1
|
Vinken M, Grimm D, Baatout S, Baselet B, Beheshti A, Braun M, Carstens AC, Casaletto JA, Cools B, Costes SV, De Meulemeester P, Doruk B, Eyal S, Ferreira MJS, Miranda S, Hahn C, Helvacıoğlu Akyüz S, Herbert S, Krepkiy D, Lichterfeld Y, Liemersdorf C, Krüger M, Marchal S, Ritz J, Schmakeit T, Stenuit H, Tabury K, Trittel T, Wehland M, Zhang YS, Putt KS, Zhang ZY, Tagle DA. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv 2025; 81:108574. [PMID: 40180136 PMCID: PMC12048243 DOI: 10.1016/j.biotechadv.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Bjorn Baselet
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Afshin Beheshti
- Center of Space Biomedicine, McGowan Institute for Regenerative Medicine, and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markus Braun
- German Space Agency, German Aerospace Center, Bonn, Germany
| | | | - James A Casaletto
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Ben Cools
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sylvain V Costes
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Phoebe De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bartu Doruk
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Silvana Miranda
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Christiane Hahn
- European Space Agency, Human and Robotic Exploration Programmes, Human Exploration Science team, Noordwijk, the Netherlands
| | - Sinem Helvacıoğlu Akyüz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Herbert
- Space Systems, Airbus Defence and Space, Immenstaad am Bodensee, Germany
| | - Dmitriy Krepkiy
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yannick Lichterfeld
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jette Ritz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Theresa Schmakeit
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hilde Stenuit
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Torsten Trittel
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yu Shrike Zhang
- Division of Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA; Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Danilo A Tagle
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zhang G, Zhao L, Li Z, Sun Y. Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:10-22. [PMID: 39864902 DOI: 10.1016/j.lssr.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C. elegans subjected to four spaceflights aboard the International Space Station (ISS) and identified 32 reproducibly differentially expressed genes (DEGs). These DEGs were enriched in pathways related to the structural constituent of cuticle, defense response, unfolded protein response, longevity regulation, extracellular structural organization, and signal receptor regulation. Among these 32 DEGs, 13 genes were consistently downregulated across four spaceflight conditions, primarily associated with the structural constituent of the cuticle. The remaining genes, involved in defense response, unfolded protein response, and longevity regulation pathway, exhibited distinct patterns depending on spaceflight duration: they were downregulated during short-term spaceflights but upregulated during long-term spaceflights. To explore the potential space stressors responsible for these transcriptomic changes, we performed qRT-PCR experiments on C. elegans exposed to simulated microgravity and low-dose radiation. Our results demonstrated that cuticle-related gene expression was significantly downregulated under both simulated microgravity and low-dose radiation conditions. In contrast, almost all genes involved in defense response, unfolded protein response, and longevity regulation pathway were downregulated under simulated microgravity but upregulated under low-dose radiation exposure. These findings suggest that both microgravity and space radiation inhibit cuticle formation; microgravity as the primary stressor inhibit defense response, unfolded protein response, and longevity regulation pathway during short-term spaceflights, while space radiation may promote these processes during long-term spaceflights. In summary, through integrated spaceflight transcriptomic analyses and simulated space experiments, we identified key transcriptomic features and potential biological functions in space-flown C. elegans, shedding light on the space stressors responsible for these changes. This study provides new insights into the molecular and physiological adaptations of C. elegans to spaceflight, highlighting the distinct impacts of microgravity and space radiation.
Collapse
Affiliation(s)
- Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| | - Zejun Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| |
Collapse
|
3
|
Parafati M, Thwin Z, Malany LK, Coen PM, Malany S. Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634580. [PMID: 39974935 PMCID: PMC11838239 DOI: 10.1101/2025.01.26.634580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microgravity accelerates skeletal muscle degeneration, mimicking aging, yet its effects on human muscle cell function and signaling remain underexplored. Using a muscle lab-on-chip model onboard the International Space Station, we examined how microgravity and electrically stimulated contractions influence muscle biology and age-related muscle changes. Our 3D bioengineered muscle model, cultured for 21 days (12 days in microgravity), included myobundles from young, active and older, sedentary individuals, with and without electrically stimulated contraction. Real-time data collected within an autonomous Space Tango CubeLab™ showed reduced contraction magnitude in microgravity. Global transcriptomic analysis revealed increased gene expression and particularly mitochondrial-related gene expression in microgravity for the electrically stimulated younger myobundles, while the older myobundles were less responsive. Moreover, a comparative analysis using a skeletal muscle aging gene expression database revealed that certain age-induced genes showed changes in expression in myobundles from the younger cohort when exposed to microgravity, whereas these genes remained unchanged in myobundles from the older cohort. Younger, electrically stimulated myobundles in microgravity exhibited higher expression of 45 aging genes involved in key aging pathways related to inflammation and immune function, mitochondrial dysfunction, and cellular stress; and decreased expression of 41 aging genes associated with inflammation, and cell growth. This study highlights a unique age-related molecular signature in muscle cells exposed to microgravity and underscores electrical stimulation as a potential countermeasure. These insights advance understanding of skeletal muscle aging and microgravity-induced degeneration, informing strategies for mitigating age-related muscle atrophy in space and on Earth.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Zon Thwin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | | | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
