segments from IL-13-exposed mice. In summary, azithromycin inhibited ATP-induced mucin secretion and airways inflammation in HDM-exposed mice, both of which are likely to contribute to suppression of airways hyperresponsiveness.
Collapse
Affiliation(s)
- Tracy S Mann
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alexander N Larcombe
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Kimberley C W Wang
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Danial Shamsuddin
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Katherine R Landwehr
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter J Henry
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
7
|
Mehrabi S, Tanideh N, Hosseinpour R, Irajie C, Yavari Barhaghtalabi MJ. A left lung with four lobes: a new discovery during the thoracotomy for recurrent primary spontaneous pneumothorax. J Cardiothorac Surg 2021; 16:276. [PMID: 34583735 PMCID: PMC8479984 DOI: 10.1186/s13019-021-01651-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The right and left lung anatomy are similar but asymmetrical. The right lung consists of three lobes, and the left lung consists of two lobes. Our study is unique because of discovering a very rare morphological feature of the left lung which has not been reported yet. By the way, we compared two different available chemical agents for pleurodesis (talc and bleomycin) according to side effects, complications, and pneumothorax recurrence. Case presentation We reported a case of bilateral primary spontaneous pneumothorax, who underwent talc slurry and bleomycin pleurodesis at right and left side retrospectively, and then complicate with left-sided recurrent spontaneous pneumothorax, so underwent open thoracotomy and was surprisingly and accidentally found to have 4 lobes and 3 fissures in left lung. Conclusion In our case report, there were one main oblique fissure and two accessory fissures which divided the lung into 4 separated lobes, and this discovery in human’s and other animals’ lung anatomy has not been previously reported. In our case study, the talc slurry was more effective in preventing spontaneous pneumothorax recurrence, but with more side effects than bleomycin. We could hypothesize that the morphological variation of the lung might affect spontaneous pneumothorax development and recurrence.
Collapse
Affiliation(s)
- Saadat Mehrabi
- Department of General Surgery, Shahid Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Stem Cells Research Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Hosseinpour
- Department of General Surgery, Shahid Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
8
|
Kim C, Jeong SH, Kim J, Kang JY, Nam YJ, Togloom A, Cha J, Lee KY, Lee CH, Park EK, Lee JH. Evaluation of the long-term effect of polyhexamethylene guanidine phosphate in a rat lung model using conventional chest computed tomography with histopathologic analysis. PLoS One 2021; 16:e0256756. [PMID: 34492061 PMCID: PMC8423271 DOI: 10.1371/journal.pone.0256756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
There have been no studies on the effects of polyhexamethylene guanidine phosphate (PHMG) after a long period of exposure in the rodent model. We aimed to evaluate long-term lung damage after PHMG exposure using conventional chest computed tomography (CT) and histopathologic analysis in a rat model. A PHMG solution was intratracheally administrated to 24 male rats. At 8, 26, and 52 weeks after PHMG instillation, conventional chest CT was performed in all rats and both lungs were extracted for histopathologic evaluation. At 52 weeks after PHMG instillation, four carcinomas had developed in three of the eight rats (37.5%). Bronchiolo-alveolar hyperplasia and adenoma were found in rats at 8, 26, and 52 weeks post-instillation. The number of bronchiolo-alveolar hyperplasia significantly increased over time (P-value for trend< 0.001). The severity of lung fibrosis and fibrosis scores significantly increased over time (P-values for trend = 0.002 and 0.023, respectively). Conventional chest CT analysis showed that bronchiectasis and linear density scores suggestive of fibrosis significantly increased over time (P-value for trend < 0.001). Our study revealed that one instillation of PHMG in a rat model resulted in lung carcinomas and progressive and irreversible fibrosis one year later based on conventional chest CT and histopathologic analysis. PHMG may be a lung carcinogen in the rat model.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ariunaa Togloom
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ki Yeol Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Chang Hyun Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, South Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| |
