1
|
Orhan A, Çiçek ÖF, Öztürk B, Akbayrak H, Ünlükal N, Vatansev H, Solmaz M, Büyükateş M, Aniç S, Ovalı F, Almaghrebi E, Akat F, Vatansev H. The Effects of Colchicum Dispert and Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Skeletal Muscle Injury in a Rat Aortic Ischemia-Reperfusion Model. J Cardiovasc Dev Dis 2024; 11:251. [PMID: 39195159 DOI: 10.3390/jcdd11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysms and peripheral artery disease pose significant health risks, ranking third after heart attacks and cerebral strokes. Surgical interventions often involve temporary aortic clamping, leading to ischemia-reperfusion injury and tissue damage. Colchicine and mesenchymal stem cells have shown promise, individually, in mitigating ischemia-reperfusion injury, but their combined effects remain understudied. METHODS This study utilized 42 male Wistar rats, divided into six groups: Control, Sham, Ischemia-Reperfusion, Colchicine, Mesenchymal stem cell, and Mix (colchicine and mesenchymal stem cell). The ischemia-reperfusion model involved clamping the abdominal aorta for 60 min, followed by 120 min of reperfusion. Colchicine and mesenchymal stem cell treatments were administered as pre- and post-ischemia interventions, respectively. Mesenchymal stem cells were cultured, characterized by flow cytometry, and verified for specific surface antigens. Blood and tissue samples were analyzed for oxidative stress markers, nitric oxide metabolites, and apoptosis using TUNEL. RESULTS There were significant differences between the groups in terms of the serum total antioxidant capacity (p < 0.001) and inflammation markers (ischemia-modified albumin, p = 0.020). The combined therapy group (Mix) exhibited the lowest inflammation levels. Arginine levels also showed significant variation (p = 0.028), confirming the ischemia-reperfusion injury model. In muscle tissues, the total antioxidant capacity (p = 0.022), symmetric dimethylarginine, and citrulline levels (p < 0.05) indicated nitric oxide metabolism. Apoptosis was notably high in the ischemia-reperfusion injury group as anticipated. It appeared to be reduced by colchicine, mesenchymal stem cells, and their combination, with the most significant decrease observed in the Mix group (p < 0.001). CONCLUSIONS This study highlights the potential of using combined colchicine and mesenchymal stem cell therapy to reduce muscle damage caused by ischemia-reperfusion injury. Further research is needed to understand the underlying mechanisms and confirm the clinical significance of this approach in treating extremity ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Atilla Orhan
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Ömer Faruk Çiçek
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Bahadır Öztürk
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Akbayrak
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Nejat Ünlükal
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, Konya 42092, Turkey
| | - Merve Solmaz
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Mustafa Büyükateş
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Seda Aniç
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fadime Ovalı
- Department of Medical Biochemistry, Institute of Health Sciences, Selçuk University, Konya 42250, Turkey
| | - Eissa Almaghrebi
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fatma Akat
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| |
Collapse
|
2
|
Wu W, Zhang Y, Zhang Y, Zhang J, Li R, Ke T. Daprodustat reduces skeletal muscle ischemia-reperfusion injury in mice. J Orthop Surg (Hong Kong) 2024; 32:10225536241267725. [PMID: 39058795 DOI: 10.1177/10225536241267725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
PURPOSE The purpose of the present work was to assess the specific effects and underlying mechanisms of Daprodustat (GSK1278863) on skeletal muscle injury induced by ischemia reperfusion (I/R). METHODS C57BL/6 mice were randomized into the skeletal muscle I/R injury (I/R), Daprodustat (GSK1278863) pretreatment and I/R (I/R + GSK) and sham operation (Sham) groups. The skeletal muscle I/R injury model was established by placing an orthodontic rubber band at the left hip joint for 3 h and releasing it for 3 h. H&E staining, wet weight/dry weight ratio assessment, TUNEL assay, ELISA, qRT-PCR and immunoblot were utilized to assess the effects of Daprodustat. RESULTS Daprodustat pretreatment significantly ameliorated apoptosis in skeletal muscle cells, reduced oxidative damage and suppressed inflammatory cytokines. Mechanistically, Daprodustat positively affected NF-κB signaling activation. CONCLUSION These data demonstrated that Daprodustat may provide a potential clinical approach for preventing or treating skeletal muscle injury induced by I/R.