4
|
Mair DB, Tsui JH, Higashi T, Koenig P, Dong Z, Chen JF, Meir JU, Smith AST, Lee PHU, Ahn EH, Countryman S, Sniadecki NJ, Kim DH. Spaceflight-induced contractile and mitochondrial dysfunction in an automated heart-on-a-chip platform. Proc Natl Acad Sci U S A 2024; 121:e2404644121. [PMID: 39312653 PMCID: PMC11459163 DOI: 10.1073/pnas.2404644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
With current plans for manned missions to Mars and beyond, the need to better understand, prevent, and counteract the harmful effects of long-duration spaceflight on the body is becoming increasingly important. In this study, an automated heart-on-a-chip platform was flown to the International Space Station on a 1-mo mission during which contractile cardiac function was monitored in real-time. Upon return to Earth, engineered human heart tissues (EHTs) were further analyzed with ultrastructural imaging and RNA sequencing to investigate the impact of prolonged microgravity on cardiomyocyte function and health. Spaceflight EHTs exhibited significantly reduced twitch forces, increased incidences of arrhythmias, and increased signs of sarcomere disruption and mitochondrial damage. Transcriptomic analyses showed an up-regulation of genes and pathways associated with metabolic disorders, heart failure, oxidative stress, and inflammation, while genes related to contractility and calcium signaling showed significant down-regulation. Finally, in silico modeling revealed a potential link between oxidative stress and mitochondrial dysfunction that corresponded with RNA sequencing results. This represents an in vitro model to faithfully reproduce the adverse effects of spaceflight on three-dimensional (3D)-engineered heart tissue.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jonathan H. Tsui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Ty Higashi
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
| | - Paul Koenig
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jeffrey F. Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jessica U. Meir
- The National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX77058
| | - Alec S. T. Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - Peter H. U. Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02912
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD21205
| | - Stefanie Countryman
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
- Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
5
|
Ghani F, Zubair AC. Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth. NPJ Microgravity 2024; 10:88. [PMID: 39168992 PMCID: PMC11339457 DOI: 10.1038/s41526-024-00425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Stem cell research performed in space has provided fundamental insights into stem cell properties and behavior in microgravity including cell proliferation, differentiation, and regeneration capabilities. However, there is broader scientific value to this research including potential translation of stem cell research in space to clinical applications. Here, we present important discoveries from different studies performed in space demonstrating the potential use of human stem cells as well as the limitations in cellular therapeutics. A full understanding of the effects of microgravity in space on potentially supporting the expansion and/or enhancement of stem cell function is required to translate the findings into clinics.
Collapse
Affiliation(s)
- Fay Ghani
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Xue Z, Jiang Y, Meng B, Lu L, Hao M, Zhang Y, Shi S, Li Z, Mao X. Apoptotic vesicle-mediated senolytics requires mechanical loading. Theranostics 2024; 14:4730-4746. [PMID: 39239523 PMCID: PMC11373628 DOI: 10.7150/thno.98763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Mechanical force plays crucial roles in extracellular vesicle biogenesis, release, composition and activity. However, it is unknown whether mechanical force regulates apoptotic vesicle (apoV) production. Methods: The effects of mechanical unloading on extracellular vesicles of bone marrow were evaluated through morphology, size distribution, yield, and protein mass spectrometry analysis using hindlimb unloading (HU) mouse model. Apoptosis resistance and aging related phenotype were assessed using HU mouse model in vivo and cell microgravity model in vitro. The therapeutic effects of apoVs on HU mouse model were assessed by using microcomputed tomography, histochemical and immunohistochemical, as well as histomorphometry analyses. SiRNA and chemicals were used for gain and loss-of-function assay. Results: In this study, we show that loss of mechanical force led to cellular apoptotic resistance and aging related phenotype, thus reducing the number of apoVs in the circulation due to down-regulated expression of Piezo1 and reduced calcium influx. And systemic infusion of apoVs was able to rescue Piezo1 expression and calcium influx, thereby, rescuing mechanical unloading-induced cellular apoptotic resistance, senescent cell accumulation. Conclusions: This study identified a previously unknown role of mechanical force in maintaining apoptotic homeostasis and eliminating senescent cells. Systemic infusion of mesenchymal stem cell-derived apoVs can effectively rescue apoptotic resistance and eliminate senescent cells in mechanical unloading mice.
Collapse
Affiliation(s)
- Zhulin Xue
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yexiang Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meng Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Zili Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
7
|
He X, Zhao L, Huang B, Zhang G, Lu Y, Mi D, Sun Y. Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegans. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:117-132. [PMID: 39067983 DOI: 10.1016/j.lssr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.
Collapse
Affiliation(s)
- Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ye Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| |
Collapse
|
8
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
9
|
Masarapu Y, Cekanaviciute E, Andrusivova Z, Westholm JO, Björklund Å, Fallegger R, Badia-I-Mompel P, Boyko V, Vasisht S, Saravia-Butler A, Gebre S, Lázár E, Graziano M, Frapard S, Hinshaw RG, Bergmann O, Taylor DM, Wallace DC, Sylvén C, Meletis K, Saez-Rodriguez J, Galazka JM, Costes SV, Giacomello S. Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice. Nat Commun 2024; 15:4778. [PMID: 38862479 PMCID: PMC11166911 DOI: 10.1038/s41467-024-48916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).
