1
|
Liu S, Luo Z, Huang T, Liu S, Li Y, Zhou L. Dual-omics analysis of transcriptome and translatome unveils lycopene-induced triglyceride accumulation mechanisms in muscle cells. Biochem Biophys Res Commun 2025; 765:151878. [PMID: 40273623 DOI: 10.1016/j.bbrc.2025.151878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Intramuscular fat is a critical determinant of meat taste and flavor. Therefore, regulating intramuscular fat content to enhance meat quality is considered a viable strategy. Lycopene, a natural antioxidant, has been shown to improve the oxidative stability and color of meat, both of which are crucial for maintaining meat product quality. Previous studies have suggested that lycopene may contribute to improved meat quality by influencing intramuscular fat deposition. However, the specific mechanisms underlying lycopene's effects on intramuscular fat deposition remain unclear and require further investigation. This study aimed to elucidate the molecular mechanisms through which lycopene regulates intramuscular fat deposition in muscle cells and to identify differentially expressed genes involved in this process. Using integrated transcriptomic and translatomic dual-omics analyses of C2C12 myoblasts treated with or without lycopene, we identified 55 functional genes implicated in transcriptional and translational regulation. Our findings suggest that lycopene may modulate lipid metabolism in C2C12 myoblasts by regulating the expression of Ankrd1. This study not only provides valuable insights into the coordinated regulation of gene expression at both the transcriptional and translational levels but also establishes a theoretical foundation for the beneficial role of lycopene in improving meat quality.
Collapse
Affiliation(s)
- Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tengda Huang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shi Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
2
|
Liu Z, Cheng S, Zhang X, Yang M, Wei J, Ye F, Ma Z, Kang H, Zhang Z, Li H, Xiang H. Characterization of the regulatory network and pathways in duodenum affecting chicken abdominal fat deposition. Poult Sci 2024; 103:104463. [PMID: 39504821 PMCID: PMC11570720 DOI: 10.1016/j.psj.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The excessive accumulation of abdominal fat in chickens has resulted in a reduction in both the feed conversion efficiency and the slaughter yield. To elucidate the regulatory mechanisms and metabolic pathways affecting abdominal fat deposition in the context of broiler breeding, a cohort of 400 Qingyuan partridge chickens with varying abdominal fat deposition was established. Whole transcriptome sequencing analyses were conducted on the duodenum of 20 representative chickens to ascertain the regulatory networks at this vital digestive and absorptive organ. Consequently, 116 differentially expressed genes were identified, exhibiting a trend of increasing or decreasing expression in correlation with the accumulation of abdominal fat. A total of 36 DEmRNAs, 170 DElncRNAs, 92 DEcircRNAs and 88 DEmiRNAs were identified as differentially expressed between chickens with extremely high and low abdominal fat deposition. The functional enrichment analyses demonstrated that the differentially expressed RNA in the duodenum were involved in the regulation of chicken abdominal fat deposition by mediating a series of metabolic pathways, including the Wnt signaling pathway, the PPAR signaling pathway, the Hippo signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway and other signaling pathways that are involved in fatty acid metabolism and degradation. The construction of putative interaction pairs led to the suggestion of two lncRNA-miRNA-mRNA ceRNA networks comprising two mRNAs, two miRNAs, and 29 lncRNAs, as well as two circRNA-lncRNA-miRNA-mRNA ceRNA networks comprising 26 mRNAs, 12 miRNAs, 17 lncRNAs, and nine circRNAs, as core regulatory networks in the duodenum affecting chicken abdominal fat deposition. The aforementioned genes including TMEM150C, REXO1, PIK3C2G, ppp1cb, PARP12, SERPINE2, LRAT, CYP1A1, INSR and APOA4, were proposed as candidate genes, while the miRNAs, including miR-107-y, miR-22-y, miR-25-y, miR-2404-x and miR-16-x, as well as lncRNAs such as ENSGALT00000100291, TCONS_00063508, TCONS_00061201 and TCONS_00079402 were the candidate regulators associated with chicken abdominal fat deposition. The findings of this study provide a theoretical foundation for the molecular mechanisms of mRNAs and non-coding RNAs in duodenal tissues on abdominal fat deposition in chickens.
Collapse
Affiliation(s)
- Zhijie Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Sibei Cheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Miaomiao Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Jixiang Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| |
Collapse
|
3
|
Zhong W, Chen C, Tan S, He X, Wen X, Wang S, Tocher DR, Waiho K, Chen C. Identification and Functional Characterization of the FATP1 Gene from Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2969. [PMID: 39457899 PMCID: PMC11506284 DOI: 10.3390/ani14202969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In mammals, fatty acid transport protein 1 (FATP1) plays important roles in cellular uptake and activation of long-chain fatty acid (LCFA), especially in processes of transportation, oxidation and triacylglycerol synthesis. However, the role of FATP1 in invertebrates, especially decapod crustaceans, is still poorly understood. In this study, the cDNA of a FATP1 gene from a decapod crustacean, mud crab Scylla paramamosain, was cloned and functionally characterized. The FATP1 gene encoded a polypeptide consisting of 643 amino acids that exhibits all the typical features of the FATP family and shares high homology with the other FATP orthologs of crustaceans. The relative mRNA expression levels of FATP1 were observed to be higher in metabolically active tissues such as hepatopancreas, stomach and gill than in other crab parts. Knockdown of the FATP1 mRNA in vivo significantly reduced triacylglycerols and total lipid levels in the hepatopancreas, accompanied by an increase in the expression of genes related to fatty acid transportation, allocation and hydrolysis, including long-chain acyl-CoA synthetase 3/4 (ACSL3/4) and carnitine palmitoyl transferase 1 (CPT1), and a decrease in the expression of genes related to fatty acid synthesis such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the hepatopancreas. Furthermore, increased dietary n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels resulted in the up-regulation of the FATP1 expression in the hepatopancreas, accompanied by an increase in LC-PUFA content, especially eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), in both polar (PLs) and neutral lipids (NLs) in the hepatopancreas and muscles of crabs. These findings suggested that the FATP1 gene identified in S. paramamosain might play important roles in regulating long-chain fatty acid metabolism and deposition in crustaceans.
Collapse
Affiliation(s)
- Wenjie Zhong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Chuangsi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Senyue Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu 21300, Malaysia;
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| |
Collapse
|
4
|
Ren P, Zhou L, Xu Y, Chen M, Luo Z, Li J, Liu Y. Exercise Volume Provides New Insight into the Effects of Housing Systems on Chicken Body Conformation, Carcass Traits, Meat Quality, and Serum Biochemical Parameters. Animals (Basel) 2024; 14:2387. [PMID: 39199922 PMCID: PMC11350860 DOI: 10.3390/ani14162387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
This study aims to investigate the dynamic changes in daily step counts under different housing systems and further explore the effects of housing system on the body conformation, carcass traits, meat quality, and serum biochemical parameters of a Chinese indigenous chicken breed. At 60 d of age, 300 Jiuyuan Black male chickens with similar body weights in each housing system were further raised until the age of 150 d. At 90, 120, and 150 d of age, in both cage-reared and free-range systems, the top 20 chickens with the highest step counts measured using pedometers and the bottom 20 chickens with the lowest step counts were designated as the cage high-steps group (CHS), the cage low-steps group (CLS), the free-range high-steps group (FHS), and the free-range low-steps group (FLS), respectively. The results show that, at any age stage, the average daily steps (ADS) and total steps (TS) of the FHS group are significantly higher than the other three groups (p < 0.05). The TS of almost all groups showed an overall downward trend as the age increased. Increased exercise volume results in reduced shank length (90 d), breast width (90 d), and keel length (150 d) (p < 0.05). Only birds at 90 d of age from the FHS and FLS groups exhibited lower live body weight, carcass weight, half-eviscerated weight, eviscerated weight, breast muscle weight, leg muscle weight, and percentage of eviscerated weight than the CLS group (p < 0.05). Birds from the FHS group showed the highest heart weight values but the lowest abdominal fat weight values among these four groups (p < 0.05). Both the breast and leg muscle samples from the FHS group displayed higher dry matter and shear force than those from the CHS and CLS groups (p < 0.05). The FHS group displayed the lowest intramuscular fat among the four groups (p < 0.05). The creatine kinase (CK) and lactate dehydrogenase (LDH) levels in chickens of all age stages were almost observed to rise with increased physical activity. In conclusion, free-range chickens with more exercise volume exhibited an elevated heart weight and reduced abdominal fat but showed negative effects on some body measurements and carcass traits. These results can provide a theoretical basis for the selection of different housing systems for Chinese indigenous chickens.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Li Zhou
- Yibin Academy of Agricultural Sciences, Yibin 644600, China;
| | - Yingfeng Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
5
|
Zhu J, Wang Y, Su Y, Zheng M, Cui H, Chen Z. RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages. BMC Genomics 2024; 25:219. [PMID: 38413888 PMCID: PMC10900564 DOI: 10.1186/s12864-023-09819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Intramuscular fat (IMF) is an important factor in meat quality, and triglyceride (TG) and Phospholipids (PLIP), as the main components of IMF, are of great significance to the improvement of meat quality. RESULTS In this study, we used 30 RNA sequences generated from the transcriptome of chicken breast muscle tissues at different developmental stages to construct a gene expression matrix to map RNA sequence reads to the chicken genome and identify the transcript of origin. We used weighted gene co-expression network analysis (WGCNA) and identified 27 co-expression modules, 10 of which were related to TG and PLIP. We identified 150 highly-connected hub genes related to TG and PLIP, respectively, which were found to be mainly enriched in the adipocytokine signaling pathway, MAPK signaling pathway, mTOR signaling pathway, FoxO signaling pathway, and TGF-beta signaling pathway. Additionally, using the BioMart database, we identified 134 and 145 candidate genes related to fat development in the TG-related module and PLIP-related module, respectively. Among them, RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 were identified as candidate genes related to fat development and highly-connected hub genes in the module, suggesting that these ten genes may be important candidate genes affecting IMF deposition. CONCLUSIONS RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 may be important candidate genes affecting IMF deposition. The purpose of this study was to identify the co-expressed gene modules related to chicken IMF deposition using WGCNA and determine key genes related to IMF deposition, so as to lay a foundation for further research on the molecular regulation mechanism underlying chicken fat deposition.