Collapse
Affiliation(s)
- Weiqiang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Orthopaedics, Fuzhou Second General Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
| | - Yongfa Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Fuzhou Second Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Renbin Li
- Department of Orthopaedics, Fuzhou Second General Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou, China
| | - Tie Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
3
|
Özer A, Şengel N, Küçük A, Yığman Z, Özdemir Ç, Kılıç Y, Dursun AD, Bostancı H, Kip G, Arslan M. The Effect of Cerium Oxide (CeO 2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice with Streptozocin-Induced Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:752. [PMID: 38792935 PMCID: PMC11122892 DOI: 10.3390/medicina60050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.
Collapse
Affiliation(s)
- Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Necmiye Şengel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Ankara 06490, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey;
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06830, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Yiğit Kılıç
- Department of Pediatric Cardiovascular Surgery, Gazi Yaşargil Education Research Hospital, Diyarbakır 21010, Turkey;
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey;
| | - Hasan Bostancı
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Mustafa Arslan
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Gazi University, Ankara 06510, Turkey
| |
Collapse
|
4
|
Yundung Y, Mohammed S, Paneni F, Reutersberg B, Rössler F, Zimmermann A, Pelisek J. Transcriptomics analysis of long non-coding RNAs in smooth muscle cells from patients with peripheral artery disease and diabetes mellitus. Sci Rep 2024; 14:8615. [PMID: 38616192 PMCID: PMC11016542 DOI: 10.1038/s41598-024-59164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.
Collapse
Affiliation(s)
- Yankey Yundung
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Shafeeq Mohammed
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Benedikt Reutersberg
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, Zürich, Switzerland
| | - Alexander Zimmermann
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Jaroslav Pelisek
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
5
|
Li X, Cao Y, Gu N, Yuan Z. Loss of Muscle Mass in Delayed Diagnosis of Renal Cysts and Diabetes Syndrome: A Case Report. Diabetes Metab Syndr Obes 2023; 16:3847-3850. [PMID: 38044981 PMCID: PMC10691429 DOI: 10.2147/dmso.s430096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Renal cysts and diabetes syndrome (RCAD) is a rare disease caused by abnormalities in the HNF1B gene, which often leads to dysfunction in the renal, genital tracts, and pancreas. In this report, we present a rare case of a 27-year-old female with muscle mass loss who experienced a delayed diagnosis of RCAD. The patient had been misdiagnosed as "type 1 diabetes" for a long period. Her main clinical manifestations included muscle loss, renal magnesium loss, and an incomplete longitudinal uterus. Ultimately, the diagnosis of RCAD syndrome was confirmed through genetic testing. Reduction of muscle mass, although rarely reported, can progress to sarcopenia. Therefore, early intervention should be strongly emphasized. Furthermore, in future research, it is crucial to explore the mechanisms and relationships underlying these patients and their unusual manifestations.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
- Department of Geriatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Yedi Cao
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| | - Zhenfang Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Ding Q, Sun B, Wang M, Li T, Li H, Han Q, Liao J, Tang Z. N-acetylcysteine alleviates oxidative stress and apoptosis and prevents skeletal muscle atrophy in type 1 diabetes mellitus through the NRF2/HO-1 pathway. Life Sci 2023; 329:121975. [PMID: 37495077 DOI: 10.1016/j.lfs.2023.121975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