Collapse
Affiliation(s)
- Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jakub O Westholm
- National Bioinformatics Infrastructure Sweden, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Valery Boyko
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
- Bionetics, Yorktown, VA, USA
| | - Shubha Vasisht
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amanda Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Samrawit Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Enikő Lázár
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marta Graziano
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Robert G Hinshaw
- NASA Postdoctoral Program - Oak Ridge Associated Universities, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Pharmacology and Toxicology, Department of Pharmacology and Toxicology University Medical Center Goettingen, Goettingen, Germany
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
10
|
Chua CYX, Jimenez M, Mozneb M, Traverso G, Lugo R, Sharma A, Svendsen CN, Wagner WR, Langer R, Grattoni A. Advanced material technologies for space and terrestrial medicine. NATURE REVIEWS MATERIALS 2024; 9:808-821. [DOI: 10.1038/s41578-024-00691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 01/05/2025]
|
11
|
Willis CRG, Calvaruso M, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Chouker A, Cialdai F, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Herranz R, Hellweg C, Iorio CS, Karapantsios T, van Loon J, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Rettberg P, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Risaliti C, Santucci D, Sperl M, Tabury K, Tavella S, Thielemann C, Willaert R, Monici M, Szewczyk NJ. How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems? NPJ Microgravity 2024; 10:50. [PMID: 38693246 PMCID: PMC11063135 DOI: 10.1038/s41526-024-00395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.
Collapse
Affiliation(s)
- Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Debora Angeloni
- Institute of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Institute for Cell and Neurobiol. Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory "Translational Research, Stress & Immunity", LMU University Hospital Munich, Munich, Germany
| | - Eugénie Carnero-Diaz
- Institute Systematic, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Chouker
- Laboratory "Translational Research, Stress & Immunity", LMU University Hospital Munich, Munich, Germany
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
| | - Giuseppe Coppola
- Institue of Applied Science and Intelligent Sistems - CNR, Naples, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, F-42000, Saint-Etienne, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine Hellweg
- Radiation Biology Dept., Inst. of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | - Jack van Loon
- Amsterdam University Medical Center, ACTA/VU, Amsterdam, Netherlands
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Department of Orthopaedics, Univ. Med. Center Utrecht & Dept. Clinical Sciences, Utrecht Univ, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Dept, Ifremer centre Bretagne, Plouzané, France
| | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Inst. Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Inst. for Traumatology, Res. Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Petra Rettberg
- DLR, Institute of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Department of Engineering Mathematics, and Dept of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Ist. Superiore Sanità, Rome, Italy
| | | | - Kevin Tabury
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | | |
Collapse
|
12
|
Zhang Y, Zhao L, Sun Y. Using single-sample networks to identify the contrasting patterns of gene interactions and reveal the radiation dose-dependent effects in multiple tissues of spaceflight mice. NPJ Microgravity 2024; 10:45. [PMID: 38575629 PMCID: PMC10995210 DOI: 10.1038/s41526-024-00383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Transcriptome profiles are sensitive to space stressors and serve as valuable indicators of the biological effects during spaceflight. Herein, we transformed the expression profiles into gene interaction patterns by single-sample networks (SSNs) and performed the integrated analysis on the 301 spaceflight and 290 ground control samples, which were obtained from the GeneLab platform. Specifically, an individual SSN was established for each sample. Based on the topological structures of 591 SSNs, the differentially interacted genes (DIGs) were identified between spaceflights and ground controls. The results showed that spaceflight disrupted the gene interaction patterns in mice and resulted in significant enrichment of biological processes such as protein/amino acid metabolism and nucleic acid (DNA/RNA) metabolism (P-value < 0.05). We observed that the mice exposed to radiation doses within the three intervals (4.66-7.14, 7.592-8.295, 8.49-22.099 mGy) exhibited similar gene interaction patterns. Low and medium doses resulted in changes to the circadian rhythm, while the damaging effects on genetic material became more pronounced in higher doses. The gene interaction patterns in response to space stressors varied among different tissues, with the spleen, lung, and skin being the most responsive to space radiation (P-value < 0.01). The changes observed in gene networks during spaceflight conditions might contribute to the development of various diseases, such as mental disorders, depression, and metabolic disorders, among others. Additionally, organisms activated specific gene networks in response to virus reactivation. We identified several hub genes that were associated with circadian rhythms, suggesting that spaceflight could lead to substantial circadian rhythm dysregulation.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
14
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
15
|
Cialdai F, Brown AM, Baumann CW, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Calvaruso M, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Choukér A, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Hahn C, Hatton J, Herranz R, Hellweg CE, Iorio CS, Karapantsios T, van Loon J, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, van Ombergen A, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Puhl C, Rettberg P, Risaliti C, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Santucci D, Sperl M, Strollo F, Tabury K, Tavella S, Thielemann C, Willaert R, Szewczyk NJ, Monici M. How do gravity alterations affect animal and human systems at a cellular/tissue level? NPJ Microgravity 2023; 9:84. [PMID: 37865644 PMCID: PMC10590411 DOI: 10.1038/s41526-023-00330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Austin M Brown
- Honors Tutorial College, Ohio University, Athens, OH, USA
| | - Cory W Baumann
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Debora Angeloni
- Inst. of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Inst. for Cell and Neurobiol, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Dept. Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Marco Calvaruso
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Eugénie Carnero-Diaz
- Inst. Systematic, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Choukér
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Giuseppe Coppola
- Institute of Applied Science and Intelligent Sistems - CNR, Naples, Italy
| | - Gabriella Cusella
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Dept Medical Biotechnologies, University of Siena, Siena, Italy
- Smart Bio-Interfaces, IIT, Pontedera (PI), Italy
| | - Jean-Francois Desaphy
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Maria Grano
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Dept. Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, F-42000, Saint-Etienne, France
| | | | | | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine E Hellweg
- Radiation Biology Dept., Inst. of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | - Jack van Loon
- Amsterdam University Medical Center, ACTA/VU, Amsterdam, The Netherlands
| | - Matteo Lulli
- Dept. Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Dept. Orthopaedics, Univ. Med. Center Utrecht & Dept. Clinical Sciences, Utrecht Univ, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Dept, Ifremer centre Bretagne, Plouzané, France
| | | | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Inst. Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Inst. for Traumatology, Res. Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Christopher Puhl
- Space Applications NV/SA for European Space Agency, Houston, USA
| | - Petra Rettberg
- DLR, Inst of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Angela Maria Rizzo
- Dept. of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Dept of Engineering Mathematics, and Dept of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Dept. Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Ist. Superiore Sanità, Rome, Italy
| | | | - Felice Strollo
- Endocrinology and Metabolism Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy.
