1
|
Caroppo E, Skinner MK. Could the sperm epigenome become a diagnostic tool for evaluation of the infertile man? Hum Reprod 2024; 39:478-485. [PMID: 38148019 DOI: 10.1093/humrep/dead266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Indexed: 12/28/2023] Open
Abstract
Although male infertility is currently diagnosed when abnormal sperm parameters are found, the poor predictive ability of sperm parameters on natural fecundity and medically assisted reproduction outcome poses the need for improved diagnostic techniques for male infertility. The accumulating evidence about the role played by the sperm epigenome in modulation of the early phases of embryonic development has led researchers to focus on the epigenetic mechanisms within the sperm epigenome to find new molecular markers of male infertility. Indeed, sperm epigenome abnormalities could explain some cases of unexplained male infertility in men showing normal sperm parameters and were found to be associated with poor embryo development in IVF cycles. The present mini-review summarizes the current knowledge about this interesting topic, starting from a description of the epigenetic mechanisms of gene expression regulation (i.e. DNA methylation, histone modifications, and non-coding RNAs' activity). We also discuss possible mechanisms by which environmental factors might cause epigenetic changes in the human germline and affect embryonic development, as well as subsequent generations' phenotypes. Studies demonstrating sperm epigenome abnormalities in men with male infertility are reviewed, with particular emphasis on those with the more severe form of spermatogenic dysfunction. Observations demonstrate that the diagnostic and prognostic efficacy of sperm epigenome evaluation will help facilitate the management of men with male factor infertility.
Collapse
Affiliation(s)
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Amor H, Alkhaled Y, Bibi R, Hammadeh ME, Jankowski PM. The Impact of Heavy Smoking on Male Infertility and Its Correlation with the Expression Levels of the PTPRN2 and PGAM5 Genes. Genes (Basel) 2023; 14:1617. [PMID: 37628668 PMCID: PMC10454138 DOI: 10.3390/genes14081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Smoking has been linked to male infertility by affecting the sperm epigenome and genome. In this study, we aimed to determine possible changes in the transcript levels of PGAM5 (the phosphoglycerate mutase family member 5), PTPRN2 (protein tyrosine phosphatase, N2-type receptor), and TYRO3 (tyrosine protein kinase receptor) in heavy smokers compared to non-smokers, and to investigate their association with the fundamental sperm parameters. In total, 118 sperm samples (63 heavy-smokers (G1) and 55 non-smokers (G2)) were included in this study. A semen analysis was performed according to the WHO guidelines. After a total RNA extraction, RT-PCR was used to quantify the transcript levels of the studied genes. In G1, a significant decrease in the standard semen parameters in comparison to the non-smokers was shown (p < 0.05). Moreover, PGAM5 and PTPRN2 were differentially expressed (p ≤ 0.03 and p ≤ 0.01, respectively) and downregulated in the spermatozoa of G1 compared to G2. In contrast, no difference was observed for TYRO3 (p ≤ 0.3). In G1, the mRNA expression level of the studied genes was correlated negatively with motility, sperm count, normal form, vitality, and sperm membrane integrity (p < 0.05). Therefore, smoking may affect gene expression and male fertility by altering the DNA methylation patterns in the genes associated with fertility and sperm quality, including PGAM5, PTPRN2, and TYRO3.