Collapse
|
9
|
Donovan GM, Wang KCW, Shamsuddin D, Mann TS, Henry PJ, Larcombe AN, Noble PB. Pharmacological ablation of the airway smooth muscle layer-Mathematical predictions of functional improvement in asthma. Physiol Rep 2021; 8:e14451. [PMID: 32533641 PMCID: PMC7292900 DOI: 10.14814/phy2.14451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Airway smooth muscle (ASM) plays a major role in acute airway narrowing and reducing ASM thickness is expected to attenuate airway hyper‐responsiveness and disease burden. There are two therapeutic approaches to reduce ASM thickness: (a) a direct approach, targeting specific airways, best exemplified by bronchial thermoplasty (BT), which delivers radiofrequency energy to the airway via bronchoscope; and (b) a pharmacological approach, targeting airways more broadly. An example of the less well‐established pharmacological approach is the calcium‐channel blocker gallopamil which in a clinical trial effectively reduced ASM thickness; other agents may act similarly. In view of established anti‐proliferative properties of the macrolide antibiotic azithromycin, we examined its effects in naive mice and report a reduction in ASM thickness of 29% (p < .01). We further considered the potential functional implications of this finding, if it were to extend to humans, by way of a mathematical model of lung function in asthmatic patients which has previously been used to understand the mechanistic action of BT. Predictions show that pharmacological reduction of ASM in all airways of this magnitude would reduce ventilation heterogeneity in asthma, and produce a therapeutic benefit similar to BT. Moreover there are differences in the expected response depending on disease severity, with the pharmacological approach exceeding the benefits provided by BT in more severe disease. Findings provide further proof of concept that pharmacological targeting of ASM thickness will be beneficial and may be facilitated by azithromycin, revealing a new mode of action of an existing agent in respiratory medicine.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Danial Shamsuddin
- Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tracy S Mann
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Peter J Henry
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Kalotas JO, Wang CJ, Noble PB, Wang KCW. Intrauterine Growth Restriction Promotes Postnatal Airway Hyperresponsiveness Independent of Allergic Disease. Front Med (Lausanne) 2021; 8:674324. [PMID: 34136507 PMCID: PMC8200568 DOI: 10.3389/fmed.2021.674324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Intrauterine growth restriction (IUGR) is associated with asthma. Murine models of IUGR have altered airway responsiveness in the absence of any inflammatory exposure. Given that a primary feature of asthma is airway inflammation, IUGR-affected individuals may develop more substantial respiratory impairment if subsequently exposed to an allergen. This study used a maternal hypoxia-induced mouse model of IUGR to determine the combined effects of IUGR and allergy on airway responsiveness. Methods: Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11-GD 17.5 (IUGR group; term = GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A second group of pregnant mice were housed under normoxic conditions throughout pregnancy (Control). All offspring were sensitized to ovalbumin (OVA) and assigned to one of four treatment groups: Control – normoxic and saline challenge; IUGR – hypoxic and saline challenge; Allergy – normoxic and OVA challenge; and IUGR + Allergy – hypoxic and OVA challenge. At 8 weeks of age, and 24 h post-aerosol challenge, mice were tracheostomised for methacholine challenge and assessment of lung mechanics by the forced oscillation technique, and lungs subsequently fixed for morphometry. Results: IUGR offspring were lighter than Control at birth and in adulthood. Both Allergy and IUGR independently increased airway resistance after methacholine challenge. The IUGR group also exhibited an exaggerated increase in tissue damping and elastance after methacholine challenge compared with Control. However, there was no incremental effect on airway responsiveness in the combined IUGR + Allergy group. There was no impact of IUGR or Allergy on airway structure and no effect of sex on any outcome. Conclusion: IUGR and aeroallergen independently increased bronchoconstrictor response, but when combined the pathophysiology was not worsened. Findings suggest that an association between IUGR and asthma is mediated by baseline airway responsiveness rather than susceptibility to allergen.