| |
Collapse
|
16
|
Zhao L, Zhang G, Tang A, Huang B, Mi D. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:25-38. [PMID: 37087176 DOI: 10.1016/j.lssr.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| |
Collapse
|
17
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
18
|
Dugan C, Parlatescu I, Popescu BO, Pop CS, Marin M, Dinculescu A, Nistorescu AI, Vizitiu C, Varlas VN. Applications for oral research in microgravity - lessons learned from burning mouth syndrome and ageing studies. J Med Life 2023; 16:381-386. [PMID: 37168310 PMCID: PMC10165527 DOI: 10.25122/jml-2022-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 05/13/2023] Open
Abstract
The negative consequences of microgravity for the human body are central aspects of space travel that raise health problems. Altered functions of the same systems and treatment options are common points of spaceflight physiology, age-related diseases, and oral medicine. This work emphasizes the convergence of knowledge between pathophysiological changes brought on by aging, physiological reactions to microgravity exposure, and non-pharmacological and non-invasive treatment methods that can be used in spaceflight. Sarcopenia, peripheral nerves alterations, neuromotor plaque in the masticatory muscles, lingual, labial, and buccal weakness, nociplastic pain in oral mucosal diseases, and microgravity, as well as soft tissue changes and pathologies related to chewing and swallowing, corticomotor neuroplasticity of tongue, and swallowing biomechanics, are of particular interest to us. Neurologic disease and other pathologies such as recovery from post-stroke dysphagia, nociplastic pain in glossodynia, sleep bruxism, and obstructive sleep apnea have been studied and, in some cases, successfully treated with non-invasive direct and transcranial magnetic stimulation (TMS) methods in recent decades. An interdisciplinary team from medical specialties, engineering, and biophysics propose an exploratory study based on the parallelism of ageing and space physiology, along with experiment scenarios considering TMS and non-invasive direct methods.
Collapse
Affiliation(s)
- Cosmin Dugan
- Internal Medicine Department, Bucharest University Emergency Hospital, Bucharest, Romania
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioanina Parlatescu
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Corresponding Author: Ioanina Parlatescu, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. E-mail:
| | - Bogdan Ovidiu Popescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Corina Silvia Pop
- Internal Medicine Department, Bucharest University Emergency Hospital, Bucharest, Romania
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Marin
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Adrian Dinculescu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Alexandru Ion Nistorescu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Cristian Vizitiu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
- Department of Automatics and Information Technology, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov, Romania
| | - Valentin Nicolae Varlas
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynaecology, Clinical Hospital of Obstetrics and Gynecology Filantropia, Bucharest, Romania
| |
Collapse
|
19
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
20
|
Gao T, Huang J, Zhang X, Gao F. Exercise counteracts vascular aging in long-term spaceflight: challenges and perspective. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2022.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
22
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
23
|
Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022; 14:nu14224896. [PMID: 36432580 PMCID: PMC9699067 DOI: 10.3390/nu14224896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Astronauts exhibit several pathophysiological changes due to a variety of stressors related to the space environment, including microgravity, space radiation, isolation, and confinement. Space motion sickness, bone and muscle mass loss, cardiovascular deconditioning and neuro-ocular syndrome are some of the spaceflight-induced effects on human health. Optimal nutrition is of the utmost importance, and-in combination with other measures, such as physical activity and pharmacological treatment-has a key role in mitigating many of the above conditions, including bone and muscle mass loss. Since the beginning of human space exploration, space food has not fully covered astronauts' needs. They often suffer from menu fatigue and present unintentional weight loss, which leads to further alterations. The purpose of this review was to explore the role of nutrition in relation to the pathophysiological effects of spaceflight on the human body.
Collapse
Affiliation(s)
- Stavroula Chaloulakou
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
| | - Kalliopi Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035
| |
Collapse
|
24
|
Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 2022; 10:958381. [PMID: 36267456 PMCID: PMC9578548 DOI: 10.3389/fbioe.2022.958381] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Wound healing (WH) and the role fibroblasts play in the process, as well as healing impairment and fibroblast dysfunction, have been thoroughly reviewed by other authors. We treat these topics briefly, with the only aim of contextualizing the true focus of this review, namely, the microgravity-induced changes in fibroblast functions involved in WH. Microgravity is a condition typical of spaceflight. Studying its possible effects on fibroblasts and WH is useful not only for the safety of astronauts who will face future interplanetary space missions, but also to help improve the management of WH impairment on Earth. The interesting similarity between microgravity-induced alterations of fibroblast behavior and fibroblast dysfunction in WH impairment on Earth is highlighted. The possibility of using microgravity-exposed fibroblasts and WH in space as models of healing impairment on Earth is suggested. The gaps in knowledge on fibroblast functions in WH are analyzed. The contribution that studies on fibroblast behavior in weightlessness can make to fill these gaps and, consequently, improve therapeutic strategies is considered.