Collapse
Affiliation(s)
- Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Yaser Alkhaled
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Riffat Bibi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad 44000, Pakistan;
| | - Mohamad Eid Hammadeh
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Peter Michael Jankowski
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| |
Collapse
|
3
|
Keelan S, Ola M, Charmsaz S, Cocchiglia S, Ottaviani D, Hickey S, Purcell S, Bane F, Hegarty A, Doherty B, Sheehan K, Hudson L, Cosgrove N, Roux B, Laine M, Greene G, Varešlija D, Hill AK, Young L. Dynamic epi-transcriptomic landscape mapping with disease progression in estrogen receptor-positive breast cancer. Cancer Commun (Lond) 2023; 43:615-619. [PMID: 36670046 PMCID: PMC10174082 DOI: 10.1002/cac2.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Stephen Keelan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Mihaela Ola
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Daniela Ottaviani
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Seán Hickey
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Siobhan Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Fiona Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Aisling Hegarty
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Ben Doherty
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Katherine Sheehan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Lance Hudson
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Benjamin Roux
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Muriel Laine
- Ben May Department for Cancer Research, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Geoffrey Greene
- Ben May Department for Cancer Research, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,The School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons University of Medicine and Health Sciences, Dublin, Ireland
| | - Arnold Konrad Hill
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland.,Beaumont Royal College of Surgeons in Ireland Cancer Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Liu B, Wen H, Yang J, Li X, Li G, Zhang J, Wu S, Butts IAE, He F. Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (Paralichthys olivaceus). BIOLOGY 2022; 11:biology11081233. [PMID: 36009861 PMCID: PMC9405012 DOI: 10.3390/biology11081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary With global climate change and increased aquaculture production, fishes in natural waters or aquaculture systems are easily subjected to hypoxic stress. However, our understanding about their responsive mechanisms to hypoxia is still limited. Japanese flounder (Paralichthys olivaceus) is a widely cultivated marine economical flatfish, whose hypoxic responsive mechanisms are not fully researched. In this study, responses to hypoxia were investigated at blood physiological, biochemical, hormonal, and molecular levels. Responsive mechanisms of the HIF-1/LDH-A signaling pathway in epigenetic modification and transcriptional regulation were also researched. These results are important for enriching the theory of environmental responsive mechanisms and guiding aquaculture. Abstract Japanese flounder (Paralichthys olivaceus) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene LDH-A were deeply studied. Results showed that HIF-1α and LDH-A genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the LDH-A gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of HIF-1α and LDH-A genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the HIF-1α gene and LDH-A gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.
Collapse
Affiliation(s)
- Binghua Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jun Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Xiaohui Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Guangling Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jingru Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Shuxian Wu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Ian AE Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
5
|
Meier R, Nissen E, Koestler DC. Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples. Stat Appl Genet Mol Biol 2021; 20:73-84. [PMID: 34378875 PMCID: PMC9125800 DOI: 10.1515/sagmb-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
Statistical methods that allow for cell type specific DNA methylation (DNAm) analyses based on bulk-tissue methylation data have great potential to improve our understanding of human disease and have created unprecedented opportunities for new insights using the wealth of publicly available bulk-tissue methylation data. These methodologies involve incorporating interaction terms formed between the phenotypes/exposures of interest and proportions of the cell types underlying the bulk-tissue sample used for DNAm profiling. Despite growing interest in such "interaction-based" methods, there has been no comprehensive assessment how variability in the cellular landscape across study samples affects their performance. To answer this question, we used numerous publicly available whole-blood DNAm data sets along with extensive simulation studies and evaluated the performance of interaction-based approaches in detecting cell-specific methylation effects. Our results show that low cell proportion variability results in large estimation error and low statistical power for detecting cell-specific effects of DNAm. Further, we identified that many studies targeting methylation profiling in whole-blood may be at risk to be underpowered due to low variability in the cellular landscape across study samples. Finally, we discuss guidelines for researchers seeking to conduct studies utilizing interaction-based approaches to help ensure that their studies are adequately powered.