AIMS Type 1 diabetes mellitus (T1DM) has been linked to the occurrence of skeletal muscle atrophy. Insulin monotherapy may lead to excessive blood glucose fluctuations. N-acetylcysteine (NAC), a clinically employed antioxidant, possesses cytoprotective, anti-inflammatory, and antioxidant properties. The objective of our study was to evaluate the viability of NAC as a supplementary treatment for T1DM, specifically regarding its therapeutic and preventative impacts on skeletal muscle. MAIN METHODS Here, we used beagles as T1DM model for 120d to explore the mechanism of NRF2/HO-1-mediated skeletal muscle oxidative stress and apoptosis and the therapeutic effects of NAC. Oxidative stress and apoptosis related factors were analyzed by immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR assay. KEY FINDINGS The findings indicated that the co-administration of NAC and insulin led to a reduction in creatine kinase levels, preventing weight loss and skeletal muscle atrophy. Improvement in the reduction of muscle fiber cross-sectional area. The expression of Atrogin-1, MuRF-1 and MyoD1 was downregulated, while Myh2 and MyoG were upregulated. In addition, CAT and GSH-Px levels were increased, MDA levels were decreased, and redox was maintained at a steady state. The decreased of key factors in the NRF2/HO-1 pathway, including NRF2, HO-1, NQO1, and SOD1, while KEAP1 increased. In addition, the apoptosis key factors Caspase-3, Bax, and Bak1 were found to be downregulated, while Bcl-2, Bcl-2/Bax, and CytC were upregulated. SIGNIFICANCE Our findings demonstrated that NAC and insulin mitigate oxidative stress and apoptosis in T1DM skeletal muscle and prevent skeletal muscle atrophy by activating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Qingyu Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Bingxia Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Mengran Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
7
|
Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, Li C, Jiang G, Xiang X, Wan G, Jiang T, Kang Y, Xu X, Chen Z, Li W. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology 2023; 21:189. [PMID: 37308908 DOI: 10.1186/s12951-023-01954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
8
|
Damluji AA, Alfaraidhy M, AlHajri N, Rohant NN, Kumar M, Al Malouf C, Bahrainy S, Ji Kwak M, Batchelor WB, Forman DE, Rich MW, Kirkpatrick J, Krishnaswami A, Alexander KP, Gerstenblith G, Cawthon P, deFilippi CR, Goyal P. Sarcopenia and Cardiovascular Diseases. Circulation 2023; 147:1534-1553. [PMID: 37186680 PMCID: PMC10180053 DOI: 10.1161/circulationaha.123.064071] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sarcopenia is the loss of muscle strength, mass, and function, which is often exacerbated by chronic comorbidities including cardiovascular diseases, chronic kidney disease, and cancer. Sarcopenia is associated with faster progression of cardiovascular diseases and higher risk of mortality, falls, and reduced quality of life, particularly among older adults. Although the pathophysiologic mechanisms are complex, the broad underlying cause of sarcopenia includes an imbalance between anabolic and catabolic muscle homeostasis with or without neuronal degeneration. The intrinsic molecular mechanisms of aging, chronic illness, malnutrition, and immobility are associated with the development of sarcopenia. Screening and testing for sarcopenia may be particularly important among those with chronic disease states. Early recognition of sarcopenia is important because it can provide an opportunity for interventions to reverse or delay the progression of muscle disorder, which may ultimately impact cardiovascular outcomes. Relying on body mass index is not useful for screening because many patients will have sarcopenic obesity, a particularly important phenotype among older cardiac patients. In this review, we aimed to: (1) provide a definition of sarcopenia within the context of muscle wasting disorders; (2) summarize the associations between sarcopenia and different cardiovascular diseases; (3) highlight an approach for a diagnostic evaluation; (4) discuss management strategies for sarcopenia; and (5) outline key gaps in knowledge with implications for the future of the field.
Collapse
Affiliation(s)
- Abdulla A. Damluji
- Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA (A.A.D., W.B.B., C.R.D.)
- Johns Hopkins University School of Medicine, Baltimore, MD (A.A.D., M.A., G.G.)
| | - Maha Alfaraidhy
- Johns Hopkins University School of Medicine, Baltimore, MD (A.A.D., M.A., G.G.)
| | - Noora AlHajri
- Cleveland Clinic, Abu Dhabi, United Arab Emirates (N.A.)
| | | | | | | | | | | | - Wayne B. Batchelor
- Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA (A.A.D., W.B.B., C.R.D.)
| | - Daniel E. Forman
- University of Pittsburgh and the Pittsburgh Geriatric Research Education and Clinical Center, PA (D.E.F.)
| | | | | | | | | | - Gary Gerstenblith
- Johns Hopkins University School of Medicine, Baltimore, MD (A.A.D., M.A., G.G.)
| | | | - Christopher R. deFilippi
- Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA (A.A.D., W.B.B., C.R.D.)
| | - Parag Goyal
- University of Arizona, Tucson (N.N.R., P.G.)
| |
Collapse
|
9
|
Xie K, Sugimoto K, Tanaka M, Akasaka H, Fujimoto T, Takahashi T, Onishi Y, Minami T, Yoshida S, Takami Y, Yamamoto K, Rakugi H. Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats. J Clin Biochem Nutr 2023; 72:248-255. [PMID: 37251965 PMCID: PMC10209601 DOI: 10.3164/jcbn.22-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation.