Collapse
|
25
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
26
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease. Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
27
|
Dello Russo C, Bandiera T, Monici M, Surdo L, Yip VLM, Wotring V, Morbidelli L. Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. Br J Pharmacol 2022; 179:2538-2557. [PMID: 35170019 PMCID: PMC9314132 DOI: 10.1111/bph.15822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
As human spaceflight progresses with extended mission durations, the demand for effective and safe drugs will necessarily increase. To date, the accepted medications used during missions (for space motion sickness, sleep disturbances, allergies, pain, and sinus congestion) are administered under the assumption that they act as safely and efficaciously as on Earth. However, physiological changes have been documented in human subjects in spaceflight involving fluid shifts, muscle and bone loss, immune system dysregulation, and adjustments in the gastrointestinal tract and metabolism. These alterations may change the pharmacokinetics (PK) and pharmacodynamics of commonly used medications. Frustratingly, the information gained from bed rest studies and from in-flight observations is incomplete and also demonstrates a high variability in drug PK. Therefore, the objectives of this review are to report (i) the impact of the space environmental stressors on human physiology in relation to PK; (ii) the state-of-the-art on experimental data in space and/or in ground-based models; (iii) the validation of ground-based models for PK studies; and (iv) the identification of research gaps.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of PharmacologyUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | - Tiziano Bandiera
- D3‐PharmaChemistry LineIstituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div. & Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space AgencyNoordwijkThe Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | | | | |
Collapse
|
28
|
Strollo F, Gentile S, Pipicelli AMV, Mambro A, Monici M, Magni P. Space Flight-Promoted Insulin Resistance as a Possible Disruptor of Wound Healing. Front Bioeng Biotechnol 2022; 10:868999. [PMID: 35646861 PMCID: PMC9136162 DOI: 10.3389/fbioe.2022.868999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
During space flight, especially when prolonged, exposure to microgravity results in a number of pathophysiological changes such as bone loss, muscle atrophy, cardiovascular and metabolic changes and impaired wound healing, among others. Interestingly, chronic low-grade inflammation and insulin resistance appear to be pivotal events linking many of them. Interestingly, real and experimental microgravity is also associated to altered wound repair, a process that is becoming increasingly important in view of prolonged space flights. The association of insulin resistance and wound healing impairment may be hypothesized from some dysmetabolic conditions, like the metabolic syndrome, type 2 diabetes mellitus and abdominal/visceral obesity, where derangement of glucose and lipid metabolism, greater low-grade inflammation, altered adipokine secretion and adipocyte dysfunction converge to produce systemic effects that also negatively involve wound healing. Indeed, wound healing impairment after traumatic events and surgery in space remains a relevant concern for space agencies. Further studies are required to clarify the molecular connection between insulin resistance and wound healing during space flight, addressing the ability of physical, endocrine/metabolic, and pharmacological countermeasures, as well as nutritional strategies to prevent long-term detrimental effects on tissue repair linked to insulin resistance. Based on these considerations, this paper discusses the pathophysiological links between microgravity-associated insulin resistance and impaired wound healing.
Collapse
Affiliation(s)
- F. Strollo
- Endocrinology and Metabolism Unit, IRCCS San Raffaele Pisana, Rome, Italy
- *Correspondence: F. Strollo,
| | - S. Gentile
- Department of Internal Medicine, Campania University “Luigi Vanvitelli”, Naples, Italy and Nefrocenter Research Network, Naples, Italy
| | - A. M. V. Pipicelli
- Nephrology, Dialysis and Transplant Unit, Medical and Surgical Sciences Department, “A. Gemelli” Sacred Heart Catholic University, Rome, Italy
| | - A. Mambro
- Anesthesiology and Intensive Care Unit, Pertini General Hospital, Rome, Italy
| | - M. Monici
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, ASA Campus Joint Laboratory, ASA Res. Div, University of Florence, Florence, Italy
| | - P. Magni
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
- IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
29
|
Exposure to Random Positioning Machine Alters the Mineralization Process and PTX3 Expression in the SAOS-2 Cell Line. Life (Basel) 2022; 12:life12050610. [PMID: 35629278 PMCID: PMC9143356 DOI: 10.3390/life12050610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 01/02/2023] Open
Abstract
Bone loss is among the most frequent changes seen in astronauts during space missions. Although weightlessness is known to cause high bone resorption and a rapid decrease in bone minerals and calcium, the underlying mechanisms are not yet fully understood. In our work, we investigated the influence of random positioning machine (RPM) exposure on the mineralization process in the SAOS-2 cell line, in osteogenic and non-osteogenic conditions, by examining changes in their mineralizing capacity and in the expression of PTX3, a positive regulator of bone mineralization. We analyzed cell viability by MTS assay and the mineralization process after staining with Toluidine Blue and Alizarin Red, while PTX3 expression was investigated by immunocytochemistry and western blotting analysis. Our results showed that RPM exposure increased cells’ viability and improved their mineralizing competence when not treated with osteogenic cocktail. In contrast, in osteogenic conditions, cells exposed to RPM showed a reduction in the presence of calcification-like structures, mineral deposits and PTX3 expression, suggesting that the effects of RPM exposure on mineralizing matrix deposition depend on the presence of osteogenic factors in the culture medium. Further studies will be needed to clarify the role of potential mineralization markers in the cellular response to the simulated biological effects of microgravity, paving the way for a new approach to treating osteoporosis in astronauts exposed to spaceflight.