Collapse
Affiliation(s)
- Richard Meier
- Department of Biostatistics & Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City66160, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City66160, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City66160, KS, USA
| |
Collapse
|
6
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
7
|
Cho Y, Song MK, Ryu JC. DNA methylome signatures as epigenetic biomarkers of hexanal associated with lung toxicity. PeerJ 2021; 9:e10779. [PMID: 33604181 PMCID: PMC7868067 DOI: 10.7717/peerj.10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Numerous studies have investigated the relationship of environmental exposure, epigenetic effects, and human diseases. These linkages may contribute to the potential toxicity mechanisms of environmental chemicals. Here, we investigated the epigenetic pulmonary response of hexanal, a major indoor irritant, following inhalation exposure in F-344 rats. Methods Based on DNA methylation profiling in gene promoter regions, we identified hexanal-characterized methylated sites and target genes using an unpaired t-test with a fold-change cutoff of ≥ 3.0 and a p-value < 0.05. We also conducted an integrated analysis of DNA methylation and mRNA expression data to identify core anti-correlated target genes of hexanal exposure. To further investigate the potential key biological processes and pathways of core DNA methylated target genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. Results Thirty-six dose-dependent methylated genes and anti-correlated target genes of DNA methylation and mRNA in lung tissue of hexanal exposed F-344 rats were identified. These genes were involved in diverse biological processes such as neuroactive ligand-receptor interaction, protein kinase cascade, and intracellular signaling cascade associated with pulmonary toxicity. These results suggest that novel DNA methylation-based epigenetic biomarkers of exposure to hexanal and elucidate the potential pulmonary toxicological mechanisms of action of hexanal.
Collapse
Affiliation(s)
- Yoon Cho
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Mi-Kyung Song
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Jae-Chun Ryu
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
8
|
Smyth LJ, Patterson CC, Swan EJ, Maxwell AP, McKnight AJ. DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Front Cell Dev Biol 2020; 8:561907. [PMID: 33178681 PMCID: PMC7593403 DOI: 10.3389/fcell.2020.561907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10–8), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease.
Collapse
Affiliation(s)
- Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | | | - Elizabeth J Swan
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Mendioroz M, Puebla-Guedea M, Montero-Marín J, Urdánoz-Casado A, Blanco-Luquin I, Roldán M, Labarga A, García-Campayo J. Telomere length correlates with subtelomeric DNA methylation in long-term mindfulness practitioners. Sci Rep 2020; 10:4564. [PMID: 32165663 PMCID: PMC7067861 DOI: 10.1038/s41598-020-61241-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mindfulness and meditation techniques have proven successful for the reduction of stress and improvement in general health. In addition, meditation is linked to longevity and longer telomere length, a proposed biomarker of human aging. Interestingly, DNA methylation changes have been described at specific subtelomeric regions in long-term meditators compared to controls. However, the molecular basis underlying these beneficial effects of meditation on human health still remains unclear. Here we show that DNA methylation levels, measured by the Infinium HumanMethylation450 BeadChip (Illumina) array, at specific subtelomeric regions containing GPR31 and SERPINB9 genes were associated with telomere length in long-term meditators with a strong statistical trend when correcting for multiple testing. Notably, age showed no association with telomere length in the group of long-term meditators. These results may suggest that long-term meditation could be related to epigenetic mechanisms, in particular gene-specific DNA methylation changes at distinct subtelomeric regions.
Collapse
Affiliation(s)
- Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, 31008, Spain.
| | - Marta Puebla-Guedea
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain
| | - Jesús Montero-Marín
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed Biomedical Research Center- UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed Biomedical Research Center - UPNA-Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Javier García-Campayo
- Instituto de Investigación Sanitaria de Aragón. Red de Investigación en Atención Primaria (REDIAPP), Zaragoza, Spain.,Miguel Servet University Hospital, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Wu X, Luo C, Hu L, Chen X, Chen Y, Fan J, Cheng CY, Sun F. Unraveling epigenomic abnormality in azoospermic human males by WGBS, RNA-Seq, and transcriptome profiling analyses. J Assist Reprod Genet 2020; 37:789-802. [PMID: 32056059 DOI: 10.1007/s10815-020-01716-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To determine associations between genomic DNA methylation in testicular cells and azoospermia in human males. METHODS This was a case-control study investigating the differences and conservations in DNA methylation, genome-wide DNA methylation, and bulk RNA-Seq for transcriptome profiling using testicular biopsy tissues from NOA and OA patients. Differential methylation and different conserved methylation regions associated with azoospermia were identified by comparing genomic DNA methylation of testicular seminiferous cells derived from NOA and OA patients. RESULTS The genome methylation modification of testicular cells from NOA patients was disordered, and the reproductive-related gene expression was significantly different. CONCLUSION Our findings not only provide valuable knowledge of human spermatogenesis but also paved the way for the identification of genes/proteins involved in male germ cell development. The approach presented in this report provides a powerful tool to identify responsible biomolecules, and/or cellular changes (e.g., epigenetic abnormality) that induce male reproductive dysfunction such as OA and NOA.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhai Luo
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Xue Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunmei Chen
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Jue Fan
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, USA.