Collapse
Affiliation(s)
- Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Sugimoto
- Department of General Geriatric Medicine, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomoga-oka, Suma, Kobe, Hyogo 654-0142, Japan
- Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuri Onishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiro Minami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
11
|
Candesartan protects against unilateral peripheral limb ischemia in type-2 diabetic rats: Possible contribution of PI3K-Akt-eNOS-VEGF angiogenic signaling pathway. Int Immunopharmacol 2023; 116:109817. [PMID: 36773570 DOI: 10.1016/j.intimp.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Type-2 diabetes (T2DM) is known to be highly associated with increased risk for vascular complications including peripheral arterial diseases (PAD). Critical limb ischemia (CLI) is the most advanced stage of PAD. Current therapeutic options for diabetic patients experiencing vascular complications are limited to surgical revascularization with no effective pharmacotherapy available for clinical settings. This study is dedicated to evaluate the angiogenic potential of candesartan an angiotensin-II receptor blocker in an experimental model of vascular complications associating T2DM. T2DM was induced in rats through feeding with high fat diet for 6 weeks, followed by injection with streptozotocin (STZ, 30 mg/kg; i.p). After establishment of T2DM, unilateral CLI was induced through the ligation and excision of superficial femoral artery. Candesartan treatment (10 or 30 mg/kg; orally) was initiated one day post CLI and thereafter once daily for up to 14 days. T2DM rats that underwent CLI demonstrated impaired angiogenic signaling, increased inflammation and apoptosis in gastrocnemius muscle (GC). Candesartan reversed ischemic insult in T2DM rats subjected to unilateral CLI and induced reparative angiogenesis that was evident by increase in p-PI3K/PI3K, p-Akt/Akt, p-eNOS/eNOS, p-VEGFR2/VEGFR2 ratios, and VEGF levels. Candesartan treatment also increased levels of HO-1; while decreased caspase-3 apoptotic marker and levels of inflammatory markers; NF-κB and TNF-α, all of which were accompanied by preserved histological manifestations of GC muscles. Candesartan was able to combat limb ischemia under diabetic conditions which could pave the way for its therapeutic utility for diabetic patients experiencing vascular complications in clinical setting.
Collapse
|
12
|
Tsai PS, Lin DC, Jan YT, Liu YP, Wu TH, Huang SC. Lower-extremity muscle wasting in patients with peripheral arterial disease: quantitative measurement and evaluation with CT. Eur Radiol 2022; 33:4063-4072. [PMID: 36580096 DOI: 10.1007/s00330-022-09356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Lower-extremity peripheral arterial disease (PAD) results in limb ischemia and is strongly associated with sarcopenia. This study aimed to retrospectively evaluate the association between the quantity of muscle mass in the lower extremities and the severity of vascular stenosis in PAD patients. METHODS Between January 2018 and August 2021, 128 patients with PAD and 53 individuals without PAD, diagnosed by computed tomography, were enrolled. The severity of stenosis of lower-extremity arteries was measured using a grading system. The muscle and fat mass areas were calculated in the abdomen at the L3 or L4 level, mid-thigh, and lower leg. Multivariable logistic regression was conducted to clarify the risk associated with low muscle mass. The difference in muscle mass between PAD and non-PAD patients was evaluated by using propensity score matching. RESULTS A strong positive correlation between the abdomen muscle area and leg muscle area was observed. The muscle area and muscle index of the leg were lower in PAD patients. These changes occurred earlier than in the abdomen muscle area. The group with more severe artery stenosis had more muscle wasting in the lower extremities. Greater age, female, lower BMI, and PAD were associated with low muscle mass. After propensity score matching, the leg muscle area was still lower in PAD patients. CONCLUSIONS There is a direct association between PAD and regional muscle wasting. This occurs earlier regionally in the lower extremities than in central muscles. Early diagnosis of PAD might prevent progressive muscle loss, improving disease outcome and quality of life. KEY POINTS • Peripheral arterial disease is strongly associated with sarcopenia. • Muscle wasting in the lower extremities is earlier and more prominent than that in the abdomen. • More severe arterial stenoses are associated with higher muscle wasting in the lower extremities.
