1
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
2
|
Bjerrum LB, Nordhus IH, Sørensen L, Wulff K, Bjorvatn B, Flo-Groeneboom E, Visted E. Acute effects of light during daytime on central aspects of attention and affect: A systematic review. Biol Psychol 2024; 192:108845. [PMID: 38981576 DOI: 10.1016/j.biopsycho.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Light regulates both image- and various non-image forming responses in humans, including acute effects on attention and affect. To advance the understanding of light's immediate effects, this systematic review describes the acute effects of monochromatic/narrow bandwidth and polychromatic white light during daytime on distinct aspects of attention (alertness, sustained attention, working memory, attentional control and flexibility), and measures of affect (self-report measures, performance-based tests, psychophysiological measures) in healthy, adult human subjects. Original, peer-reviewed (quasi-) experimental studies published between 2000 and May 2024 were included according to predefined inclusion and exclusion criteria. Study quality was assessed, and results were synthesized across aspects of attention and affect and grouped according to light interventions; monochromatic/narrowband-width or polychromatic white light (regular white, bright white, and white with high correlated color temperature (CCT)). Results from included studies (n = 62) showed that alertness and working memory were most affected by light. Electroencephalographic markers of alertness improved the most with exposure to narrow bandwidth long-wavelength light, regular white, and white light with high CCT. Self-reported alertness and measures of working memory improved the most with bright white light. Results from studies testing the acute effects on sustained attention and attentional control and flexibility were inconclusive. Performance-based and psychophysiological measures of affect were only influenced by narrow bandwidth long-wavelength light. Polychromatic white light exerted mixed effects on self-reported affect. Studies were strongly heterogeneous in terms of light stimuli characteristics and reporting of light stimuli and control of variables influencing light's acute effects.
Collapse
Affiliation(s)
| | | | - Lin Sørensen
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Katharina Wulff
- Department of Molecular Biology, Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Norway
| | | | - Endre Visted
- Department of Clinical Psychology, University of Bergen, Norway
| |
Collapse
|
3
|
Zangen E, Hadar S, Lawrence C, Obeid M, Rasras H, Hanzin E, Aslan O, Zur E, Schulcz N, Cohen-Hatab D, Samama Y, Nir S, Li Y, Dobrotvorskia I, Sabbah S. Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nat Commun 2024; 15:5501. [PMID: 38951486 PMCID: PMC11217280 DOI: 10.1038/s41467-024-49794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.
Collapse
Affiliation(s)
- Elyashiv Zangen
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shira Hadar
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Christopher Lawrence
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Mustafa Obeid
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Hala Rasras
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ella Hanzin
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ori Aslan
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Eyal Zur
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Nadav Schulcz
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Daniel Cohen-Hatab
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yona Samama
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Sarah Nir
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yi Li
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Irina Dobrotvorskia
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
4
|
Haghani M, Abbasi S, Abdoli L, Shams SF, Baha'addini Baigy Zarandi BF, Shokrpour N, Jahromizadeh A, Mortazavi SA, Mortazavi SMJ. Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. J Biomed Phys Eng 2024; 14:213-228. [PMID: 39027713 PMCID: PMC11252550 DOI: 10.31661/jbpe.v0i0.2106-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 07/20/2024]
Abstract
Research conducted over the years has established that artificial light at night (ALAN), particularly short wavelengths in the blue region (~400-500 nm), can disrupt the circadian rhythm, cause sleep disturbances, and lead to metabolic dysregulation. With the increasing number of people spending considerable amounts of time at home or work staring at digital screens such as smartphones, tablets, and laptops, the negative impacts of blue light are becoming more apparent. While blue wavelengths during the day can enhance attention and reaction times, they are disruptive at night and are associated with a wide range of health problems such as poor sleep quality, mental health problems, and increased risk of some cancers. The growing global concern over the detrimental effects of ALAN on human health is supported by epidemiological and experimental studies, which suggest that exposure to ALAN is associated with disorders like type 2 diabetes, obesity, and increased risk of breast and prostate cancer. Moreover, several studies have reported a connection between ALAN, night-shift work, reduced cognitive performance, and a higher likelihood of human errors. The purpose of this paper is to review the biological impacts of blue light exposure on human cognitive functions and vision quality. Additionally, studies indicating a potential link between exposure to blue light from digital screens and increased risk of breast cancer are also reviewed. However, more research is needed to fully comprehend the relationship between blue light exposure and adverse health effects, such as the risk of breast cancer.