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Han F, Jiang X, Li ZM, Zhuang X, Zhang X, Ouyang WM, Liu WB, Mao CY, Chen Q, Huang CS, Gao F, Cui ZH, Ao L, Li YF, Cao J, Liu JY. Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:72-83. [PMID: 31835093 PMCID: PMC6926170 DOI: 10.1016/j.omtn.2019.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are correlated with severity of NOA disease. Deletion of Sox30 in mice uniquely impairs testis development and spermatogenesis with complete absence of spermatozoa in testes leading to male infertility, but does not influence ovary development and female fertility. The pathology and testicular size of Sox30 null mice highly simulate those of NOA patients. Re-expression of Sox30 in Sox30 null mice at adult age reverses the pathological damage of testis and restores the spermatogenesis. The re-presented spermatozoa after re-expression of Sox30 in Sox30 null mice have the ability to start a pregnancy. Moreover, the male offspring of Sox30 re-expression Sox30 null mice still can father children, and these male offspring and their children can live normally more than 1 year without significant difference of physical appearance compared with wild-type mice. In summary, methylated inactivation of SOX30 uniquely impairs spermatogenesis, probably causing NOA disease, and re-expression of SOX30 can successfully restore the spermatogenesis and actual fertility. This study advances our understanding of the pathogenesis of NOA, offering a promising therapy target for NOA disease.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Zhi-ming Li
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wei-ming Ouyang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Cheng-yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chuan-shu Huang
- Nelson Institute of Environmental Medicine, NYU School of Medicine, New York, NY, USA
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zhi-hong Cui
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yan-feng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jia Cao, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jin-yi Liu, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Lee JU, Son JH, Shim EY, Cheong HS, Shin SW, Shin HD, Baek AR, Ryu S, Park CS, Chang HS, Park JS. Global DNA Methylation Pattern of Fibroblasts in Idiopathic Pulmonary Fibrosis. DNA Cell Biol 2019; 38:905-914. [DOI: 10.1089/dna.2018.4557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Ji-Hye Son
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Eun-Young Shim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Republic of Korea
| | - Seung-Woo Shin
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-Bioscience (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
13
|
Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril 2019; 112:61-72.e1. [DOI: 10.1016/j.fertnstert.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
14
|
Li Z, Li Z, Wang L, Long C, Zheng Z, Zhuang X. ZCCHC13-mediated induction of human liver cancer is associated with the modulation of DNA methylation and the AKT/ERK signaling pathway. J Transl Med 2019; 17:108. [PMID: 30940166 PMCID: PMC6444591 DOI: 10.1186/s12967-019-1852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have shown that zinc-finger CCHC-type containing 13 (ZCCHC13) is located in an imprinted gene cluster in the X-inactivation centre, but few published studies have provided evidence of its expression in cancers. The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and mediates protein-protein interactions. In an effort to examine the clinical utility of ZCCHC13 in oncology, we investigated the expression of the ZCCHC13 mRNA and protein in hepatocellular carcinoma (HCC). METHODS The expression of the ZCCHC13 mRNA and protein was evaluated using real-time reverse transcriptase-PCR, Western blotting and immunochemistry. DNA methylation was measured by methylation-specific PCR and bisulfite sequencing. The role of ZCCHC13 methylation was further evaluated using the demethylating agent, 5-aza-2'-deoxycytidine. The presence of anti-ZCCHC13 antibodies was determined by an ELISA. RESULTS ZCCHC13 expression was frequently upregulated in human liver cancer cells and tissues. Compared with heathy individuals, sera from patients with HCC displayed a significant response to the recombinant ZCCHC13 protein. The overexpression of ZCCHC13 in HCC was attributed to DNA hypomethylation in the promoter region. Moreover, overexpression of ZCCHC13 in liver cancer cells promoted cell cycle progression by facilitating the G1-S transition, which was related to aberrant activation of the ATK/ERK/c-MYC/CDK pathway. CONCLUSIONS Based on our findings, ZCCHC13 functions an oncogene for HCC, and DNA hypomethylation is a driving factor in carcinogenesis.