Collapse
Affiliation(s)
- Pei-Shan Tsai
- Department of Radiology, MacKay Memorial Hospital, 104217, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, 252005, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, 252005, New Taipei City, Taiwan
| | - Dao-Chen Lin
- Department of Radiology, Taipei Veterans General Hospital, 112201, Taipei, Taiwan.,Division of Endocrine and Metabolism, Department of Medicine, Taipei Veterans General Hospital, 112201, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Ya-Ting Jan
- Department of Radiology, MacKay Memorial Hospital, 104217, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, 252005, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, 252005, New Taipei City, Taiwan
| | - Yu-Peng Liu
- Mackay Junior College of Medicine, Nursing and Management, 252005, New Taipei City, Taiwan.,Department of Radiology, Hsinchu Mackay Memorial Hospital, 300044, Hsinchu City, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan.
| | - Shih-Chieh Huang
- Department of Radiology, MacKay Memorial Hospital, 104217, Taipei, Taiwan.
| |
Collapse
|
13
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Lee TW, Liu HW, Lin YF, Lee TI, Kao YH, Chen YJ. Histone deacetylase inhibition improves metabolism and mitochondrial dynamics: A potential novel therapeutic strategy for sarcopenia coexisting with diabetes mellitus. Med Hypotheses 2021; 158:110724. [PMID: 34753007 DOI: 10.1016/j.mehy.2021.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022]
Abstract
Sarcopenia, the age-associated-fragility with loss of skeletal muscle mass and function, often coexists with type 2 diabetes (T2D) in older individuals. Derangement of muscle metabolism and mitochondrial dynamics is critical, particularly in high-energy-demand organs in patients with metabolic disorder. However, targeted therapies to halt or reverse the pathological progression of sarcopenia coexisting with T2D are unavailable. Studies have identified the pathological roles of class I histone deacetylases (HDACs) in both T2D and sarcopenia. In addition to their proinflammatory properties, HDACs are known to modify muscle metabolism and mitochondrial dynamics in both the development of sarcopenia and pathogenesis of diabetes. Proper quality control of mitochondrial dynamics through protein degradation and the synthesis of new proteins may improve skeletal muscle function in sarcopenia. Class I HDAC inhibitors improve energy metabolism and modulate autophagy-related genes in skeletal muscle. However, class IIa HDAC4 plays a protective role in preserving skeletal muscle structure following long-term denervation, and selective inhibition of class IIa HDAC activity had no impact on oxidative metabolism of muscle mitochondria. These findings suggest the vital role of class I HDAC modulation in bioenergetics and mitochondria quality control, and may lead to a novel therapeutic strategy targeting sarcopenia that coexists with T2D. HDAC inhibitors have been approved for clinical applications, and interventions targeting on HDACs may be promising for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Han-Wen Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fan Hospital, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2021; 183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.
Collapse
Affiliation(s)
| | - Hossein Fazelinia
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Man S Kim
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cem Meydan
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Yared Kidane
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Komal S Rathi
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Benjamin Stear
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Ying
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Foox
- Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | - Dong Wang
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sonja Schrepfer
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - J Tyson McDonald
- Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | - Gary Hardiman
- Queens University Belfast, Belfast BT9 5DL, UK; Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
16
|
Mondrinos MJ, Alisafaei F, Yi AY, Ahmadzadeh H, Lee I, Blundell C, Seo J, Osborn M, Jeon TJ, Kim SM, Shenoy VB, Huh D. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. SCIENCE ADVANCES 2021; 7:7/11/eabe9446. [PMID: 33712463 PMCID: PMC7954445 DOI: 10.1126/sciadv.abe9446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 05/11/2023]
Abstract
Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.