Collapse
Affiliation(s)
- Jinmei Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongchun Su
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhiwu Chen
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China.
| |
Collapse
|
6
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
7
|
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int J Mol Sci 2023; 24:15488. [PMID: 37895167 PMCID: PMC10607073 DOI: 10.3390/ijms242015488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|
8
|
Chen B, Yue Y, Li J, Yuan C, Guo T, Zhang D, Liu J, Yang B, Lu Z. Global DNA Methylation, miRNA, and mRNA Profiles in Sheep Skeletal Muscle Promoted by Hybridization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15398-15406. [PMID: 37815113 DOI: 10.1021/acs.jafc.3c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
With the development of high-throughput sequencing technology, several nongenetic variations, including noncoding RNAs such as miRNAs, and DNA methylation, have been found to play an important role in animal muscle development and fat metabolism. In this study, Southdown and Suffolk were selected as male parents for hybridization with Hu sheep (Southdown × Hu (NH), Suffolk × Hu (SH), and Hu × Hu (HH)). RNA sequencing, bisulfite sequencing, and small-RNA sequencing were used to study the methylation patterns and differences in miRNA and mRNA expression in the F1 sheep longissimus dorsi muscle tissue. We identified 765 differentially expressed genes (DEGs), 10,161 differentially methylated regions (DMRs), and 164 differentially expressed miRNAs, which were significantly enriched in AMPK signaling, fatty acid degradation, metabolism, and other related pathways (P < 0.05). In addition, we constructed a DNA methylation-mRNA and miRNA-mRNA coexpression network. A total of 42 common genes were identified from DMRs and DEGs. Importantly, we predicted that 33 differentially expressed miRNAs directly or indirectly targeted the SLC27A6. The data obtained in this study provide useful information and evidence to support further understanding of the miRNA and DNA methylation of key genes regulating muscle growth and fat metabolism in hybrid sheep populations.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| |
Collapse
|
9
|
Zhai B, Zhao Y, Li H, Li S, Gu J, Zhang H, Zhang Y, Li H, Tian Y, Li G, Wang Y. Weighted gene co-expression network analysis identified hub genes critical to fatty acid composition in Gushi chicken breast muscle. BMC Genomics 2023; 24:594. [PMID: 37805512 PMCID: PMC10559426 DOI: 10.1186/s12864-023-09685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND The composition and content of fatty acids in the breast muscle are important factors influencing meat quality. In this study, we investigated the fatty acid composition and content in the breast muscle of Gushi chickens at different developmental stages (14 weeks, 22 weeks, and 30 weeks). Additionally, we utilized transcriptomic data from the same tissue and employed WGCNA and module identification methods to identify key genes associated with the fatty acid composition in Gushi chicken breast muscle and elucidate their regulatory networks. RESULTS Among them, six modules (blue, brown, green, light yellow, purple, and red modules) showed significant correlations with fatty acid content and metabolic characteristics. Enrichment analysis revealed that these modules were involved in multiple signaling pathways related to fatty acid metabolism, including fatty acid metabolism, PPAR signaling pathway, and fatty acid biosynthesis. Through analysis of key genes, we identified 136 genes significantly associated with fatty acid phenotypic traits. Protein-protein interaction network analysis revealed that nine of these genes were closely related to fatty acid metabolism. Additionally, through correlation analysis of transcriptome data, we identified 51 key ceRNA regulatory networks, including six central genes, 7 miRNAs, and 28 lncRNAs. CONCLUSION This study successfully identified key genes closely associated with the fatty acid composition in Gushi chicken breast muscle, as well as their post-transcriptional regulatory networks. These findings provide new insights into the molecular regulatory mechanisms underlying the flavor characteristics of chicken meat and the composition of fatty acids in the breast muscle.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, People's Republic of China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinxing Gu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, P. R. China.
- The Shennong Laboratory, Zhengzhou, 450046, China.
| | - Yongcai Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Tang Y, Zhang W, Wang Y, Li H, Zhang C, Wang Y, Lin Y, Shi H, Xiang H, Huang L, Zhu J. Expression Variation of CPT1A Induces Lipid Reconstruction in Goat Intramuscular Precursor Adipocytes. Int J Mol Sci 2023; 24:13415. [PMID: 37686221 PMCID: PMC10488119 DOI: 10.3390/ijms241713415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Intramuscular fat (IMF) deposition is one of the most important factors affecting meat quality and is closely associated with the expression of carnitine palmitoyl transferase 1A (CPT1A) which facilitates the transfer of long-chain fatty acids (LCFAs) into the mitochondria. However, the role of how CPT1A regulates the IMF formation remains unclear. Herein, we established the temporal expression profile of CPT1A during the differentiation of goat intramuscular precursor adipocytes. Functionally, the knockdown of CPT1A by siRNA treatment significantly increased the mRNA expression of adipogenic genes and promoted lipid deposition in goat intramuscular precursor adipocytes. Meanwhile, a CPT1A deficiency inhibited cell proliferation and promoted cell apoptosis significantly. CPT1A was then supported by the overexpression of CPT1A which significantly suppressed the cellular triglyceride deposition and promoted cell proliferation although the cell apoptosis also was increased. For RNA sequencing, a total of 167 differential expression genes (DEGs), including 125 upregulated DEGs and 42 downregulated DEGs, were observed after the RNA silencing of CPT1A compared to the control, and were predicted to enrich in the focal adhesion pathway, cell cycle, apoptosis and the MAPK signaling pathway by KEGG analysis. Specifically, blocking the MAPK signaling pathway by a specific inhibitor (PD169316) rescued the promotion of cell proliferation in CPT1A overexpression adipocytes. In conclusion, the expression variation of CPT1A may reconstruct the lipid distribution between cellular triglyceride deposition and cell proliferation in goat intramuscular precursor adipocyte. Furthermore, we demonstrate that CPT1A promotes the proliferation of goat adipocytes through the MAPK signaling pathway. This work widened the genetic regulator networks of IMF formation and delivered theoretical support for improving meat quality from the aspect of IMF deposition.
Collapse
Affiliation(s)
- Yinmei Tang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Wenyang Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Yinggui Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610225, China; (Y.T.); (Y.W.); (H.L.); (C.Z.); (Y.W.); (Y.L.); (H.X.); (L.H.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| |
Collapse
|
11
|
Zhang J, Chen X, Cao J, Chang C, Geng A, Wang H, Chu Q, Yan Z, Zhang Y, Liu H. Proteomic Profiling of Thigh Meat at Different Ages of Chicken for Meat Quality and Development. Foods 2023; 12:2901. [PMID: 37569170 PMCID: PMC10418907 DOI: 10.3390/foods12152901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Chicken age contributes to the meat characteristics; however, knowledge regarding the pathways and proteins associated with meat quality and muscle development are still scarce, especially in chicken thigh meat. Hence, the objective of this study was to elucidate the intricate relationship between these traits by liquid chromatography mass spectrometry at three different ages. A total of 341 differential expressed proteins (DEPs) were screened out (fold change ≥ 1.50 or ≤0.67 and p < 0.05) among 45 thigh meat samples (15 samples per age) of Beijing-You chicken (BYC), collected at the age of 150, 300, or 450 days (D150, D300, and D450), respectively. Subsequently, based on the protein interaction network and Markov cluster algorithm (MCL) analyses, 91 DEPs were divided into 26 MCL clusters, which were associated with pathways of lipid transporter activity, nutrient reservoir activity, signaling pathways of PPAR and MAPK, focal adhesion, ECM-receptor interaction, the cell cycle, oocyte meiosis, ribosomes, taurine and hypotaurine metabolism, glutathione metabolism, muscle contraction, calcium signaling, nucleic acid binding, and spliceosomes. Overall, our data suggest that the thigh meat of BYC at D450 presents the most desirable nutritional value in the term of free amino acids (FAAs) and intramuscular fat (IMF), and a series of proteins and pathways associated with meat quality and development were identified. These findings also provide comprehensive insight regarding these traits across a wide age spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (X.C.); (J.C.); (C.C.); (A.G.); (H.W.); (Q.C.); (Z.Y.); (Y.Z.)
| |
Collapse
|
12
|
Zhong Z, Wang Z, Xie X, Tian S, Wang F, Wang Q, Ni S, Pan Y, Xiao Q. Evaluation of the Genetic Diversity, Population Structure and Selection Signatures of Three Native Chinese Pig Populations. Animals (Basel) 2023; 13:2010. [PMID: 37370521 DOI: 10.3390/ani13122010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Indigenous pig populations in Hainan Province live in tropical climate conditions and a relatively closed geographical environment, which has contributed to the formation of some excellent characteristics, such as heat tolerance, strong disease resistance and excellent meat quality. Over the past few decades, the number of these pig populations has decreased sharply, largely due to a decrease in growth rate and poor lean meat percentage. For effective conservation of these genetic resources (such as heat tolerance, meat quality and disease resistance), the whole-genome sequencing data of 78 individuals from 3 native Chinese pig populations, including Wuzhishan (WZS), Tunchang (TC) and Dingan (DA), were obtained using a 150 bp paired-end platform, and 25 individuals from two foreign breeds, including Landrace (LR) and Large White (LW), were downloaded from a public database. A total of 28,384,282 SNPs were identified, of which 27,134,233 SNPs were identified in native Chinese pig populations. Both genetic diversity statistics and linkage disequilibrium (LD) analysis indicated that indigenous pig populations displayed high genetic diversity. The result of population structure implied the uniqueness of each native Chinese pig population. The selection signatures were detected between indigenous pig populations and foreign breeds by using the population differentiation index (FST) method. A total of 359 candidate genes were identified, and some genes may affect characteristics such as immunity (IL-2, IL-21 and ZFYVE16), adaptability (APBA1), reproduction (FGF2, RNF17, ADAD1 and HIPK4), meat quality (ABCA1, ADIG, TLE4 and IRX5), and heat tolerance (VPS13A, HSPA4). Overall, the findings of this study will provide some valuable insights for the future breeding, conservation and utilization of these three Chinese indigenous pig populations.
Collapse
Affiliation(s)
- Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Shuaishuai Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Qishan Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shiheng Ni
- Animal Husbandry Technology Extending Stations of Hainan Province, Haikou 570203, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Gong Y, Lin Z, Wang Y, Liu Y. Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals. Gene 2023; 860:147226. [PMID: 36736503 DOI: 10.1016/j.gene.2023.147226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.