Collapse
|
30
|
Uruno A, Saigusa D, Suzuki T, Yumoto A, Nakamura T, Matsukawa N, Yamazaki T, Saito R, Taguchi K, Suzuki M, Suzuki N, Otsuki A, Katsuoka F, Hishinuma E, Okada R, Koshiba S, Tomioka Y, Shimizu R, Shirakawa M, Kensler TW, Shiba D, Yamamoto M. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Commun Biol 2021; 4:1381. [PMID: 34887485 PMCID: PMC8660801 DOI: 10.1038/s42003-021-02904-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses.
Collapse
Affiliation(s)
- Akira Uruno
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Saigusa
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Suzuki
- grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Tomohiro Nakamura
- grid.69566.3a0000 0001 2248 6943Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naomi Matsukawa
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahiro Yamazaki
- grid.69566.3a0000 0001 2248 6943Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ristumi Saito
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Taguchi
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- grid.69566.3a0000 0001 2248 6943Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihito Otsuki
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Seizo Koshiba
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- grid.69566.3a0000 0001 2248 6943Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Thomas W. Kensler
- grid.270240.30000 0001 2180 1622Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan.
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
31
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
32
|
Furukawa S, Chatani M, Higashitani A, Higashibata A, Kawano F, Nikawa T, Numaga-Tomita T, Ogura T, Sato F, Sehara-Fujisawa A, Shinohara M, Shimazu T, Takahashi S, Watanabe-Takano H. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021; 7:18. [PMID: 34039989 PMCID: PMC8155041 DOI: 10.1038/s41526-021-00145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/25/2021] [Indexed: 11/09/2022] Open
Abstract
The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan.
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo, Japan. .,Pharmacological Research Center, Showa University, Tokyo, Japan.
| | | | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
33
|
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2021; 183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.
Collapse
Affiliation(s)
| | - Hossein Fazelinia
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Man S Kim
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cem Meydan
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Yared Kidane
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Komal S Rathi
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Benjamin Stear
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Ying
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Foox
- Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | - Dong Wang
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sonja Schrepfer
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - J Tyson McDonald
- Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | - Gary Hardiman
- Queens University Belfast, Belfast BT9 5DL, UK; Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
34
|
Belobrajdic B, Melone K, Diaz-Artiles A. Planetary extravehicular activity (EVA) risk mitigation strategies for long-duration space missions. NPJ Microgravity 2021; 7:16. [PMID: 33980866 PMCID: PMC8115028 DOI: 10.1038/s41526-021-00144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Extravehicular activity (EVA) is one of the most dangerous activities of human space exploration. To ensure astronaut safety and mission success, it is imperative to identify and mitigate the inherent risks and challenges associated with EVAs. As we continue to explore beyond low earth orbit and embark on missions back to the Moon and onward to Mars, it becomes critical to reassess EVA risks in the context of a planetary surface, rather than in microgravity. This review addresses the primary risks associated with EVAs and identifies strategies that could be implemented to mitigate those risks during planetary surface exploration. Recent findings within the context of spacesuit design, Concept of Operations (CONOPS), and lessons learned from analog research sites are summarized, and how their application could pave the way for future long-duration space missions is discussed. In this context, we divided EVA risk mitigation strategies into two main categories: (1) spacesuit design and (2) CONOPS. Spacesuit design considerations include hypercapnia prevention, thermal regulation and humidity control, nutrition, hydration, waste management, health and fitness, decompression sickness, radiation shielding, and dust mitigation. Operational strategies discussed include astronaut fatigue and psychological stressors, communication delays, and the use of augmented reality/virtual reality technologies. Although there have been significant advances in EVA performance, further research and development are still warranted to enable safer and more efficient surface exploration activities in the upcoming future.
Collapse
Affiliation(s)
- Blaze Belobrajdic
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Kate Melone
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
35
|
Yilmaz K, Burnley M, Böcker J, Müller K, Jones AM, Rittweger J. Influence of simulated hypogravity on oxygen uptake during treadmill running. Physiol Rep 2021; 9:e14787. [PMID: 33955197 PMCID: PMC8100405 DOI: 10.14814/phy2.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonged exposure to microgravity during spaceflights leads to severe deterioration in the physical performance of astronauts. To understand the effectiveness of existing in‐flight daily countermeasures and to plan exercise onboard the International Space Station, we compared supine treadmill running to traditional upright treadmill running on earth. Specifically, we assessed the cardiorespiratory responses to conventional upright running to the responses to supine treadmill running under 0.3 g, 0.6 g, and 1 g of body weight in younger (20–30 years, n = 14, 8 females) and older healthy adults (50–60 years, n = 12, 6 females). Maximal cardiorespiratory capacity was additionally evaluated by performing an incremental running protocol on each treadmill. Maximum speed was greater for 0.3 g and 0.6 g in supine than for upright running (18.5 km/h (1.1) and 15.9 (3.1) vs 13.2 (2.4) p < 0.001). In contrast, maximum oxygen uptake (V˙O2max) and maximum heart rate (HRmax) were greater in upright running than in all supine conditions (Upright treadmill running vs S1.0G vs S0.6G vs S0.3G, 41.7 ml kg−1 min−1 (7.2) vs 30.5 (6.6) vs 32.9 (7.0) vs 30.9 (5.2), p < 0.001 and 171 beats min−1 (14) vs 152 (24) vs 155 (20) vs 152 (18), p < 0.001, respectively). The reduction in V˙O2max was remarkably similar across all three supine conditions, could not be increased by higher running speeds and can be well explained by reduced ground reaction forces (GRF). Thus, although a gravity‐related restriction of pulmonary gas exchange or perfusion of the legs when exercising in the supine position can be suspected, findings are also explicable on grounds of the vertical treadmill mechanics. Reduced loading will constitute a substantial limitation to V˙O2 in space with implications for crew health and the physical deterioration of astronauts.