Collapse
Affiliation(s)
- Mark J Mondrinos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farid Alisafaei
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Osborn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae-Joon Jeon
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
18
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020; 34:14389-14406. [PMID: 32892438 DOI: 10.1096/fj.202001330r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
We hypothesized that pre-exercise may effectively prevent cancer cachexia-induced muscle atrophy in both fast- and slow-twitch muscle types. Additionally, the fast-twitch muscle may be more affected by cancer cachexia than slow-twitch muscle. This study aimed to evaluate the effects of pre-exercise on cancer cachexia-induced atrophy and on atrophy in fast- and slow-twitch muscles. Twelve male Wistar rats were randomly divided into sedentary and exercise groups, and another 24 rats were randomly divided into control, pre-exercise, cancer cachexia induced by intraperitoneal injections of ascites hepatoma AH130 cells, and pre-exercise plus cancer cachexia groups. We analyzed changes in muscle mass and in gene and protein expression levels of major regulators and indicators of muscle protein degradation and synthesis pathways, angiogenic factors, and mitochondrial function in both the plantaris and soleus muscles. Pre-exercise inhibited muscle mass loss, rescued protein synthesis, prevented capillary regression, and suppressed hypoxia in the plantaris and soleus muscles. Pre-exercise inhibited mitochondrial dysfunction differently in fast- and slow-twitch muscles. These results suggested that pre-exercise has the potential to inhibit cancer-cachexia-induced muscle atrophy in both fast- and slow-twitch muscles. Furthermore, the different progressions of cancer-cachexia-induced muscle atrophy in fast- and slow-twitch muscles are related to differences in mitochondrial function.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Jain N, Agarwal MA, Jalal D, Dokun AO. Individuals with Peripheral Artery Disease (PAD) and Type 1 Diabetes Are More Likely to Undergo Limb Amputation than Those with PAD and Type 2 Diabetes. J Clin Med 2020; 9:E2809. [PMID: 32878057 PMCID: PMC7563979 DOI: 10.3390/jcm9092809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Limited data exist comparing how type 1 diabetes mellitus (DM) and type 2 DM may have differential effects on peripheral artery disease (PAD) severity. We aimed to study the association of type of DM with the procedure utilized in hospitalizations with a diagnosis of PAD. METHODS We used the national inpatient sample databases from 2003 to 2014 to identify hospitalizations with a diagnosis of PAD and type 1 or type 2 DM. Logistic regression was utilized to evaluate the association between type of DM and procedure utilized (amputation-overall, major, endovascular revascularization, surgical revascularization). RESULTS We identified 14,012,860 hospitalizations with PAD diagnosis and DM, 5.6% (n = 784,720) had type 1 DM. The patients with type 1 DM were more likely to present with chronic limb-threatening ischemia (CLTI) (45.2% vs. 32.0%), ulcer (25.9% vs. 17.7%), or complicated ulcer (16.6% vs. 10.5%) (all p < 0.001) when compared to those with type 2 DM. Type 1 DM was independently and significantly associated with more amputation procedures (adjusted odds ratio = 1.12, 95% confidence interval [CI] I 1.08 to 1.16, p < 0.001). Overall, in-hospital mortality did not differ between the individuals with type 1 and type 2 DM. The overall mean (95% CI) length of stay (in days) was 6.6 (6.5 to 6.6) and was significantly higher for type 1 DM (7.8 [7.7 to 8.0]) when compared to those with type 2 DM (6.5 [6.4 to 6.6]). CONCLUSION We observed that individuals with PAD and type 1 DM were more likely to present with CLTI and ulcer and undergo amputation when compared to those with PAD and type 2 diabetes. Further studies are needed to better understand the underlying mechanisms behind these findings and to identify novel interventions to reduce the risk of amputation in patients with type 1 DM.