Collapse
Affiliation(s)
- Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Abdoli
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Shams
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nasrin Shokrpour
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Jahromizadeh
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
7
|
Sabbah S, Worden MS, Laniado DD, Berson DM, Sanes JN. Luxotonic signals in human prefrontal cortex as a possible substrate for effects of light on mood and cognition. Proc Natl Acad Sci U S A 2022; 119:e2118192119. [PMID: 35867740 PMCID: PMC9282370 DOI: 10.1073/pnas.2118192119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael S. Worden
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Dimitrios D. Laniado
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Jerome N. Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Center for Neurorestoration and Neurotechnology, Veterans Affairs Providence Healthcare System, Providence, RI 02908
| |
Collapse
|
8
|
Siraji MA, Kalavally V, Schaefer A, Haque S. Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review. Front Psychol 2022; 12:765750. [PMID: 35069337 PMCID: PMC8766646 DOI: 10.3389/fpsyg.2021.765750] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
This paper reports the results of a systematic review conducted on articles examining the effects of daytime electric light exposure on alertness and higher cognitive functions. For this, we selected 59 quantitative research articles from 11 online databases. The review protocol was registered with PROSPERO (CRD42020157603). The results showed that both short-wavelength dominant light exposure and higher intensity white light exposure induced alertness. However, those influences depended on factors like the participants' homeostatic sleep drive and the time of day the participants received the light exposure. The relationship between light exposure and higher cognitive functions was not as straightforward as the alerting effect. The optimal light property for higher cognitive functions was reported dependent on other factors, such as task complexity and properties of control light. Among the studies with short-wavelength dominant light exposure, ten studies (morning: 3; afternoon: 7) reported beneficial effects on simple task performances (reaction time), and four studies (morning: 3; afternoon: 1) on complex task performances. Four studies with higher intensity white light exposure (morning: 3; afternoon: 1) reported beneficial effects on simple task performance and nine studies (morning: 5; afternoon: 4) on complex task performance. Short-wavelength dominant light exposure with higher light intensity induced a beneficial effect on alertness and simple task performances. However, those effects did not hold for complex task performances. The results indicate the need for further studies to understand the influence of short-wavelength dominant light exposure with higher illuminance on alertness and higher cognitive functions.
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Alexandre Schaefer
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Shamsul Haque
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Abstract
People are constantly exposed to blue light while engaging in work. It is thus crucial to understand if vast exposure to blue light influences cognitive control, which is essential for working efficiently. Previous studies proposed that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs), a newly discovered photoreceptor that is highly sensitive to blue light, could modulate non-image forming functions. Despite studies that showed blue light (or ipRGCs) enhances brain activations in regions related to cognitive control, how exposure to blue light changes our cognitive control behaviorally remains elusive. We examined whether blue light influences cognitive control through three behavioral tasks in three studies: the sustained attention to response task (SART), the task-switching paradigm, and the Stroop task. Classic effects of the SART, switch cost, and the Stroop effect were found, but no differences were observed in results of different background lights across the six experiments. Together, we conclude that these domains of cognitive control are not influenced by blue light and ipRGCs, and whether the enhancement of blue light on brain activities extends to the behavioral level should be carefully re-examined.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yun-Chen Tu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Blue-light effects on saccadic eye movements and attentional disengagement. Atten Percept Psychophys 2021; 83:1713-1728. [PMID: 33751450 DOI: 10.3758/s13414-021-02250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
People are constantly exposed to high-energy blue light as they spend considerable amounts of time reading and browsing materials on electronic products like computers and cellphones. Recent studies suggest that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs)-a newly discovered type of photoreceptor shown to be particularly sensitive to blue light-activates brain regions related to eye movements and attentional orienting (e.g., frontal eye fields). It remains unclear, however, whether and how blue light affects eye movements and attention behaviorally. We examined this by adopting the gap paradigm in which participants made saccades to a peripheral target as quickly and accurately as possible while the fixation sign vanished (i.e., the gap condition) or remained visible. Participants were exposed to blue and orange light on two separate days. Faster saccade latency under blue light was found across two experiments, and the results indicate that blue light shortened saccade latency when attention and eye movements operate simultaneously. Our findings provide evidence for the blue-light facilitatory effect on eye movements and attentional disengagement, and suggest that blue light can enhance the speed of saccadic eye movements.