Collapse
Affiliation(s)
- Kenan Yilmaz
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom
| | - Jonas Böcker
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Klaus Müller
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter St Luke's Campus, Exeter, United Kingdom
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Pediatrics and Adolescent, Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
The Effect of Space Travel on Bone Metabolism: Considerations on Today's Major Challenges and Advances in Pharmacology. Int J Mol Sci 2021; 22:ijms22094585. [PMID: 33925533 PMCID: PMC8123809 DOI: 10.3390/ijms22094585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.
Collapse
|
37
|
Costa F, Ambesi-Impiombato FS, Beccari T, Conte C, Cataldi S, Curcio F, Albi E. Spaceflight Induced Disorders: Potential Nutritional Countermeasures. Front Bioeng Biotechnol 2021; 9:666683. [PMID: 33968917 PMCID: PMC8096993 DOI: 10.3389/fbioe.2021.666683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Space travel is an extreme experience even for the astronaut who has received extensive basic training in various fields, from aeronautics to engineering, from medicine to physics and biology. Microgravity puts a strain on members of space crews, both physically and mentally: short-term or long-term travel in orbit the International Space Station may have serious repercussions on the human body, which may undergo physiological changes affecting almost all organs and systems, particularly at the muscular, cardiovascular and bone compartments. This review aims to highlight recent studies describing damages of human body induced by the space environment for microgravity, and radiation. All novel conditions, to ally unknown to the Darwinian selection strategies on Earth, to which we should add the psychological stress that astronauts suffer due to the inevitable forced cohabitation in claustrophobic environments, the deprivation from their affections and the need to adapt to a new lifestyle with molecular changes due to the confinement. In this context, significant nutritional deficiencies with consequent molecular mechanism changes in the cells that induce to the onset of physiological and cognitive impairment have been considered.
Collapse
Affiliation(s)
- Fabio Costa
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
38
|
Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021; 22:2961. [PMID: 33803957 PMCID: PMC7998548 DOI: 10.3390/ijms22062961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.
Collapse
Affiliation(s)
- Julie Bonnefoy
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Stéphanie Ghislin
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Jérôme Beyrend
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Florence Coste
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Gaetano Calcagno
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Isabelle Lartaud
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | | | - Sylvain Poussier
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| |
Collapse
|
39
|
Nwanaji-Enwerem JC, Nwanaji-Enwerem U, Van Der Laan L, Galazka JM, Redeker NS, Cardenas A. A Longitudinal Epigenetic Aging and Leukocyte Analysis of Simulated Space Travel: The Mars-500 Mission. Cell Rep 2020; 33:108406. [PMID: 33242403 PMCID: PMC7786521 DOI: 10.1016/j.celrep.2020.108406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Astronauts undertaking long-duration space missions may be vulnerable to unique stressors that can impact human aging. Nevertheless, few studies have examined the relationship of mission duration with DNA-methylation-based biomarkers of aging in astronauts. Using data from the six participants of the Mars-500 mission, a high-fidelity 520-day ground simulation experiment, we tested relationships of mission duration with five longitudinally measured blood DNA-methylation-based metrics: DNAmGrimAge, DNAmPhenoAge, DNA-methylation-based estimator of telomere length (DNAmTL), mitotic divisions (epigenetic mitotic clock [epiTOC2]), and pace of aging (PoA). We provide evidence that, relative to baseline, mission duration was associated with significant decreases in epigenetic aging. However, only decreases in DNAmPhenoAge remained significant 7 days post-mission. We also observed significant changes in estimated proportions of plasmablasts, CD4T, CD8 naive, and natural killer (NK) cells. Only decreases in NK cells remained significant post-mission. If confirmed more broadly, these findings contribute insights to improve the understanding of the biological aging implications for individuals experiencing long-duration space travel. Long-duration space travel is marked by a unique combination of stressors known to impact human aging. Using data from six participants of the Mars-500 mission, a high-fidelity 520-day ground simulation experiment, Nwanaji-Enwerem et al. report significant associations of mission duration with decreased biological aging measured via blood DNA methylation.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, and MD/PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | - Lars Van Der Laan
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Fujita SI, Rutter L, Ong Q, Muratani M. Integrated RNA-seq Analysis Indicates Asynchrony in Clock Genes between Tissues under Spaceflight. Life (Basel) 2020; 10:E196. [PMID: 32933026 PMCID: PMC7555136 DOI: 10.3390/life10090196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Rodent models have been widely used as analogs for estimating spaceflight-relevant molecular mechanisms in human tissues. NASA GeneLab provides access to numerous spaceflight omics datasets that can potentially generate novel insights and hypotheses about fundamental space biology when analyzed in new and integrated fashions. Here, we performed a pilot study to elucidate space biological mechanisms across tissues by reanalyzing mouse RNA-sequencing spaceflight data archived on NASA GeneLab. Our results showed that clock gene expressions in spaceflight mice were altered compared with those in ground control mice. Furthermore, the results suggested that spaceflight promotes asynchrony of clock gene expressions between peripheral tissues. Abnormal circadian rhythms are associated not only with jet lag and sleep disorders but also with cancer, lifestyle-related diseases, and mental disorders. Overall, our findings highlight the importance of elucidating the causes of circadian rhythm disruptions using the unique approach of space biology research to one day potentially develop countermeasures that benefit humans on Earth and in space.