Collapse
Affiliation(s)
- Nidhi Jain
- Torrance Memorial Physician Network, Torrance, CA 90505, USA;
| | - Manyoo A. Agarwal
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Cardiovascular Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Jalal
- Division of Nephrology, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA;
| | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| |
Collapse
|
20
|
Pizzimenti M, Meyer A, Charles A, Giannini M, Chakfé N, Lejay A, Geny B. Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle 2020; 11:866-886. [PMID: 32648665 PMCID: PMC7432591 DOI: 10.1002/jcsm.12587] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with lower extremity peripheral arterial disease (PAD) and sarcopenia are a population at risk requiring specific and targeted care. The aim of this review is to gather all relevant studies associating sarcopenia and PAD and to identify the underlying pathophysiological mechanisms as well as potential therapeutic strategies to improve skeletal muscle function. METHODS A systematic review was carried out following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Data extraction allowed the evaluation of 140 publications; 87 met the inclusion criteria; of which 79 were included in the final review, reporting sufficient data for epidemiological and diagnostic criteria, mechanical analysis, and therapeutic approaches. Epidemiological analysis and diagnostic criteria were based on 18 studies following 2362 PAD patients [31.39% (SD 7.61) women], aged 72.42 (SD 2.84); sarcopenia was present in 34.63% (SD 12.86) of the patients. Mechanical and pathway analysis were based on five animal studies and 29 clinical reports, showing significantly altered muscle strength and function in 1352 PAD patients [26.49% (SD 17.32) women], aged 67.67 (SD 5.14) years; impaired muscle histology in 192 PAD patients (9.2% (SD 11.22) women), aged 64.3 (SD 0.99) years; +58.63% (SD 25.48) of oxidative stress in 69 PAD patients [16.96% (SD 8.10) women], aged 63.17 (SD 1.43) years; mitochondriopathy in 153 PAD patients [29.39% (SD 28.27) women], aged 63.50 (SD 1.83) years; +15.58% (SD 7.41) of inflammation in 900 PAD patients [40.77% (SD 3.71) women], aged 74.88 (SD 2.76) years; and altered signalling pathways in 51 PAD patients [34.45% (SD 32.23) women], aged 72.25 (SD 5.25) years. Therapeutic approaches analysis was based on seven animal studies and 21 clinical reports. In total, 884 patients followed an exercise therapy, and 18 received an angiogenesis treatment; 30.84% (SD 17.74) were women. Mean ages of patients studied were 66.85 (SD 3.96). CONCLUSIONS Sarcopenia and lower extremity PAD have musculoskeletal consequences that directly impair patients' quality of life and prognosis. Although PAD is primarily a vascular disease, all etiological factors of sarcopenia identified so far are present in PAD. Indeed, both sarcopenia and PAD are accompanied by oxidative stress, skeletal muscle mitochondrial impairments, inflammation, inhibition of specific pathways regulating muscle synthesis or protection (i.e. IGF-1, RISK, and SAFE), and activation of molecules associated with muscle degradation. To date, besides revascularization, the best therapeutic strategy includes exercise, but approaches targeting the underlying mechanisms still deserve further studies.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Alain Meyer
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Anne‐Laure Charles
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
| | - Margherita Giannini
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Nabil Chakfé
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Vascular Surgery and Kidney TransplantationUniversity Hospital of StrasbourgStrasbourgFrance
| | - Anne Lejay
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Vascular Surgery and Kidney TransplantationUniversity Hospital of StrasbourgStrasbourgFrance
| | - Bernard Geny
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| |
Collapse
|
21
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
22
|
Pizzimenti M, Riou M, Charles AL, Talha S, Meyer A, Andres E, Chakfé N, Lejay A, Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J Clin Med 2019; 8:jcm8122125. [PMID: 31810355 PMCID: PMC6947197 DOI: 10.3390/jcm8122125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a frequent and serious condition, potentially life-threatening and leading to lower-limb amputation. Its pathophysiology is generally related to ischemia-reperfusion cycles, secondary to reduction or interruption of the arterial blood flow followed by reperfusion episodes that are necessary but also—per se—deleterious. Skeletal muscles alterations significantly participate in PAD injuries, and interestingly, muscle mitochondrial dysfunctions have been demonstrated to be key events and to have a prognosis value. Decreased oxidative capacity due to mitochondrial respiratory chain impairment is associated with increased release of reactive oxygen species and reduction of calcium retention capacity leading thus to enhanced apoptosis. Therefore, targeting mitochondria might be a promising therapeutic approach in PAD.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne-Laure Charles