Collapse
Affiliation(s)
- Yanrong Gong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
Mohindra V, Chowdhury LM, Chauhan N, Paul A, Singh RK, Kushwaha B, Maurya RK, Lal KK, Jena JK. Transcriptome Analysis Revealed Osmoregulation Related Regulatory Networks and Hub Genes in the Gills of Hilsa shad, Tenualosa ilisha, during the Migratory Osmotic Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:161-173. [PMID: 36631626 DOI: 10.1007/s10126-022-10190-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tenualosa ilisha (Hilsa shad), an anadromous fish, usually inhabits coastal and estuarine waters, and migrates to freshwater for spawning. In this study, large-scale gill transcriptome analyses from three salinity regions, i.e., fresh, brackish and marine water, revealed 3277 differentially expressed genes (DEGs), out of which 232 were found to be common between marine vs freshwater and brackish vs freshwater. These genes were mapped into 54 KEGG Pathways, and the most significant of these were focal adhesion, adherens junction, tight junction, and PI3K-Akt signaling pathways. A total of 24 osmoregulatory genes were found to be differentially expressed in different habitats. The gene members of slc16 and slc2 families showed a dissimilar pattern of expressions, while two claudin genes (cldn11 & cldn10), transmembrane tm56b, and voltage-gated potassium channel gene kcna10 were downregulated in freshwater samples, as compared to that of brackish and marine environment. Protein-protein interaction (PPI) network analysis of 232 DEGs showed 101 genes to be involved in PPI, while fn1 gene was found to be interacting with the highest number of genes (36). Twenty-five hub genes belonged to 12 functional groups, with muscle structure development with seven genes, forming the major group. These results provided valuable information about the genes, potentially involved in the molecular mechanisms regulating water homeostasis in gills, during migration for spawning and low-salinity adaptation in Hilsa shad. These genes may form the basis for the bio-marker development for adaptation to the stress levied by major environmental changes, due to hatchery/culture conditions.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India.
| | - Labrechai Mog Chowdhury
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Nishita Chauhan
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Alisha Paul
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajeev Kumar Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajesh Kumar Maurya
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan-II, New Delhi, 110 012, India
| |
Collapse
|
15
|
Park SJ, Kim JH, Oh S, Lee DY. Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2023; 33:114-122. [PMID: 36474320 PMCID: PMC9895996 DOI: 10.4014/jmb.2211.11013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo-Hyun Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea,Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea,Corresponding authors S. Oh Phone: +82-2-910-5732 E-mail:
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea,Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,D.Y. Lee Phone: + 82-2-880-5644 E-mail:
| |
Collapse
|
16
|
Effects of Dietary Vitamin E on Intramuscular Fat Deposition and Transcriptome Profile of the Pectoral Muscle of Broilers. J Poult Sci 2023; 60:2023006. [PMID: 36756043 PMCID: PMC9884639 DOI: 10.2141/jpsa.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Vitamin E is an essential micronutrient for animals. The aim of this study was to determine the effect of vitamin E on intramuscular fat (IMF) deposition and the transcriptome profile of the pectoral muscle in broiler chickens. Arbor Acres chickens were divided into five treatment groups fed a basal diet supplemented with 0, 20, 50, 75, and 100 IU/kg dietary DL-α-tocopheryl acetate (vitamin E), respectively. Body weight, carcass performance, and IMF content were recorded. Transcriptome profiles of the pectoral muscles of 35-day-old chickens in the control and treatment groups (100 IU/kg of vitamin E) were obtained by RNA sequencing. The results showed that diets supplemented with 100 IU/kg of vitamin E significantly increased IMF deposition in chickens on day 35. In total, 159 differentially expressed genes (DEGs), including 57 up-regulated and 102 down-regulated genes, were identified in the treatment (100 IU/kg vitamin E) group compared to the control group. These DEGs were significantly enriched in 13 Gene Ontology terms involved in muscle development and lipid metabolism; three signaling pathways, including the mitogen-activated protein kinase and FoxO signaling pathways, which play key roles in muscular and lipid metabolism; 28 biofunctional categories associated with skeletal and muscular system development; 17 lipid metabolism functional categories; and three lipid metabolism and muscle development-related networks. The DEGs, pathways, functional categories, and networks identified in this study provide new insights into the regulatory roles of vitamin E on IMF deposition in broilers. Therefore, diets supplemented with 100 IU/kg of vitamin E will be more beneficial to broiler production.
Collapse
|
17
|
Ramírez-Zamudio GD, Ganga MJG, Pereira GL, Nociti RP, Chiaratti MR, Cooke RF, Chardulo LAL, Baldassini WA, Machado-Neto OR, Curi RA. Effect of Cow-Calf Supplementation on Gene Expression, Processes, and Pathways Related to Adipogenesis and Lipogenesis in Longissimus thoracis Muscle of F1 Angus × Nellore Cattle at Weaning. Metabolites 2023; 13:metabo13020160. [PMID: 36837780 PMCID: PMC9962728 DOI: 10.3390/metabo13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to identify differentially expressed genes, biological processes, and metabolic pathways related to adipogenesis and lipogenesis in calves receiving different diets during the cow-calf phase. Forty-eight uncastrated F1 Angus × Nellore males were randomly assigned to two treatments from thirty days of age to weaning: no creep feeding (G1) or creep feeding (G2). The creep feed offered contained ground corn (44.8%), soybean meal (40.4%), and mineral core (14.8%), with 22% crude protein and 65% total digestible nutrients in dry matter. After weaning, the animals were feedlot finished for 180 days and fed a single diet containing 12.6% forage and 87.4% corn-based concentrate. Longissimus thoracis muscle samples were collected by biopsy at weaning for transcriptome analysis and at slaughter for the measurement of intramuscular fat content (IMF) and marbling score (MS). Animals of G2 had 17.2% and 14.0% higher IMF and MS, respectively (p < 0.05). We identified 947 differentially expressed genes (log2 fold change 0.5, FDR 5%); of these, 504 were upregulated and 443 were downregulated in G2. Part of the genes upregulated in G2 were related to PPAR signaling (PPARA, SLC27A1, FABP3, and DBI), unsaturated fatty acid synthesis (FADS1, FADS2, SCD, and SCD5), and fatty acid metabolism (FASN, FADS1, FADS2, SCD, and SCD5). Regarding biological processes, the genes upregulated in G2 were related to cholesterol biosynthesis (EBP, CYP51A1, DHCR24, and LSS), unsaturated fatty acid biosynthesis (FADS2, SCD, SCD5, and FADS1), and insulin sensitivity (INSIG1 and LPIN2). Cow-calf supplementation G2 positively affected energy metabolism and lipid biosynthesis, and thus favored the deposition of marbling fat during the postweaning period, which was shown here in an unprecedented way, by analyzing the transcriptome, genes, pathways, and enriched processes due to the use of creep feeding.
Collapse
Affiliation(s)
| | - Maria Júlia Generoso Ganga
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Guilherme Luis Pereira
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, SP, Brazil
| | | | - Luis Artur Loyola Chardulo
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Welder Angelo Baldassini
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Otávio Rodrigues Machado-Neto
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Rogério Abdallah Curi
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
- Correspondence:
| |
Collapse
|
18
|
Kong F, Bai L, He Z, Sun J, Tan X, Zhao D, Feng F, Liu D, Zhao G, Wen J, Liu R. Integrated metabolomics and lipidomics evaluate the alterations of flavor precursors in chicken breast muscle with white striping symptom. Front Physiol 2023; 13:1079667. [PMID: 36741806 PMCID: PMC9889919 DOI: 10.3389/fphys.2022.1079667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
White striping (WS) is the most common myopathy in the broiler chicken industry. To reveal flavor changes of WS meat objectively, flavor precursors of WS breast muscle were evaluated systematically with integrated metabolomics and lipidomics. The results showed that WS could be distinguished from normal controls by E-nose, and four volatile compounds (o-xylene, benzene, 1,3-dimethyl, 2-heptanone and 6-methyl and Acetic acid and ethyl ester) were detected as decreased compounds by gas chromatography-mass spectrometry. Lipidomic analysis showed that WS breast fillets featured increased neutral lipid (83.8%) and decreased phospholipid molecules (33.2%). Targeted metabolomic analysis indicated that 16 hydrophilic metabolites were altered. Thereinto, some water-soluble flavor precursors, such as adenosine monophosphate, GDP-fucose and L-arginine increased significantly, but fructose 1,6-bisphosphate and L-histidine significantly decreased in the WS group. These results provided a systematic evaluation of the flavor precursors profile in the WS meat of broiler chickens.
Collapse
Affiliation(s)
- Fuli Kong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Lu Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Zhengxiao He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Jiahong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Xiaodong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Di Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China,*Correspondence: Jie Wen, ; Ranran Liu,
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China,*Correspondence: Jie Wen, ; Ranran Liu,
| |
Collapse
|
19
|
Yu S, Wang G, Liao J, Shen X, Chen J, Chen X. Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken. Br Poult Sci 2023. [PMID: 36622203 DOI: 10.1080/00071668.2022.2162370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19,270 lncRNA/mRNA pairs were identified, including 16,398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA-mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated that pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
20
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
21
|
Pan Z, Du G, Li G, Wu D, Chen X, Geng Z. Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1199-1214. [PMID: 36812035 PMCID: PMC9890340 DOI: 10.5187/jast.2022.e60] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.