Collapse
Affiliation(s)
- Jack O Kalotas
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
11
|
Skurikhin E, Madonov P, Pershina O, Ermakova N, Pakhomova A, Widera D, Pan E, Zhukova M, Sandrikina L, Artamonov A, Dygai A. Micellar Hyaluronidase and Spiperone as a Potential Treatment for Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22115599. [PMID: 34070506 PMCID: PMC8198946 DOI: 10.3390/ijms22115599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Concentration of hyaluronic acid (HA) in the lungs increases in idiopathic pulmonary fibrosis (IPF). HA is involved in the organization of fibrin, fibronectin, and collagen. HA has been proposed to be a biomarker of fibrosis and a potential target for antifibrotic therapy. Hyaluronidase (HD) breaks down HA into fragments, but is a subject of rapid hydrolysis. A conjugate of poloxamer hyaluronidase (pHD) was prepared using protein immobilization with ionizing radiation. In a model of bleomycin-induced pulmonary fibrosis, pHD decreased the level of tissue IL-1β and TGF-β, prevented the infiltration of the lung parenchyma by CD16+ cells, and reduced perivascular and peribronchial inflammation. Simultaneously, a decrease in the concentrations of HA, hydroxyproline, collagen 1, total soluble collagen, and the area of connective tissue in the lungs was observed. The effects of pHD were significantly stronger compared to native HD which can be attributed to the higher stability of pHD. Additional spiperone administration increased the anti-inflammatory and antifibrotic effects of pHD and accelerated the regeneration of the damaged lung. The potentiating effects of spiperone can be explained by the disruption of the dopamine-induced mobilization and migration of fibroblast progenitor cells into the lungs and differentiation of lung mesenchymal stem cells (MSC) into cells of stromal lines. Thus, a combination of pHD and spiperone may represent a promising approach for the treatment of IPF and lung regeneration.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
- Correspondence: ; Tel.: +7-3822-418-375
| | - Pavel Madonov
- Limited Liability Company «Scientific Future Management», 630559 Novosibirsk, Russia; (P.M.); (A.A.)
| | - Olga Pershina
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Natalia Ermakova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Angelina Pakhomova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, Whiteknights Campus, School of Pharmacy, University of Reading, Reading RG6 6AP, UK;
| | - Edgar Pan
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Mariia Zhukova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Lubov Sandrikina
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Andrey Artamonov
- Limited Liability Company «Scientific Future Management», 630559 Novosibirsk, Russia; (P.M.); (A.A.)
| | - Alexander Dygai
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
12
|
Skurikhin EG, Pakhomova AV, Pershina OV, Ermakova NN, Krupin VA, Pan ES, Sandrikina LA, Putrova OD, Zhukova MA, Kurochkina IV, Dygai AM. Genetic Factors as the Basis of Sex Differences in Damage to Lung Endothelium and Regulation of Angiogenesis Cells in Modeling Pulmonary Emphysema in C57BL/6 Mice with Dyslipidemia and Hyperglycemia. Bull Exp Biol Med 2021; 170:326-331. [PMID: 33452984 DOI: 10.1007/s10517-021-05061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 10/22/2022]
Abstract
We studied the formation of injuries in lung endothelium and the response of angiogenesis cells during modeling of pulmonary emphysema in male and female C57BL/6 mice with metabolic disorders. Hemodynamic disturbances and reduction in the area of the microvasculature caused by combined pathology in male mice were more pronounced than in females. Mobilization and migration of angiogenic precursors were impaired in both male and female mice. In males, activity of recruiting endothelial progenitor cells, vascular smooth muscle cells, luminal cells of nascent vessels and pericytes into the lungs was additionally reduced. In females, accumulation of endothelial progenitor cells (CD45-CD31+CD34+), vascular smooth muscle cells, and pericytes in the lungs was observed, which indicated activation of endothelial regeneration. Sex differences in the reaction of the lung endothelium and angiogenesis cells can be explained by genetic factors of lipid and glucose metabolism.