Collapse
Affiliation(s)
- Shin-Ichiro Fujita
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Lindsay Rutter
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Quang Ong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
42
|
Pollard AK, Gaffney CJ, Deane CS, Balsamo M, Cooke M, Ellwood RA, Hewitt JE, Mierzwa BE, Mariani A, Vanapalli SA, Etheridge T, Szewczyk NJ. Molecular Muscle Experiment: Hardware and Operational Lessons for Future Astrobiology Space Experiments. ASTROBIOLOGY 2020; 20:935-943. [PMID: 32267726 PMCID: PMC7415877 DOI: 10.1089/ast.2019.2181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism Caenorhabditis elegans has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting C. elegans experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.
Collapse
Affiliation(s)
- Amelia K. Pollard
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, United Kingdom
| | - Christopher J. Gaffney
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
- Lancaster Medical School, Furness College, Lancaster University, Lancaster, United Kingdom
| | - Colleen S. Deane
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Michael Cooke
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, United Kingdom
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca A. Ellwood
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, United Kingdom
| | - Jennifer E. Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Beata E. Mierzwa
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | | | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Nathaniel J. Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, United Kingdom
| |
Collapse
|
43
|
Takhtobina YV, Shchelykalina SP, Smirnov YI, Smirnov AV, Koloteva MI, Vassilieva GY, Nikolaev DV. Monitoring of body fluid redistribution using segmental bioimpedance during rotation on a short-radius centrifuge. Physiol Meas 2020; 41:044006. [PMID: 32217830 DOI: 10.1088/1361-6579/ab840b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The creation of artificial gravity on board a space station is one of the promising methods for preventing health problems during space missions; a short-radius centrifuge (SRC) is the model of such a method on Earth. Our goal was to evaluate the sensitivity of bioimpedance polysegmental measurements for monitoring of the body regions' blood-filling redistribution and to analyze the dynamics of blood-filling redistribution during rotation in three SRC rotation modes. APPROACH Nine healthy male volunteers have been observed under three SRC rotation modes with a maximum acceleration of 2.05 standard Earth gravity (g), 2.47 g, 2.98 g along the body vertical axis towards the legs with a rotation radius of 235 cm. The 5 kHz electrical resistance was evaluated using a bioimpedance analyzer in a polysegmental mode. MAIN RESULTS Twenty-five correct records were made, of which four records were incomplete since the tests had to be stopped because the subjects were not feeling well. There was a blood-filling decrease in the head region; resistance increased to +15.4% ± 4.1% in the first SRC rotation mode. The electrical resistance of the leg regions decreased to -16.5% ± 2.3%. Slowdown of the SRC led to the reverse changes in resistance. The blood redistribution in the head and leg regions was independent of the mode of SRC rotation during the first 30 min, and varied on average by +10% and -15% respectively. SIGNIFICANCE Bioimpedance monitoring is promising for detection and prediction of blood circulation changes during rotation on the SRC.
Collapse
Affiliation(s)
- Yulia V Takhtobina
- Department of Experimental Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
44
|
Cialdai F, Colciago A, Pantalone D, Rizzo AM, Zava S, Morbidelli L, Celotti F, Bani D, Monici M. Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. Int J Mol Sci 2020; 21:407. [PMID: 31936443 PMCID: PMC7013931 DOI: 10.3390/ijms21020407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASA campus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy;
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Desiré Pantalone
- Unit of Surgery and Trauma Care, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Stefania Zava
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Monica Monici
- ASA campus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
45
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
46
|
From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization. Int Ophthalmol 2019; 40:775-786. [PMID: 31722052 DOI: 10.1007/s10792-019-01212-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To report the ophthalmological risks of space travel. METHODS The literature about the effect of microgravity and cosmic radiation on the human eye has been reviewed, focusing on the so-called "spaceflight related neuro-ocular syndrome (SANS)", and possible remedies. RESULTS The eye is the major candidate to suffer from the adverse space conditions, so much so that SANS is the main concern of the National Aeronautics and Space Administration (NASA). SANS, that affects astronauts engaged in long-duration spaceflights, is characterized by optic nerve head swelling, flattening of the posterior region of the scleral shell, choroidal folds, retinal cotton wool spots, and hyperopic shift. Even if it seems related to an increased volume of the cerebrospinal fluid in the brain and the optic nerve sheaths, its pathogenesis is still unclear. In addition, cataract is related to the effect of galactic cosmic rays on the lens. Centrifuges, pressurizing chambers, and mechanical counter-pressure suits have been advanced to counteract the upward fluid shift responsible for the SANS syndrome. Shields with a high content of hydrogen, magnetic shielding systems, and wearable radiation shielding devices are under study to mitigate the exposure to galactic cosmic rays. CONCLUSIONS Since 1961, the year of the first manned mission outside the Earth, history has shown that the human being may venture in space. Yet, visual impairment is the top health risk for long-duration spaceflight. Effective remediation is mandatory in anticipation of long space missions and Moon and Mars colonization.
Collapse
|
47
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|