Collapse
Affiliation(s)
- Ziyi Pan
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Du
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoyu Li
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Dongsheng Wu
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| | - Zhaoyu Geng
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| |
Collapse
|
22
|
Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age. Animals (Basel) 2022; 12:ani12182422. [PMID: 36139280 PMCID: PMC9495107 DOI: 10.3390/ani12182422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Given an increasing trend in slaughter and chilling for the sale of chickens in China, it is important to determine the marketable age of chickens for chilled sales. This study determined the effects of two marketable ages on the body measurements, carcass traits, and meat quality of yellow-feathered chickens. A total of 360 healthy one-day-old male Xueshan chickens were raised in six pens (straw-covered floor, numbered 1 to 6) and treated in the same manner (free access to food and water) until day 100. Sixty chickens from pens numbered 1 to 3 and 4 to 6 were selected to determine the body measurements, carcass traits, and meat quality at two slaughter ages (90 and 100 days), respectively. One hundred-day-old chickens had a higher body slope, cockscomb, keel, shank lengths, and higher live and dressed weights (p < 0.05). The abdomen skin follicle density, a*(redness) and b*(yellowness) values were higher in 100-day-old chickens (p < 0.05), whereas the 90-day-old chickens were characterized by better spotted skin. For the breast muscle, pH, shear force, a*, moisture, and protein and intramuscular fat contents were lower; moreover, L*(lightness) and b* were higher in 90-day-old chickens. In leg muscles, the pH, shear force, L*, b* and collagen content were lower; furthermore, the a* and moisture contents were higher in 90-day-old chickens (p < 0.05). These findings indicate that two marketable ages both have pros and cons, but 90 days chickens perform better on carcass appearance, and producers can adjust the marketable age to meet needs of different consumers. This study provides a unique idea and theoretical reference for breeding and marketing yellow-feathered chickens.
Collapse
|
23
|
Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D. FATP1 Exerts Variable Effects on Adipogenic Differentiation and Proliferation in Cells Derived From Muscle and Adipose Tissue. Front Vet Sci 2022; 9:904879. [PMID: 35898540 PMCID: PMC9310014 DOI: 10.3389/fvets.2022.904879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In livestock, intramuscular adipose tissue is highly valued whereas adipose tissue in other depots is considered as waste. Thus, genetic factors that favor fat deposition in intramuscular compartments over that in other adipose depots are highly desirable in meat-producing animals. Fatty acid transport 1 (FATP1) has been demonstrated to promote cellular fatty acid uptake and metabolism; however, whether it also influences cellular lipid accumulation remains unclear. In the present study, we investigated the effects of FATP1 on the differentiation and proliferation of adipocytes in five types of cells derived from muscle and adipose tissue and estimated the effects of FATP1 on intramuscular fat (IMF) deposition. We showed that FATP1 is mainly expressed in heart and muscle tissue in buffaloes as well as cells undergoing adipogenic differentiation. Importantly, we found that FATP1 promoted the adipogenic differentiation of muscle-derived cells (buffalo myocytes and intramuscular preadipocytes and mouse C2C12 cells) but did not affect, or even inhibited, that of adipose-derived cells (buffalo subcutaneous preadipocytes and mouse 3T3-L1 cells, respectively). Correspondingly, our results further indicated that FATP1 promotes IMF deposition in mice in vivo. Meanwhile, FATP1 was found to enhance the proliferative activity of all the assessed cells, except murine 3T3-L1 cells. These results provide new insights into the potential effects of FATP1 on IMF deposition, especially regarding its positive effects on meat quality in buffaloes and other livestock.
Collapse
|
24
|
Tian W, Hao X, Nie R, Ling Y, Zhang B, Zhang H, Wu C. Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens. J Anim Sci Biotechnol 2022; 13:81. [PMID: 35791010 PMCID: PMC9258119 DOI: 10.1186/s40104-022-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Excessive abdominal fat deposition in commercial broilers presents an obstacle to profitable meat quality, feed utilization, and reproduction. Abdominal fat deposition depends on the proliferation of preadipocytes and their maturation into adipocytes, which involves a cascade of regulatory molecules. Accumulating evidence has shown that microRNAs (miRNAs) serve as post-transcriptional regulators of adipogenic differentiation in mammals. However, the miRNA-mediated molecular mechanisms underlying abdominal fat deposition in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken abdominal adipogenesis. Results We established a chicken model of abdominal adipocyte differentiation and analyzed miRNA and mRNA expression in abdominal adipocytes at different stages of differentiation (0, 12, 48, 72, and 120 h). A total of 217 differentially expressed miRNAs (DE-miRNAs) and 3520 differentially expressed genes were identified. Target prediction of DE-miRNAs and functional enrichment analysis revealed that the differentially expressed targets were significantly enriched in lipid metabolism-related signaling pathways, including the PPAR signaling and MAPK signaling pathways. A candidate miRNA, gga-miR-106-5p, exhibited decreased expression during the proliferation and differentiation of abdominal preadipocytes and was downregulated in the abdominal adipose tissues of fat chickens compared to that of lean chickens. gga-miR-106-5p was found to inhibit the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. A dual-luciferase reporter assay suggested that the KLF15 gene, which encodes a transcriptional factor, is a direct target of gga-miR-106-5p. gga-miR-106-5p suppressed the post-transcriptional activity of KLF15, which is an activator of abdominal preadipocyte proliferation and differentiation, as determined with gain- and loss-of-function experiments. Conclusions gga-miR-106-5p functions as an inhibitor of abdominal adipogenesis by targeting the KLF15 gene in chickens. These findings not only improve our understanding of the specific functions of miRNAs in avian adipogenesis but also provide potential targets for the genetic improvement of excessive abdominal fat deposition in poultry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00727-x.
Collapse
Affiliation(s)
- Weihua Tian
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Hao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Sanya Institute of China Agricultural University, Hainan, 572025, Sanya, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. .,Sanya Institute of China Agricultural University, Hainan, 572025, Sanya, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Zhang J, Zhuang H, Cao J, Geng A, Wang H, Chu Q, Yan Z, Zhang X, Zhang Y, Liu H. Breast Meat Fatty Acid Profiling and Proteomic Analysis of Beijing-You Chicken During the Laying Period. Front Vet Sci 2022; 9:908862. [PMID: 35782537 PMCID: PMC9240433 DOI: 10.3389/fvets.2022.908862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023] Open
Abstract
The disparity in fatty acids (FA) composition exhibits a significant impact on meat quality, however, the molecular regulatory mechanisms underlying this trait in chicken are far from clear. In this study, a total of 45 female Beijing-You chicken (BYC) hens, fed on the same diet, were collected at the slaughter age of 150, 300, or 450 days (D150, D300, and D450) from sexual maturation stage to culling stage (15 birds per age). Gas chromatography-mass spectrometry (GC-MS) and tandem mass tag labeling technology based on liquid chromatography mass spectrometry (TMT-LC-MS/MS) analysis strategies were applied to profile FA compositions and to compare differential expressed proteins (DEPs) between these different slaughter ages, respectively. The FA profiling showed that increasing hen ages resulted in increased contents of both saturated and unsaturated fatty acids. Proteomic analyses showed a total of 4,935 proteins in chicken breast muscle with the false discovery rate (FDR) < 1% and 664 of them were differentially expressed (fold change > 1.50 or < 0.67 and P < 0.01). There were 410 up- and 116 down-regulated proteins in D150 vs. D300 group, 32 up- and 20 down-regulated in D150 vs. D450 group, and 72 up- and 241 down-regulated in D300 vs. D450 group. A total of 57 DEPs related to FA/lipid-related metabolisms were obtained according to the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). These DEPs were involved in 21 significantly enriched (P < 0.05) pathways, including well-known pathways for FA synthesis (metabolism, desaturation, and elongation) and the signaling pathways for lipid metabolism (PPAR, adipocytokine, calcium, VEGF, MAPK, and Wnt). In addition, there existed several representative DEPs (FABP, FABP3, apoA-I, apoA-IV, apoC-III, apoB, VTG1, and VTG2) involved in the regulation of FA/lipid transportation. The construction of the interaction networks indicated that HADH, ACAA2, HADHA, ACSL1, CD36, CPT1A, PPP3R1, and SPHK1 were the key core nodes. Finally, eight DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. These results expanded our understanding of how the laying age affects the FA compositions and metabolism in hen breast meat.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hong Zhuang
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jing Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haihong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yao Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Huagui Liu
| |
Collapse
|
26
|
Liang F, Yan L, Li Y, Jin Y, Zhang J, Che H, Diao J, Gao Y, He Z, Sun R, He Y, Zhou C. Effect of season on slaughter performance, meat quality, muscle amino acid and fatty acid composition, and metabolism of pheasants (Phasianus colchicus). Anim Sci J 2022; 93:e13735. [PMID: 35644952 DOI: 10.1111/asj.13735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/01/2022]
Abstract
This study aimed to investigate the effect of summer and winter on slaughter performance, muscle quality, flavor-related substance content, and gene expression levels related to the fat metabolism of pheasants. One-hundred 1-day-old pheasants were fed for 5 months starting in March and July and then, respectively, slaughtered in summer (August) and winter (December). The results revealed that compared with summer, winter not only increased pheasant live weight, dressed percentage, full-eviscerated yield, and muscle yield (p < 0.05) but also enhanced the activities of SOD and CAT in serum (p < 0.05). Winter significantly increased meat color, the contents of inosinic acid, and flavor amino acid in muscle. Amino acid contents in leg muscles of pheasants in winter were significantly higher than in summer except for histidine (p < 0.05). Winter increased the contents of muscle mono-unsaturated fatty acid, reducing saturated fatty acid. Summer improved fat synthesis in liver, promoted the deposition of triglycerides and cholesterol, and reduced the expression levels of fat metabolism-related genes in muscle, while winter increased the expression levels of genes related to muscle fat metabolism to provide energy for body and affect muscle fatty acid profile. Overall, pheasants fed in winter had better sensory quality and flavor than summer.