Collapse
Affiliation(s)
- E G Skurikhin
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - A V Pakhomova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia.
| | - O V Pershina
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - N N Ermakova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - V A Krupin
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - E S Pan
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - L A Sandrikina
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - O D Putrova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - M A Zhukova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - I V Kurochkina
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - A M Dygai
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
13
|
Tanabe N, Sato S, Suki B, Hirai T. Fractal Analysis of Lung Structure in Chronic Obstructive Pulmonary Disease. Front Physiol 2021; 11:603197. [PMID: 33408642 PMCID: PMC7779609 DOI: 10.3389/fphys.2020.603197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chest CT is often used for localizing and quantitating pathologies associated with chronic obstructive pulmonary disease (COPD). While simple measurements of areas and volumes of emphysema and airway structure are common, these methods do not capture the structural complexity of the COPD lung. Since the concept of fractals has been successfully applied to evaluate complexity of the lung, this review is aimed at describing the fractal properties of airway disease, emphysema, and vascular abnormalities in COPD. An object forms a fractal if it exhibits the property of self-similarity at different length scales of evaluations. This fractal property is governed by power-law functions characterized by the fractal dimension (FD). Power-laws can also manifest in other statistical descriptors of structure such as the size distribution of emphysema clusters characterized by the power-law exponent D. Although D is not the same as FD of emphysematous clusters, it is a useful index to characterize the spatial pattern of disease progression and predict clinical outcomes in patients with COPD. The FD of the airway tree shape and the D of the size distribution of airway branches have been proposed indexes of structural assessment and clinical predictions. Simulations are also useful to understand the mechanism of disease progression. Therefore, the power-law and fractal analysis of the parenchyma and airways, especially when combined with computer simulations, could lead to a better understanding of the structural alterations during the progression of COPD and help identify subjects at a high risk of severe COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Skurikhin E, Nebolsin V, Widera D, Ermakova N, Pershina O, Pakhomova A, Krupin V, Pan E, Zhukova M, Novikov F, Sandrikina L, Morozov S, Kubatiev A, Dygai A. Antifibrotic and Regenerative Effects of Treamid in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21218380. [PMID: 33171668 PMCID: PMC7664690 DOI: 10.3390/ijms21218380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by interstitial fibrosis and progressive respiratory failure. Pirfenidone and nintedanib slow down but do not stop the progression of IPF. Thus, new compounds with high antifibrotic activity and simultaneously regenerative activity are an unmet clinical need. Recently, we showed that Treamid can help restoring the pancreas and testicular tissue in mice with metabolic disorders. We hypothesized that Treamid may be effective in antifibrotic therapy and regeneration of damaged lung tissue in pulmonary fibrosis. In this study, experiments were performed on male C57BL/6 mice with bleomycin-induced pulmonary fibrosis. We applied histological and immunohistochemical methods, ELISA, and assessed the expression of markers of endothelial and epithelial cells in primary cultures of CD31+ and CD326+ lung cells. Finally, we evaluated esterase activity and apoptosis of lung cells in vitro. Our data indicate that Treamid exhibits antifibrotic activity in mice with pulmonary fibrosis and has a positive effect on capillaries of the lungs. Treamid also increases the number of endothelial progenitor cells in the lungs of animals with pulmonary fibrosis. Lastly, Treamid increases esterase activity and decreases apoptosis of CD31+ lung cells in vitro. Based on these findings, we suggest that Treamid may represent a promising compound for the development of new antifibrotic agents, which are capable of stimulating regeneration of lung endothelium in IPF patients.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Correspondence: ; Tel.: +7-3822-418-375
| | | | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights campus, Reading RG6 6AP, UK;
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Mariia Zhukova
- Siberian State Medical University, 634028 Tomsk, Russia;
| | - Fedor Novikov
- “PHARMENTERPRISES” Ltd., 143026 Moscow, Russia; (V.N.); (F.N.)