Collapse
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health/Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
| | - Zhi Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Linjun Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Chen Long
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Zaozao Zheng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| |
Collapse
|
15
|
Wipfler K, Cornish AS, Guda C. Comparative molecular characterization of typical and exceptional responders in glioblastoma. Oncotarget 2018; 9:28421-28433. [PMID: 29983870 PMCID: PMC6033343 DOI: 10.18632/oncotarget.25420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and the deadliest type of primary brain tumor, with a median survival time of only 15 months despite aggressive treatment. Although most patients have an extremely poor prognosis, a relatively small number of patients survive far beyond the median survival time. Investigation of these exceptional responders has sparked a great deal of interest and is becoming an important focus in the field of cancer research. To investigate the molecular differences between typical and exceptional responders in GBM, comparative analyses of somatic mutations, copy number, methylation, and gene expression datasets from The Cancer Genome Atlas were performed, and the results of these analyses were integrated via gene ontology and pathway analyses to assess the functional significance of the differential aberrations. Less severe copy number loss of CDKN2A, lower expression of CXCL8, and FLG mutations are all associated with an exceptional response. Typical responders are characterized by upregulation of NF-κB signaling and of pro-inflammatory cytokines, while exceptional responders are characterized by upregulation of Alzheimer's and Parkinson's disease pathways as well as of genes involved in synaptic transmission. The upregulated pathways and processes in typical responders are consistently associated with more aggressive tumor phenotypes, while those in the exceptional responders suggest a retained ability in tumor cells to undergo cell death in response to treatment. With the upcoming launch of the National Cancer Institute's Exceptional Responders Initiative, similar studies with much larger sample sizes will likely become possible, hopefully providing even more insight into the molecular differences between typical and exceptional responders.
Collapse
Affiliation(s)
- Kristin Wipfler
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam S. Cornish
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Taguchi YH. Tensor decomposition-based and principal-component-analysis-based unsupervised feature extraction applied to the gene expression and methylation profiles in the brains of social insects with multiple castes. BMC Bioinformatics 2018; 19:99. [PMID: 29745827 PMCID: PMC5998888 DOI: 10.1186/s12859-018-2068-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. METHODS A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. RESULTS PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. CONCLUSIONS Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
17
|
Novel biomarker ZCCHC13 revealed by integrating DNA methylation and mRNA expression data in non-obstructive azoospermia. Cell Death Discov 2018. [PMID: 29531833 PMCID: PMC5841273 DOI: 10.1038/s41420-018-0033-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to identify genes regulated by methylation that were involved in spermatogenesis failure in non-obstructive azoospermia (NOA). Testis biopsies of patients with NOA and OA (with normal spermatogenesis) were evaluated by microarray analysis to examine DNA methylation and mRNA expression using our established integrative approach. Of the coordinately hypermethylated and down-regulated gene list, zinc-finger CCHC-type containing 13 (ZCCHC13) was present within the nuclei of germ cells of testicular tissues according immunohistochemistry, and there was decreased protein expression in men with NOA compared with OA controls. Mechanistic analyses indicated that ZCCHC13 increased c-MYC expression through the p-AKT and p-ERK pathways. To confirm the changes in ZCCHC13 expression in response to methylation, 5-aza-2′-deoxycitidine (5-Aza), a hypomethylating agent, was administered to mouse spermatogonia GC-1 cells. We demonstrated that 5-Aza enhanced protein and mRNA expression of ZCCHC13 epigenetically, which was accompanied by activation of p-AKT and p-ERK signaling. Our data, for the first time, demonstrate that ZCCHC13 is an important signaling molecule that positively regulates the AKT/MAPK/c-MYC pathway and that methylation aberrations of ZCCHC13 may cause defects in testis development in human disease, such as NOA.
Collapse
|