Collapse
Affiliation(s)
- Fangfang Liang
- College of Animal Science, Jilin University, Changchun, China
| | - Lei Yan
- New Hope Liuhe Co., Ltd./Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, Chengdu, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Yongcheng Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Haoyu Che
- College of Animal Science, Jilin University, Changchun, China
| | - Jizhe Diao
- College of Animal Science, Jilin University, Changchun, China
| | - Yequn Gao
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaolan He
- College of Animal Science, Jilin University, Changchun, China
| | - Ruihong Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Yuntong He
- College of Animal Science, Jilin University, Changchun, China
| | - Changhai Zhou
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
27
|
Li J, Li Z, Ran J, Yang C, Lin Z, Liu Y. LC/MS-based lipidomics to characterize breed-specific and tissue-specific lipid composition of chicken meat and abdominal fat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
miR-24-3p Dominates the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes by Blocking ANXA6 Expression. Genes (Basel) 2022; 13:genes13040635. [PMID: 35456441 PMCID: PMC9024460 DOI: 10.3390/genes13040635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Intramuscular fat (IMF) is one of the crucial factors determining meat quality. IMF deposition depends on the hyperplasia and hypertrophy of intramuscular preadipocytes, in which genes and noncoding RNAs play an important regulatory role. According to previous transcriptome analysis, ANXA6 and miR-24-3p were identified as involved in lipid metabolism in breast muscle. In this study, we further investigated their function in the proliferation and differentiation of chicken intramuscular preadipocytes. The results indicated that overexpression of ANXA6 inhibited proliferation and promoted differentiation of intramuscular preadipocytes, while knockdown of ANXA6 promoted cell proliferation and inhibited adipogenic differentiation. miR-24-3p was proved to directly bind to the 3′ untranslated region (3′UTR) of ANXA6 by dual-luciferase reporter assay. The regulatory effect of miR-24-3p on the proliferation and differentiation of intramuscular preadipocytes was opposite to that of ANXA6. Besides, the overexpression vector of ANXA6 eliminated the impact of miR-24-3p mimics on intramuscular preadipocytes. In brief, we revealed that miR-24-3p promoted proliferation but inhibited differentiation of intramuscular preadipocytes by blocking ANXA6 expression, thus dominating IMF deposition in broilers. These findings may provide a novel target for improving chicken meat quality.
Collapse
|
29
|
Jin Y, Yuan X, Zhao W, Li H, Zhao G, Liu J. The SLC27A1 Gene and Its Enriched PPAR Pathway Are Involved in the Regulation of Flavor Compound Hexanal Content in Chinese Native Chickens. Genes (Basel) 2022; 13:genes13020192. [PMID: 35205238 PMCID: PMC8872575 DOI: 10.3390/genes13020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The role of hexanal in flavor as an indicator of the degree of oxidation of meat products is undeniable. However, the genes and pathways of hexanal formation have not been characterized in detail. In this study, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on groups of Tiannong partridge chickens with different relative hexanal content in order to find the genes involved in the formation of hexanal and the specific pathways of hexanal formation. Then we confirmed the relationship of these candidate genes with hexanal using Jingxing Yellow chicken and Wenchang chicken. In this study, WGCNA revealed a module of co-expressed genes that were highly associated with the volatile organic compound hexanal. We also compared transcriptome gene expression data of samples from chicken groups with high and low relative contents of hexanal and identified a total of 651 differentially expressed genes (DEGs). Among them, 356 genes were up regulated, and 295 genes were downregulated. The different biological functions associated with the DEGs, hub genes and hexanal were identified by functional analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Among all the hub genes in the significant module identified by WGCNA, more were enriched in the PPAR signaling pathway, the proteasome pathway, etc. Additionally, we found that DEGs and hub genes, including SLC27A1, ACOX3, NR4A1, VEGFA, JUN, EGR1, CACNB1, GADD45A and DUSP1, were co-enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, p53 signaling pathway and mitogen-activated protein kinases (MAPK) signaling pathway, etc. Transcriptome results of the Jingxing Yellow chicken population showed that the SLC27A1 gene was significantly associated with hexanal and enriched in the PPAR pathway. Our study provides a comprehensive insight into the key genes related to hexanal content, and can be further explored by functional and molecular studies.
Collapse
Affiliation(s)
- Yuxi Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiaoya Yuan
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
| | - Wenjuan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| |
Collapse
|
30
|
Wang L, Hu X, Wang S, Yuan C, Wang Z, Chang G, Chen G. MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation. Anim Biosci 2022; 35:1327-1339. [PMID: 35073666 PMCID: PMC9449393 DOI: 10.5713/ab.21.0441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Fat deposition in poultry is an important factor in production performance and meat quality research. miRNAs also play important roles in regulating adipocyte differentiation process. This study was to investigate the expression patterns of miRNAs in duck adipocytes after differentiation and explore the role of miR-214 in regulating carnitine palmitoyltransferases 2 (CPT2) gene expression during duck adipocyte differentiation. Methods Successful systems for the isolation, culture, and induction of duck primary fat cells was developed in the experiment. Using Illumina next-generation sequencing, the miRNAs libraries of duck adipocytes were established. miRanda was used to predict differentially expressed (DE) miRNAs and their target genes. The expression patterns of miR-214 and CPT2 during the differentiation were verified by quantitative real-time polymerase chain reaction and western blot. Luciferase reporter assays were used to explore the specific regions of CPT2 targeted by miR-214. We used a miR-214 over-expression strategy in vitro to further investigate its effect on differentiation process and CPT2 gene transcription. Results There were 481 miRNAs identified in duck adipocytes, included 57 DE miRNA candidates. And the 1,046 targets genes of DE miRNAs were mainly involved in p53 signaling, FoxO signaling, and fatty acid metabolism pathways. miR-214 and CPT2 showed contrasting expression patterns before and after differentiation, and they were selected for further research. The expression of miR-214 was decreased during the first 3 days of duck adipocytes differentiation, and then increased, while the expression of CPT2 increased both in the transcriptional and protein level. The luciferase assay suggested that miR-214 targets the 3′untranslated region of CPT2. Overexpression of miR-214 not only promoted the formation of lipid droplets but also decreased the protein abundance of CPT2. Conclusion Current study reports the expression profile of miRNAs in duck adipocytes differentiated for 4 days. And miR-214 has been proved to have the regulator potential for fat deposition in duck.
Collapse
|
31
|
Zhai B, Zhao Y, Fan S, Yuan P, Li H, Li S, Li Y, Zhang Y, Huang H, Li H, Kang X, Li G. Differentially Expressed lncRNAs Related to the Development of Abdominal Fat in Gushi Chickens and Their Interaction Regulatory Network. Front Genet 2022; 12:802857. [PMID: 35003230 PMCID: PMC8740130 DOI: 10.3389/fgene.2021.802857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the growth status of abdominal fat is closely related to production efficiency. Long noncoding RNAs (lncRNAs) play an important role in lipid metabolism and deposition regulation. However, research on the expression profile of lncRNAs related to the development of abdominal fat in chickens after hatching and their interaction regulatory networks is still lacking. To characterize the lncRNA expression profile during the development of chicken abdominal fat, abdominal adipose tissues from 6-, 14-, 22-, and 30-week-old Chinese Gushi chickens were herein used to construct 12 cDNA libraries, and a total of 3,827 new lncRNAs and 5,466 previously annotated lncRNAs were revealed. At the same time, based on the comparative analysis of five combinations, 276 differentially expressed lncRNAs (DE-lncRNAs) were screened. Functional enrichment analysis showed that the predicted target genes of these DE-lncRNAs were significantly enriched in pathways related to the posttranscriptional regulation of gene expression, negative regulation of cell proliferation, cell adhesion and other biological processes, glycosphingolipid biosynthesis, PPAR signaling, fatty acid degradation, fatty acid synthesis and others. In addition, association analysis of the lncRNA transcriptome profile was performed, and DE-lncRNA-related lncRNA-mRNA, lncRNA-miRNA and lncRNA-miRNA-mRNA interaction regulatory networks were constructed. The results showed that DE-lncRNA formed a complex network with PPAR pathway components, including PPARD, ACOX1, ADIPOQ, CPT1A, FABP5, ASBG2, LPL, PLIN2 and related miRNAs, including mir-200b-3p, mir-130b-3p, mir-215-5p, mir-122-5p, mir-223 and mir-125b-5p, and played an important regulatory role in biological processes such as lipid metabolism, adipocyte proliferation and differentiation. This study described the dynamic expression profile of lncRNAs in the abdominal fat of Gushi chickens for the first time and constructed the DE-lncRNA interaction regulatory network. The results expand the number of known lncRNAs in chicken abdominal fat and provide valuable resources for further elucidating the posttranscriptional regulatory mechanism of chicken abdominal fat development or deposition.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| |
Collapse
|
32
|
Caretto A, Errichiello E, Patricelli MG, Zuffardi O, Cristel G, Ravelli S, Sirtori M, Scavini M, Bosi E, Martinenghi S. Transcutaneous electrical stimulation therapy and genetic analysis in Dercum's disease: A pilot study. Medicine (Baltimore) 2021; 100:e28360. [PMID: 34941153 PMCID: PMC8702289 DOI: 10.1097/md.0000000000028360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Dercum's disease (DD), or adiposis dolorosa, is a rare condition of unknown etiology characterized by growth of painful subcutaneous adipose tissue. No specific treatment exists. Pain is often invalidating and resistant to analgesic drugs. We tested the efficacy of Frequency Rhythmic Electrical Modulation System (FREMS) therapy on pain relief. Subcutaneous biopsies were performed for genetic analysis.Nine DD patients were enrolled. Five cycles of FREMS at 3-month intervals during 1 year were administered. Visual analogue scale (VAS), Bartel Index Questionnaire and Short Form 36 questionnaire were used to measure pain and general health status at baseline, 6 and 12 months. Dual-energy X-ray absorptiometry (DEXA) quantified fat mass. Next-Generation Sequencing (NGS) was performed on adipose tissue biopsies and peripheral blood sample to search for somatic variants and specific protein pathway mutation.Seven patients were included in the final analysis. FREMS induced a reduction in VAS score (from 92 to 52.5, P = .0597) and a significant improvement in SF-36 domains (Physical functioning, Role limitation due to physical health, Body pain, Vitality, Social functioning, P < .05). No modification in anthropometrics and DEXA values was observed. The analysis of the mitochondrial Displacement loop (D-loop) region confirmed the clonality of all lipomatous lesions. The presence of the mitochondrially encoded tRNA-Lysine (MT-TK) m.8344A>G variant, occasionally identified in patients with multiple symmetric lipomatosis, was excluded in all subjects. On the other hand, we observed variants in genes belonging to signaling pathways involved in cell cycle and proliferation (Phosphoinositide 3-kinase/AKT/mTOR, MAPK/ERK, and Hippo).FREMS can be a useful tool to alleviate pain and improve overall quality of life in patients with DD. Genetic analysis highlighted the molecular heterogeneity of lipomas.