Collapse
|
11
|
Chellappa SL, Bromundt V, Frey S, Cajochen C. Age-related neuroendocrine and alerting responses to light. GeroScience 2021; 43:1767-1781. [PMID: 33638088 DOI: 10.1007/s11357-021-00333-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
Aging is associated with sleep and circadian alterations, which can negatively affect quality of life and longevity. Importantly, the age-related reduction in light sensitivity, particularly in the short-wavelength range, may underlie sleep and circadian alterations in older people. While evidence suggests that non-image-forming (NIF) light responses may diminish in older individuals, most laboratory studies have low sample sizes, use non-ecological light settings (e.g., monochromatic light), and typically focus on melatonin suppression by light. Here, we investigated whether NIF light effects on endogenous melatonin levels and sleep frontal slow-wave activity (primary outcomes), and subjective sleepiness and sustained attention (secondary outcomes) attenuate with aging. We conducted a stringently controlled within-subject study with 3 laboratory protocols separated by ~ 1 week in 31 young (18-30 years; 15 women) and 16 older individuals (55-80 years; eight women). Each protocol included 2 h of evening exposure to commercially available blue-enriched polychromatic light (6500 K) or non-blue-enriched light (3000 K or 2500 K) at low levels (~ 40 lx, habitual in evening indoor settings). Aging significantly affected the influence of light on endogenous melatonin levels, subjective sleepiness, sustained attention, and frontal slow-wave activity (interaction: P < 0.001, P = 0.004, P = 0.007, P = 0.001, respectively). In young individuals, light exposure at 6500 K significantly attenuated the increase in endogenous melatonin levels, improved subjective sleepiness and sustained attention performance, and decreased frontal slow-wave activity in the beginning of sleep. Conversely, older individuals did not exhibit signficant differential light sensitivity effects. Our findings provide evidence for an association of aging and reduced light sensitivity, with ramifications to sleep, cognition, and circadian health in older people.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, 221 Longwood Avenue, 039 BLI, Boston, MA, 02115, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
13
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
14
|
Chellappa SL, Bromundt V, Frey S, Schlote T, Goldblum D, Cajochen C, Reichert CF. Intraocular cataract lens replacement and light exposure potentially impact procedural learning in older adults. J Sleep Res 2020; 30:e13043. [PMID: 32285996 DOI: 10.1111/jsr.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
Abstract
Procedural learning declines with age and appropriately timed light exposure can improve cognitive performance in older individuals. Because cataract reduces light transmission and is associated with cognitive decline in older adults, we explored whether lens replacement (intraocular blue-blocking [BB] or UV-only blocking) in older patients with cataracts enhances the beneficial effects of light on procedural learning. Healthy older participants (n = 16) and older patients with post-cataract surgery (n = 13 with BB or UV lens replacement) underwent a randomized within-subject crossover laboratory design with three protocols. In each protocol, 3.5 hr dim-dark adaptation was followed by 2 hr evening blue-enriched (6,500K) or non-blue-enriched light exposure (3,000K or 2,500K), 30 min dim post-light, ~8 hr sleep and 2 hr morning dim light. Procedural learning was assessed by the alternating serial reaction time task (ASRT), as part of a larger test battery. Here, ASRT performance was indexed by type of trial (random or sequence) and sequence-specific (high or low probability) measures. During evening light exposure, we observed a significant effect of the interaction of "group" versus "light condition" on the type of trial (p = .04; p = .16; unadjusted and adjusted p-values, respectively) and sequence-specific learning (p = .04; p = .16; unadjusted and adjusted p-values, respectively), whereby patients with UV lens replacement performed better than patients with BB lens or non-cataract controls, during blue-enriched light exposure. Lens replacement in patients with cataracts may potentially be associated with beneficial effects of blue light on procedural learning. Thus, optimizing spectral lens transmission in patients with cataracts may help improve specific aspects of cognitive function, such as procedural learning.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Vivien Bromundt
- Department of Neurology, Sleep Wake Epilepsy Center, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT. Part І. THE CONSEQUENCES OF IRRADIATION OF THE PARTICIPANTS OF THE LIQUIDATION OF THE CHORNOBYL ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:90-129. [PMID: 33361831 DOI: 10.33145/2304-8336-2020-25-90-129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, includinginterventional radiological procedures, long-term space flights, and radiation accidents. OBJECTIVE The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. MATERIALS AND METHODS In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM - theleading institution in the field of studying the medical effects of ionizing radiation - were used. RESULTS The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts,radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerativediseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and inchildhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. CONCLUSIONS The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visualsystem and central nervous system (CNS) radiosensitivity is given. The necessity for further international studieswith adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation riskcohorts is justified. The first part of the study currently being published presents the results of the study of theeffects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP).