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Nabil Chakfé
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Lejay
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|
23
|
Zhang J, Nugrahaningrum DA, Marcelina O, Ariyanti AD, Wang G, Liu C, Wu S, Kasim V. Tyrosol Facilitates Neovascularization by Enhancing Skeletal Muscle Cells Viability and Paracrine Function in Diabetic Hindlimb Ischemia Mice. Front Pharmacol 2019; 10:909. [PMID: 31474865 PMCID: PMC6702659 DOI: 10.3389/fphar.2019.00909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
As one of the most severe manifestations of diabetes, vascular complications are the main causes of diabetes-related morbidity and mortality. Hyperglycemia induces systemic abnormalities, including impaired angiogenesis, causing diabetic patients to be highly susceptible in suffering hindlimb ischemia (HLI). Despite its severe prognosis, there is currently no effective treatment for diabetic HLI. Skeletal muscle cells secrete multiple angiogenic factors, hence, recently are reported to be critical for angiogenesis; however, hyperglycemia disrupted the paracrine function in skeletal muscle cells, leading to the impaired angiogenesis potential observed in diabetic patients. The present study showed that tyrosol, a phenylethanoid compound, suppresses accumulation of intracellular reactive oxygen species (ROS) caused by hyperglycemia, most plausibly by promoting heme oxygenase-1 (HO-1) expression in skeletal muscle cells. Consequently, tyrosol exerts cytoprotective function against hyperglycemia-induced oxidative stress in skeletal muscle cells, increases their proliferation vigorously, and simultaneously suppresses apoptosis. Furthermore, tyrosol grossly increases the secretion of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from skeletal muscle cells. This leads to enhanced proliferation and migration capabilities of vascular endothelial and smooth muscle cells, two types of cells that are responsible in forming blood vessels, through cell-cell communication. Finally, in vivo experiment using the diabetic HLI mouse model showed that tyrosol injection into the gastrocnemius muscle of the ischemic hindlimb significantly enhances the formation of functional blood vessels and subsequently leads to significant recovery of blood perfusion. Overall, our findings highlight the potential of the pharmacological application of tyrosol as a small molecule drug for therapeutic angiogenesis in diabetic HLI patients.
Collapse
Affiliation(s)
- Jianqi Zhang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Dyah Ari Nugrahaningrum
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Agnes Dwi Ariyanti
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Guixue Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Caiping Liu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Cheng WJ, Liu X, Zhang L, Guo XQ, Wang FW, Zhang Y, Tian YM. Chronic intermittent hypobaric hypoxia attenuates skeletal muscle ischemia-reperfusion injury in mice. Life Sci 2019; 231:116533. [PMID: 31173783 DOI: 10.1016/j.lfs.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
AIM The aim of this study was to investigate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against skeletal muscle ischemia-reperfusion (IR) injury and to determine the underlying mechanism. MAIN METHODS C57BL/6 mice were randomly divided into 3 groups: skeletal muscle IR injury group (IR), CIHH pretreatment following IR group (IR + CIHH), and sham operation group (Sham). The skeletal muscle IR injury model was induced by the unilateral application of a tourniquet on a hind limb for 3 h and then releasing it for 24 h. CIHH pretreatment simulating a 5000-m altitude was applied 6 h per day for 28 days. The functional and morphological performance of IR-injured gastrocnemius muscle was evaluated using contraction force, H&E staining, and transmission electron microscopy. IR injury-induced CD68+ macrophage infiltration was assessed by immunofluorescence. TNFα levels in serum and muscle were measured by ELISA and western blotting, respectively. Apoptosis was examined by TUNEL staining and Cleaved Caspase-3 protein expression. KEY FINDINGS Acute IR injury resulted in reduced contraction tension, morphological destruction, macrophage infiltration, increased TNFα levels, and apoptosis in gastrocnemius muscle. CIHH pretreatment significantly ameliorated contraction function and morphological performance in IR-injured skeletal muscle. In addition, CIHH pretreatment resulted in marked decreases in CD68+ macrophage infiltration, TNFα levels, and apoptosis. SIGNIFICANCE These data demonstrated that CIHH has a protective effect against acute IR injury in skeletal muscle via inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen-Jie Cheng
- Department of Anesthesiology, Tianjin Hospital, Tianjin 300000, China; Graduate school, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin Liu
- Department of Neurology, Second Hospital of Xi'an Medical University, Xi'an, Shanxi 710038, China
| | - Li Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xin-Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fu-Wei Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
25
|
|