Collapse
Affiliation(s)
- Amelia Caretto
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, IRCCS Mondino Foundation, Pavia, Italy
| | - Giulia Cristel
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ravelli
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marcella Sirtori
- Bone Metabolic Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Scavini
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sabina Martinenghi
- Department of Internal Medicine, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Tian W, Wang Z, Wang D, Zhi Y, Dong J, Jiang R, Han R, Li Z, Kang X, Li H, Liu X. Chromatin Interaction Responds to Breast Muscle Development and Intramuscular Fat Deposition Between Chinese Indigenous Chicken and Fast-Growing Broiler. Front Cell Dev Biol 2021; 9:782268. [PMID: 34912810 PMCID: PMC8667342 DOI: 10.3389/fcell.2021.782268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle development and intramuscular fat (IMF) content, which positively contribute to meat production and quality, are regulated by precisely orchestrated processes. However, changes in three-dimensional chromatin structure and interaction, a newly emerged mediator of gene expression, during the skeletal muscle development and IMF deposition have remained unclear. In the present study, we analyzed the differences in muscle development and IMF content between one-day-old commercial Arbor Acres broiler (AA) and Chinese indigenous Lushi blue-shelled-egg chicken (LS) and performed Hi-C analysis on their breast muscles. Our results indicated that significantly higher IMF content, however remarkably lower muscle fiber diameter was detected in breast muscle of LS chicken compared to that of AA broiler. The chromatin intra-interaction was prior to inter-interaction in both AA and LS chicken, and chromatin inter-interaction was heavily focused on the small and gene-rich chromosomes. For genomic compartmentalization, no significant difference in the number of B type compartments was found, but AA had more A type compartments versus LS. The A/B compartment switching of AA versus LS showed more A to B switching than B to A switching. There were no significant differences in the average sizes and distributions of topologically associating domains (TAD). Additionally, approximately 50% of TAD boundaries were overlapping. The reforming and disappearing events of TAD boundaries were identified between AA and LS chicken breast muscles. Among these, the HMGCR gene was located in the TAD-boundary regions in AA broilers, but in TAD-interior regions in LS chickens, and the IGF2BP3 gene was located in the AA-unique TAD boundaries. Both HMGCR and IGF2BP3 genes exhibited increased mRNA expression in one-day-old AA broiler breast muscles. It was demonstrated that the IGF2BP3 and HMGCR genes regulated by TAD boundary sliding were potential biomarkers for chicken breast muscle development and IMF deposition. Our data not only provide a valuable understanding of higher-order chromatin dynamics during muscle development and lipid accumulation but also reveal new insights into the regulatory mechanisms of muscle development and IMF deposition in chicken.
Collapse
Affiliation(s)
- Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jiajia Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
34
|
Li J, Yang C, Ren P, Lin Z, Zhang D, Jiang X, Wang L, Liu Y. Transcriptomics analysis of Daheng broilers reveals that PLIN2 regulates chicken preadipocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2021; 48:7985-7997. [PMID: 34716501 DOI: 10.1007/s11033-021-06831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intramuscular fat content, an important meat quality trait, strongly affects flavor, juiciness, and tenderness. Sex hormones regulate lipid metabolism, and female hormones stimulate fat deposition, thereby making the female chickens always fatter than males. In this study, the effect of sex on IMF deposition was screened following transcriptomics in chickens. METHODS AND RESULTS Results confirmed significantly higher IMF content of 150-day female chickens as compared to the male chickens. The female chickens manifested higher serum TG, LDL-C, and VLDL, and significantly lower HDL-C contents than male chickens. Moreover, differential expression of genes involved in lipid metabolism were obtained in the muscle and liver between female and male chicken, which could partly interpret the possible reasons for the sex-mediated differences of IMF content. Cellular results revealed that inhibition of PLIN2 significantly inhibited chicken preadipocyte proliferation and induces apoptosis of preadipocytes, as well as promoted adipocyte differentiation. CONCLUSIONS According to our results, PLIN2 may be considered as a molecular marker for poultry meat quality and applying this gene in early breed selection.
Collapse
Affiliation(s)
- Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Peng Ren
- Faculty of Life Sciences, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China.
| |
Collapse
|
35
|
Wang C, Liu Y, Wang H, Gao F, Guan X, Shi B. Maternal Exposure to Oxidized Soybean Oil Impairs Placental Development by Modulating Nutrient Transporters in a Rat Model. Mol Nutr Food Res 2021; 65:e2100301. [PMID: 34289236 DOI: 10.1002/mnfr.202100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION As an exogenous food contaminant, dietary oxidized lipid impairs growth and development, and triggers chronic diseases in humans or animals. This study explores the effects of soybean oil with different oxidative degree on the placental injury of gestational rats. METHODS AND RESULTS Thirty-two female adult rats are randomly assigned to four groups. The control group is fed the purified diet with fresh soybean oil (FSO), and the treatment groups are fed purified diets with lipid content replaced by oxidized soybean oil (OSO) at 200, 400, and 800 mEqO2 kg-1 from conception until delivery. On day 20 of gestation, OSO decreased placental and embryonic weights as the oxidative degree increased linearly and quadratically. The expression of Bax showed a linear increase, and Bcl-2 decreased as the oxidative degree increased. The expression of Fosl1 and Esx1 is linearly and quadratically decreased in OSO-treated groups than FSO group. OSO decreased the level of IL-10 but increased expression of IL-1β in placenta and plasma. OSO remarkably upregulates levels of Fatp1 and Glut1 and decreases expression of Snat2 and Glut3. CONCLUSION OSO aggravates placental injury by modulating nutrient transporters and apoptosis-related genes, impedes placental growth and development, and ultimately leads to the decrease of fetal weight.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiting Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
36
|
Wang L, Leng L, Ding R, Gong P, Liu C, Wang N, Li H, Du ZQ, Cheng B. Integrated transcriptome and proteome analysis reveals potential mechanisms for differential abdominal fat deposition between divergently selected chicken lines. J Proteomics 2021; 241:104242. [PMID: 33901680 DOI: 10.1016/j.jprot.2021.104242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Genetic selection for meat production performance of broilers concomitantly causes excessive abdominal fat deposition, accompanied by several adverse effects, such as the reduction of feed conversion efficiency and reproduction performance. Our previous studies have identified important genes regulating chicken fat deposition, using the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) as an animal model. However, the molecular mechanism underlying fat deposition differences between fat and lean broilers remains largely unknown. Here, we integrated the transcriptome (RNA-Seq) and quantitative proteome (isobaric tags for relative and absolute quantitation, iTRAQ) profiling analyses on abdominal fat tissues from NEAUHLF chicken lines. Differentially expressed genes (2167 DEGs, corrected p-value < 0.01) and differentially abundant proteins (199 DAPs, corrected p-value < 0.05) were identified in lean line compared to fat line. Down-regulated DEGs and DAPs mainly enriched in pathways related to fatty acid metabolism, fatty acid biosynthesis, and PPAR signaling, and interestingly, up-regulated DEGs and DAPs enriched both in lysosome pathway. Moreover, numerous key DEGs and DAPs involved in long-chain fatty acid uptake, in situ lipogenesis (fatty acid and cholesterol synthesis), and lipid droplet accumulation were discovered after integrated transcriptome and proteome analysis. SIGNIFICANCE: Excessive abdominal fat deposition critically affects the health of broilers and causes economic loss to broiler producers, but the molecular mechanism of abdominal fat deposition is still unclear in chicken. We identified key DEGs/DAPs and potential pathways through an integration of chicken abdominal fat tissues transcriptome and proteome analyses. Our findings will facilitate a better revealing the mechanism and provide a novel insight into abdominal fat content discrepancy between the fat and lean chicken lines.
Collapse
Affiliation(s)
- Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ran Ding
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
37
|
The role of FATP1 in lipid accumulation: a review. Mol Cell Biochem 2021; 476:1897-1903. [PMID: 33486652 DOI: 10.1007/s11010-021-04057-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Lipid accumulation in mammals has been widely studied for decades due to its significant association with obesity in humans and meat quality in livestock animals. Fatty acid transport 1 (FATP1) is an evolutionarily conserved protein that localizes to the plasma membrane to enhance the transportation of fatty acids (FAs). In line with this function, FATP1 is involved in the metabolism of FAs, including their esterification and oxidation. In addition, the expression of FATP1 can be regulated by several energy-related factors, such as insulin and PPAR activators and transcription factors. These events connect FATP1 with cellular lipid accumulation. Recently, several studies have suggested that FATP1 acts as a facilitator in cellular lipid accumulation, whereas others hold a contrary view. Here, we will review these data and probe the possibility that FATP1 acts as a regulator in lipid accumulation, which will provide effective information for studies on the relationship between FATP1 and obesity in humans and meat quality in livestock animals.
Collapse
|
38
|
Zhang H, Shen Z, Yang Z, Jiang H, Chu S, Mao Y, Li M, Chen Z, Aboragah A, Loor JJ, Yang Z. Abundance of solute carrier family 27 member 6 ( SLC27A6) in the bovine mammary gland alters fatty acid metabolism. Food Funct 2021; 12:4909-4920. [PMID: 34100479 DOI: 10.1039/d0fo03289a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Milk fatty acid (FA) composition is associated with the nutritional value of milk and is known to vary with the stage of lactation. Although biochemical aspects controlling FA metabolism in the bovine mammary gland are well-established, less is known about the underlying molecular mechanisms. Thus, to address some of these shortcomings, the present study sought to evaluate milk FA composition and mammary transcriptome profiles at different stages of lactation. Compared with 90 d of lactation, at 315 d of lactation, there was an increase in the concentrations of C18:2, polyunsaturated fatty acids (PUFA), and short-chain fatty acids (SCFA), and a decrease in C16:0 and long-chain fatty acids (LCFA) in milk. To further identify candidate genes and pathways responsible for these phenotypic differences, the transcriptome of bovine mammary tissue at 90 d (peak) and 315 d (late) of lactation was profiled using RNA-seq. A total of 827 differentially expressed genes were identified. Bioinformatic analysis revealed that the major differentially modulated lipid metabolic pathways were the PPAR signaling pathway, alpha-linolenic acid metabolism and linoleic acid metabolism. Compared with peak lactation, the mammary tissue at late lactation had lower abundance of genes related to FA transport and activation (CD36, SLC27A6, ACSM1, FABP3 and FABP4). Thus, to further explore the role of FA transport into mammary cells, we knocked down fatty acid transport protein 6 (solute carrier family 27 member 6, SLC27A6) in the bovine mammary epithelial cells (BMECs) using siRNA. The knockdown of SLC27A6 dramatically downregulated the mRNA abundance of genes associated with FA activation (ACSL4), oxidation (CPT1A) and transport (CD36), while the abundance of genes associated with transcription regulation (PPARG), diacylglycerol acyltransferase 1 (DGAT1), FA binding (FABP3), and desaturation (FADS2) was upregulated. In addition, SLC27A6 silenced the intracellular content of triglyceride (TG) and the percentage of C18:1cis9 and C20:4cis5,8,11,14 was greater, whereas that of C16:0 and C18:0 was lower. Overall, in vivo results indicated that LCFA transport into mammary cells during late lactation partly explains the difference in the FA profiles. In vitro analyses underscored how FA transport via SLC27A6 could dictate in part the intracellular utilization of FA for TG synthesis versus oxidation. The data provide strong support for a central role of SLC27A6 in the regulation of FA metabolism in BMECs.