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| |
Collapse
|
15
|
Maina JN, Igbokwe CO. Comparative morphometric analysis of lungs of the semifossorial giant pouched rat (Cricetomys gambianus) and the subterranean Nigerian mole rat (Cryptomys foxi). Sci Rep 2020; 10:5244. [PMID: 32251351 PMCID: PMC7090082 DOI: 10.1038/s41598-020-61873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa.
| | - Casmir O Igbokwe
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa
- Visiting Postdoctoral Fellow, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
16
|
Brooks FJ, Gunsten SP, Vasireddi SK, Brody SL, Anastasio MA. Quantification of image texture in X-ray phase-contrast-enhanced projection images of in vivo mouse lungs observed at varied inflation pressures. Physiol Rep 2019; 7:e14208. [PMID: 31444862 PMCID: PMC6708057 DOI: 10.14814/phy2.14208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
To date, there are very limited noninvasive, regional assays of in vivo lung microstructure near the alveolar level. It has been suggested that x-ray phase-contrast enhanced imaging reveals information about the air volume of the lung; however, the image texture information in these images remains underutilized. Projection images of in vivo mouse lungs were acquired via a tabletop, propagation-based, X-ray phase-contrast imaging system. Anesthetized mice were mechanically ventilated in an upright position. Consistent with previously published studies, a distinct image texture was observed uniquely within lung regions. Lung regions were automatically identified using supervised machine learning applied to summary measures of the image texture data. It was found that an unsupervised clustering within predefined lung regions colocates with expected differences in anatomy along the cranial-caudal axis in upright mice. It was also found that specifically selected inflation pressures-here, a purposeful surrogate of distinct states of mechanical expansion-can be predicted from the lung image texture alone, that the prediction model itself varies from apex to base and that prediction is accurate regardless of overlap with nonpulmonary structures such as the ribs, mediastinum, and heart. Cross-validation analysis indicated low inter-animal variation in the image texture classifications. Together, these results suggest that the image texture observed in a single X-ray phase-contrast-enhanced projection image could be used across a range of pressure states to study regional variations in regional lung function.
Collapse
Affiliation(s)
- Frank J Brooks
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sean P Gunsten
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sunil K Vasireddi
- Heart and Vascular Center, MetroHealth Campus at Case Western Reserve University, Cleveland, Ohio
| | - Steven L Brody
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
17
|
Skurikhin EG, Pershina OV, Pakhomova AV, Pan ES, Krupin VA, Ermakova NN, Vaizova OE, Pozdeeva AS, Zhukova MA, Skurikhina VE, Grimm WD, Dygai AM. Endothelial Progenitor Cells as Pathogenetic and Diagnostic Factors, and Potential Targets for GLP-1 in Combination with Metabolic Syndrome and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2019; 20:ijms20051105. [PMID: 30836679 PMCID: PMC6429267 DOI: 10.3390/ijms20051105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
In clinical practice, there are patients with a combination of metabolic syndrome (MS) and chronic obstructive pulmonary disease (COPD). The pathological mechanisms linking MS and COPD are largely unknown. It remains unclear whether the effect of MS (possible obesity) has a major impact on the progression of COPD. This complicates the development of effective approaches for the treatment of patients with a diagnosis of MS and COPD. Experiments were performed on female C57BL/6 mice. Introduction of monosodium glutamate and extract of cigarette smoke was modeled to simulate the combined pathology of lipid disorders and emphysema. Biological effects of glucagon-like peptide 1 (GLP-1) and GLP-1 on endothelial progenitor cells (EPC) in vitro and in vivo were evaluated. Histological, immunohistochemical methods, biochemical methods, cytometric analysis of markers identifying EPC were used in the study. The CD31⁺ endothelial cells in vitro evaluation was produced by Flow Cytometry and Image Processing of each well with a Cytation™ 3. GLP-1 reduces the area of emphysema and increases the number of CD31⁺ endothelial cells in the lungs of mice in conditions of dyslipidemia and damage to alveolar tissue of cigarette smoke extract. The regenerative effects of GLP-1 are caused by a decrease in inflammation, a positive effect on lipid metabolism and glucose metabolism. EPC are proposed as pathogenetic and diagnostic markers of endothelial disorders in combination of MS with COPD. Based on GLP-1, it is proposed to create a drug to stimulate the regeneration of endothelium damaged in MS and COPD.