Collapse
Affiliation(s)
- Huimin Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziliang Shen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhendong Yang
- Shandong Institute of Food and Drug Control, Jinan, Shandong 250000, China
| | - Hui Jiang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Shuangfeng Chu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhi Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ahmad Aboragah
- Department of Animal Sciences & Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J Loor
- Department of Animal Sciences & Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
39
|
Han GP, Kim JM, Kang HK, Kil DY. Transcriptomic analysis of the liver in aged laying hens with different intensity of brown eggshell color. Anim Biosci 2020; 34:811-823. [PMID: 33152221 PMCID: PMC8100479 DOI: 10.5713/ajas.20.0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Eggshell color is an important indicator of egg quality for consumers, especially for brown eggs. Various factors related to laying hens and their environment affect brown eggshell coloration. However, there have been no studies investigating hepatic functions of laying hens with variable intensity of brown eggshell color. Therefore, this study was aimed to identify potential factors affecting brown eggshell coloration in aged laying hens at the hepatic transcriptomic level. METHODS Five hundred 92-wk-old Hy-line Brown laying hens were screened to select laying hens with different intensity of brown eggshell color based on eggshell color fans. Based on eggshell color scores, hens with dark brown eggshells (DBE; eggshell color fan score = 14.8) and hens with light brown eggshells (LBE; eggshell color fan score = 9.7) were finally selected for the liver sampling. We performed RNA-seq analysis using the liver samples through the paired-end sequencing libraries. Differentially expressed genes (DEGs) profiling was carried out to identify their biological meaning by bioinformatics. RESULTS A total of 290 DEGs were identified with 196 being up-regulated and 94 being down-regulated in DBE groups as compared to LBE groups. The Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that these DEGs belong to several biological pathways including herpes simplex infection (toll-like receptor 3 [TLR3], cyclin-dependent kinase 1, etc.) and influenza A (TLR3, radical S-adenosyl methionine domain containing 2, myxovirus [influenza virus] resistance 1, etc.). Genes related to stress response (ceremide kinase like) and nutrient metabolism (phosphoenolpyruvate carboxy-kinase 1, methylmalonic aciduria [cobalamin deficiency] cblB type, glycine receptor alpha 2, solute carrier family 7 member 11, etc.) were also identified to be differentially expressed. CONCLUSION The current results provide new insights regarding hepatic molecular functions related to different intensity of brown eggshell color in aged laying hens. These insights will contribute to future studies aiming to optimize brown eggshell coloration in aged laying hens.
Collapse
Affiliation(s)
- Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hwan Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
40
|
Guo Y, Guo X, Deng Y, Cheng L, Hu S, Liu H, Hu J, Hu B, Li L, He H, Wang J. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism-related genes expression in breast and thigh muscles of Nonghua ducks. Poult Sci 2020; 99:4832-4844. [PMID: 32988520 PMCID: PMC7598316 DOI: 10.1016/j.psj.2020.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rearing system is a critical nongenetic factor influencing meat quality of ducks. In this study, a total of 360 birds were randomly allocated into floor rearing system (FRS) and net rearing system (NRS) to compare their effects on intramuscular fat (IMF) deposition, fatty acid composition, and related gene expression in muscles of Nonghua ducks. Sawdust bedding and stainless mesh bed were equipped in FRS and NRS, respectively. At the eighth week (8w) and 13th week (13w), the breast and thigh muscles of ducks were collected to determine the profiles of lipids composition and the expressions of lipid metabolism-related genes. The IMF content was higher in 13w-FRS than 8w-FRS and 8w-NRS in breast muscle, whereas it was higher in 13w-NRS than other groups in thigh muscle (P < 0.05). C16:1, C20:5(n-3) of muscles were higher in 8w-NRS than 8w-FRS, whereas C18:1(n-9)c, C18:2(n-6)c, Ʃ monounsaturated fatty acid (MUFA), and ƩMUFA/Ʃsaturated fatty acid (SFA) ratio of muscles were higher in 13w-NRS than 8w-FRS and 8w-NRS (P < 0.05). C22:6(n-3), C20:4(n-6) of breast muscle and C20:3(n-6) of thigh muscle were higher in 13w-NRS than 13w-FRS (P < 0.05). Fatty acids variation was studied by principal component analysis, exhibiting extensive positive loadings on principal components. SREBP1, ACADL, and FABP3 were downregulated in breast muscle, whereas PPARα and ELOVL5 were upregulated in thigh muscle of NRS ducks at 13w. Principal components were extensively correlated with lipids composition parameters, and principal components of breast muscle 1 and principal components of thigh muscle 1 were correlated with SREBP1 and PPARα, respectively (P < 0.05). In conclusion, with increasing age, FRS enhanced IMF deposition in breast muscle, and the same promotion in thigh muscle was because of NRS. The variation of fatty acids in muscles was uniform, and the change of single fatty acid was unable to distinguish NRS and FRS. However, as NRS downregulated SREBP1, ACADL and FABP3 in breast muscle and upregulated PPARα and ELOVL5 in thigh muscle, NRS could improve nutrient value and meat quality by increasing ƩMUFA, ƩMUFA/ƩSFA ratio, and important PUFA levels. Therefore, NRS was more recommended than FRS for Nonghua ducks during week 8 to 13 posthatching.
Collapse
Affiliation(s)
- Yifan Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
41
|
Chen C, Zhang X, Deng Y, Cui Q, Zhu J, Ren H, Liu Y, Hu X, Zuo J, Peng Y. Regulatory roles of circRNAs in adipogenesis and lipid metabolism: emerging insights into lipid-related diseases. FEBS J 2020; 288:3663-3682. [PMID: 32798313 DOI: 10.1111/febs.15525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Disorder of lipid metabolism has become an urgent health problem that brings about a variety of metabolic syndromes, including hepatic steatosis, adipose tissue dysfunction, diabetes and obesity. Circular RNAs (circRNAs), a class of emerging RNA molecules with unique structure and extensive effects, have been verified to participate in various biological programs through distinct mechanisms, especially in lipid-related processes. In this review, the biogenesis, characteristics, and functional mechanisms of circRNAs are discussed. Furthermore, the methods for circRNA identification and expression profiles of circRNAs associated with adipogenesis and lipid metabolism are described. Additionally, we emphasize the regulatory roles of circRNAs in adipogenesis, lipid metabolism, and lipid-related diseases. Finally, the diagnostic and therapeutic potential of circRNAs is highlighted, showing potential for the clinical application of circRNAs in the treatment of lipid-related diseases in the near future.
Collapse
Affiliation(s)
- Chen Chen
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Xing Zhang
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yuan Deng
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Qingming Cui
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Ji Zhu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Huibo Ren
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yingying Liu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Xionggui Hu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Jianbo Zuo
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Zhang M, Li D, Zhai Y, Wang Z, Ma X, Zhang D, Li G, Han R, Jiang R, Li Z, Kang X, Sun G. The Landscape of DNA Methylation Associated With the Transcriptomic Network of Intramuscular Adipocytes Generates Insight Into Intramuscular Fat Deposition in Chicken. Front Cell Dev Biol 2020; 8:206. [PMID: 32300590 PMCID: PMC7142253 DOI: 10.3389/fcell.2020.00206] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF), which regulated by genetics, nutrition and environment is an important factor that influencing meat quality. Up to now, the epigenetic regulation mechanism underlying poultry IMF deposition remains poorly understood. Here, we focused on the DNA methylation, which usually regulate genes in transcription level. To look into the essential role of DNA methylation on the IMF deposition, chicken intramuscular preadipocytes were isolated and cultured in vitro, and a model of intramuscular adipocyte differentiation was constructed. Combined the whole genome bisulfite sequencing (WGBS) and RNA-Seq technologies, we identified several methylated genes, which mainly affecting fatty acid metabolism and muscle development. Furthermore, we reported that DNA methylation regulate intramuscular adipogenesis by regulating the genes, such as collagen, type VI, alpha 1 (COL6A1) thus affecting IMF deposition. Overexpression of COL6A1 increases the lipid droplet and inhibits cell proliferation by regulating CHAD and CAMK2 in intramuscular adipocytes, while knockdown of COL6A1 shows the opposite effect. Taken together, our results reveal that DNA methylation plays an important role in poultry IMF deposition.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Zhai
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Daoyu Zhang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
43
|
Liu L, Cui H, Xing S, Zhao G, Wen J. Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals (Basel) 2019; 10:ani10010004. [PMID: 31861430 PMCID: PMC7023311 DOI: 10.3390/ani10010004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Intramuscular fat is an important factor affecting meat quality and consumer acceptance. Appropriate increases in the intramuscular fat content contribute to the improvement of meat quality, and genetic selection is an effective method to increase the intramuscular fat content in chickens. In this study, chicken lines divergently selected for their intramuscular fat content were used to investigate the mechanisms behind differential intramuscular fat deposition. These results found in this study may contribute to the improvement of meat quality in chickens. Abstract Intramuscular fat (IMF)—an important factor affecting meat quality—can be appropriately increased by genetic selection. Chicken lines divergently selected for IMF content were used in this study to investigate the mechanisms behind differential IMF deposition. Sixty 15th generation chickens were genotyped using the IASCHICK 55K single nucleotide polymorphism (SNP) chip. After quality control, 59 chickens and 36,893 SNPs were available for subsequent analysis. Population structure assessment indicated that the lines were genetically differentiated. Based on the top 1% paired fixation index values, three pathways were significantly (p < 0.05) enriched, and nine genes were considered candidate genes for differential IMF deposition. Differences between the lines in the expressions of representative genes involved in the above pathways were detected in 16th generation chickens. This study suggests that genetic selection for increased IMF in the pectoralis major muscle may enhance fatty acid synthesis, transport, and esterification, and reduce triglyceride hydrolysis. The peroxisome proliferator-activated receptor (PPAR) signaling pathway, glycerolipid metabolism, and fatty acid degradation pathway may have contributed to the differences in IMF deposition between the lines. These results contribute to the understanding of the genetic mechanisms behind IMF deposition, and the improvement of chicken meat quality.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708WD, The Netherlands
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence: (G.Z.); (J.W.); Tel.: +86-10-6281-5856 (J.W.)
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence: (G.Z.); (J.W.); Tel.: +86-10-6281-5856 (J.W.)
| |
Collapse
|
44
|
Zhang M, Li F, Ma XF, Li WT, Jiang RR, Han RL, Li GX, Wang YB, Li ZY, Tian YD, Kang XT, Sun GR. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics 2019; 20:743. [PMID: 31615399 PMCID: PMC6794883 DOI: 10.1186/s12864-019-6116-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens. RESULTS AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were identified in our study. CONCLUSION This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.,The First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiang-Fei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Wen-Ting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Rui-Rui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Guo-Xi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yan-Bin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Zi-Yi Li
- The First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Gui-Rong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
| |
Collapse
|
45
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Yao C, Pang D, Lu C, Xu A, Huang P, Ouyang H, Yu H. Data Mining and Validation of AMPK Pathway as a Novel Candidate Role Affecting Intramuscular Fat Content in Pigs. Animals (Basel) 2019; 9:ani9040137. [PMID: 30939765 PMCID: PMC6523794 DOI: 10.3390/ani9040137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Intramuscular fat (IMF) is increasingly being recognized as a key meat trait in the modern pork industry. The aims of this research were to identify potential signaling pathways associated with IMF content in the longissimus dorsi (LD) muscle of different pig breeds and investigate the gene expression levels in the screened signaling pathways. Our results indicated that the AMPK signaling pathway may be related to IMF deposition in the LD muscle of pigs. The results of qRT-PCR analysis showed that the expression of ten key hub genes (AMPK, ADIPOR1, ADIPOR2, LKB1, CAMKKβ, CPT1A, CPT1B, PGC-1α, CD36, and ACC1) differed between the LD muscle of Min and Large White pigs. The protein expression levels of AMPK, LKB1, CaMKK2, CPT1A, and ACC1 were similar to the genes expression patterns in the LD muscle of Large White pigs. The results of this study provide novel insights into the regulatory function of the AMPK signaling pathway in relation to the IMF content in the LD muscle of different pigs. Abstract Intramuscular fat (IMF) is an important economic trait for pork quality and a complex quantitative trait regulated by multiple genes. The objective of this work was to investigate the novel transcriptional effects of a multigene pathway on IMF deposition in the longissimus dorsi (LD) muscles of pigs. Potential signaling pathways were screened by mining data from three gene expression profiles in the Gene Expression Omnibus (GEO) database. We designed quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) arrays for the candidate signaling pathways to verify the results in the LD muscles of two pig breeds with different IMF contents (Large White and Min). Western blot analysis was used to detect the expression levels of several candidate proteins. Our results showed that the AMPK signaling pathway was screened via bioinformatics analysis. Ten key hub genes of this signaling pathway (AMPK, ADIPOR1, ADIPOR2, LKB1, CAMKKβ, CPT1A, CPT1B, PGC-1α, CD36, and ACC1) were differentially expressed between the Large White and Min pigs. Western blot analysis further confirmed that LKB1/CaMKK2-AMPK-ACC1-CPT1A axis dominates the activity of AMPK signaling pathway. Statistical analyses revealed that AMPK signaling pathway activity clearly varied among the two pig breeds. Based on these results, we concluded that the activation of the AMPK signaling pathway plays a positive role in reducing IMF deposition in pigs.
Collapse
Affiliation(s)
- Chaogang Yao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Chao Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Aishi Xu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Peixuan Huang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Hao Yu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
47
|
Li G, Zhao Y, Li Y, Chen Y, Jin W, Sun G, Han R, Tian Y, Li H, Kang X. Weighted gene coexpression network analysis identifies specific transcriptional modules and hub genes related to intramuscular fat traits in chicken breast muscle. J Cell Biochem 2019; 120:13625-13639. [PMID: 30937957 DOI: 10.1002/jcb.28636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
Intramuscular fat (IMF) traits are important factors that influence meat quality. However, the molecular regulatory mechanisms that underlie this trait in chickens are still poorly understood at the gene coexpression level. Here, we performed a weighted gene coexpression network analysis between IMF traits and transcriptome profile in breast muscle in the Chinese domestic Gushi chicken breed at 6, 14, 22, and 30 weeks. A total of 26 coexpressed gene modules were identified. Six modules, which included the dark gray, purple, cyan, pink, light cyan, and blue modules, showed a significant positive correlation (P < 0.05) with IMF traits. The strongest correlation was observed between the dark gray module and IMF content (r = 0.85; P = 4e-04) and between the blue module and different fatty acid content (r = 0.87~0.91; P = 5e-05~2e-04). Enrichment analysis showed that the enrichment of biological processes, such as fatty acid metabolic process, fat cell differentiation, acylglycerol metabolic process, and glycerolipid metabolism were significantly different in the six modules. In addition, the 32, 24, 4, 7, 6, and 25 hub genes were identified from the blue, pink, light cyan, cyan, dark gray, and purple modules, respectively. These hub genes are involved in multiple links to fatty acid metabolism, phospholipid metabolism, cholesterol metabolism, diverse cellular behaviors, and cell events. These results provide novel insights into the molecular regulatory mechanisms for IMF-related traits in chicken and may also help to uncover the formation mechanism for excellent meat quality traits in local breeds of Chinese chicken.
Collapse
Affiliation(s)
- Guoxi Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yinli Zhao
- Department of Animal Science, College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan, P. R. China
| | - Yuanfang Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yi Chen
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Wenjiao Jin
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Guirong Sun
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Ruili Han
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yadong Tian
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Hong Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Xiangtao Kang
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| |
Collapse
|
48
|
Zhang M, Li F, Sun JW, Li DH, Li WT, Jiang RR, Li ZJ, Liu XJ, Han RL, Li GX, Wang YB, Tian YD, Kang XT, Sun GR. LncRNA IMFNCR Promotes Intramuscular Adipocyte Differentiation by Sponging miR-128-3p and miR-27b-3p. Front Genet 2019; 10:42. [PMID: 30804984 PMCID: PMC6378276 DOI: 10.3389/fgene.2019.00042] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Poultry meat quality is affected by many factors, among which intramuscular fat (IMF) is predominant. IMF content affects the tenderness, juiciness, and flavor of chicken. An increasing number of studies are focusing on the functions of lncRNAs in adipocyte differentiation. However, little is known about lncRNAs associated with intramuscular adipocyte differentiation. In the present study, we focused on an up-regulated lncRNA during intramuscular adipogenetic differentiation, which we named intramuscular fat-associated long non-coding RNA (IMFNCR). IMFNCR promotes intramuscular adipocyte differentiation. In-depth analyses showed that IMFNCR acts as a molecular sponge for miR-128-3p and miR-27b-3p and that PPARG is a direct target of miR-128-3p and miR-27b-3p in chicken. High-fat and high-protein diet inhibited chicken IMFNCR level in vivo. Moreover, IMFNCR level was positively correlated with PPARG mRNA level in chicken breast muscle tissues, a vital corollary to ceRNA function. Altogether, our research showed that IMFNCR acts as a ceRNA to sequester miR-128-3p and miR-27b-3p, leading to heightened PPARG expression, and thus promotes intramuscular adipocyte differentiation. Taken together, our findings may contribute to a more thorough understanding of chicken IMF deposition and the improvement of poultry meat quality.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,The First Bethune Hospital, Jilin University, Changchun, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Jun-Wei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Dong-Hua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Wen-Ting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Rui-Rui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Zhuan-Jian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiao-Jun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Guo-Xi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Yan-Bin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Gui-Rong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| |
Collapse
|
49
|
Liu Y, Li Y, Feng X, Wang Z, Xia Z. Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks. Poult Sci 2018; 97:3218-3229. [DOI: 10.3382/ps/pey162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
|
50
|
Miao Z, Wei P, Khan MA, Zhang J, Guo L, Liu D, Zhang X, Bai Y, Wang S. Transcriptome analysis reveals differential gene expression in intramuscular adipose tissues of Jinhua and Landrace pigs. J Vet Med Sci 2018; 80:953-959. [PMID: 29709900 PMCID: PMC6021883 DOI: 10.1292/jvms.18-0074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Meat is a rich source of protein, fatty acids and carbohydrates for human needs. In
addition to necessary nutrients, high fat contents in pork increase the tenderness and
juiciness of the meat, featuring diverse application in various dishes. This study
investigated the transcriptomic profiles of intramuscular adipose tissues in Jinhua and
Landrace pigs by employing advanced RNA sequencing. Results showed significant interesting
to note that there were significant differences in the expression of genes. 1,632 genes
showed significant differential expression, 837 genes were up-regulated and 195 genes were
down-regulated. Variations in genes responsible for cell aggregation, extracellular matrix
formation, cellular lipid catabolic process, and fatty acid binding strongly supported
that both pig breeds feature variable fat and muscle metabolism. Certain differentially
expressed genes are included in the pathway of mitogen-activated protein kinase signaling
pathway, Ras signaling pathway and insulin pathway. Results from real-time quantitative
polymerase chain reaction also validated the differential expression of 17 mRNAs between
meats of the two pig breeds. Overall, these findings reveal significant differences in fat
and protein metabolism of intramuscular adipose tissues of two pig breeds at the
transcriptomic level and suggest diversification at the genetic level between breeds of
the same species.
Collapse
Affiliation(s)
- Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Panpeng Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Muhammad Akram Khan
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, PMAS- Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Liping Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Yueyu Bai
- Animal Health Supervision of Henan Province, Bureau of Animal Husbandry of Henan province, Zhengzhou, 450000, P.R. China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| |
Collapse
|