Collapse
Affiliation(s)
- Evgenii Germanovich Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Olga Victorovna Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Angelina Vladimirovna Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Edgar Sergeevich Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Vyacheslav Andreevich Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Natalia Nicolaevna Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | | | | | | | | | - Wolf-Dieter Grimm
- Periodontology, Department of Dental Medicine, Faculty of Health, University of Witten/Herdecke, 355035 Stavropol, Germany.
| | - Alexander Mikhaylovich Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| |
Collapse
|
18
|
Abstract
The structure and function of the lung gradually becomes compromised during the progression of emphysema. In this chapter, we first describe how to assess and evaluate lung function using the forced oscillation technique. Next, we provide details on how to use the Flexivent system to measure respiratory mechanical parameters in mice. We also describe the outlines of how to set up a homemade forced oscillatory system and use it to measure respiratory mechanics. To characterize the structure from standard histological images, we describe a method that is highly sensitive to early emphysema. Correlating structural information such as equivalent alveolar diameter and its variance with respiratory elastance or compliance, provides structure-function relationships that can subsequently reveal novel mechanisms of emphysema progression or be used to track the effectiveness of treatment.
Collapse
|
19
|
Tanaka KI, Yamakawa N, Yamashita Y, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Identification of Mepenzolate Derivatives With Long-Acting Bronchodilatory Activity. Front Pharmacol 2018; 9:344. [PMID: 29692733 PMCID: PMC5902689 DOI: 10.3389/fphar.2018.00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
The standard treatment for chronic obstructive pulmonary disease is a combination of anti-inflammatory drugs and bronchodilators. We recently found that mepenzolate bromide (MP), an antagonist for human muscarinic M3 receptor (hM3R), has both anti-inflammatory and short-acting bronchodilatory activities. To obtain MP derivatives with longer-lasting bronchodilatory activity, we synthesized hybrid compounds based on MP and two other muscarinic antagonists with long-acting bronchodilatory activity glycopyrronium bromide (GC) and aclidinium bromide (AD). Of these three synthesized hybrid compounds (MP-GC, GC-MP, MP-AD) and MP, MP-AD showed the highest affinity for hM3R and had the longest lasting bronchodilatory activity, which was equivalent to that of GC and AD. Both MP-GC and MP-AD exhibited an anti-inflammatory effect equivalent to that of MP, whereas, in line with GC and AD, GC-MP did not show this effect. We also confirmed that administration of MP-AD suppressed elastase-induced pulmonary emphysema in a mouse model. These findings provide important information about the structure-activity relationship of MP for both bronchodilatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | | | - Yasunobu Yamashita
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Teita Asano
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yuki Kanda
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Ayaka Takafuji
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
20
|
Uriarte JJ, Meirelles T, Gorbenko del Blanco D, Nonaka PN, Campillo N, Sarri E, Navajas D, Egea G, Farré R. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome. PLoS One 2016; 11:e0152124. [PMID: 27003297 PMCID: PMC4803219 DOI: 10.1371/journal.pone.0152124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/09/2016] [Indexed: 01/04/2023] Open
Abstract
Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome.
Collapse
Affiliation(s)
- Juan J. Uriarte
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Thayna Meirelles
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Darya Gorbenko del Blanco
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Paula N. Nonaka
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Noelia Campillo
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Elisabet Sarri
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Gustavo Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Nanociències i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- * E-mail:
| |
Collapse
|