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Street, Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| |
Collapse
|
16
|
Chellappa SL, Bromundt V, Frey S, Steinemann A, Schmidt C, Schlote T, Goldblum D, Cajochen C. Association of Intraocular Cataract Lens Replacement With Circadian Rhythms, Cognitive Function, and Sleep in Older Adults. JAMA Ophthalmol 2019; 137:878-885. [PMID: 31120477 DOI: 10.1001/jamaophthalmol.2019.1406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Cataract is associated with a progressive decline in light transmission due to the clouding and yellowing of the natural crystalline lens. While the downstream effects of aging lenses include long-term disruption of circadian rhythms, cognitive function, and sleep regulation, it remains unknown whether there is an association of intraocular cataract lens (IOLs) replacement with circadian rhythms, cognition, and sleep. Objective To test whether IOL replacement (blue blocking [BB] or ultraviolet [UV] only blocking) in older patients with previous cataract is associated with the beneficial light effects on the circadian system, cognition, and sleep regulation. Design, Setting, and Participants Cross-sectional study at the Centre for Chronobiology, University of Basel in Switzerland from February 2012 to April 2014, analyzed between June 2012 and September 2018. Sixteen healthy older controls and 13 patients with previous cataract and IOL replacement participated without medication and no medical and sleep comorbidities. Exposures Three and a half hours of prior light control (dim-dark adaptation), followed by 2 hours of evening blue-enriched (6500 K) or non-blue-enriched light exposure (3000 K and 2500 K), 30 minutes in dim post-light exposure, 8 hours of sleep opportunity, and 2 hours of morning dim light following sleep. Main Outcomes and Measures Salivary melatonin, cognitive tests, and sleep structure and electroencephalographic activity to test the association of IOLs with markers of circadian rhythmicity, cognitive performance, and sleep regulation, respectively. Results The participants included 16 healthy older controls with a mean (standard error of the mean [SEM]) of 63.6 (5.6) years; 8 women and 13 patients with previous cataract (mean [SEM] age, 69.9 [5.2] years; 10 women); 5 patients had UV IOLs and 8 had BB IOLs. Patients with previous cataract and IOLs had an attenuated increase in melatonin levels during light exposure (mean [SEM] increase in the BB group: 23.3% [2.6%] and in the UV lens group: 19.1% [2.1%]) than controls (mean [SEM] increase, 48.8% [5.2%]) (difference between means, 27.7; 95% CI, 15.4%-41.7%; P < .001). Cognitive function, indexed by sustained attention performance, was improved in patients with UV lens (mean [SEM], 276.9 [11.1] milliseconds) compared with patients with BB lens (mean [SEM], 348.3 [17.8] milliseconds) (difference between means, 71.4; 95% CI, 29.5%-113.1%; P = .002) during light exposure and in the morning after sleep. Patients with UV lens had increased slow-wave sleep (mean [SEM] increase, 13% [3.4%]) compared with controls (mean [SEM] increase, 5.2% [0.8%]) (percentage of total sleep time; difference between means, 7.9; 95% CI, 2.4%-13.4%; P = .02) and frontal non-rapid eye movement slow-wave activity (0.75-4.5 Hz) during the first sleep cycle (mean [SEM], 79.9 [13.6] μV2/Hz) compared with patients with BB lens (mean [SEM], 53.2 [10.7] μV2/Hz) (difference between means, 26.7; 95% CI, 9.2-48.9; P = .03). Conclusions and Relevance These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with previous cataract may minimize the adverse age-related effects on circadian rhythms, cognition, and sleep.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre/In Vivo Imaging Unit, University of Liège, Liège, Belgium
| | | | - David Goldblum
- University Eye Clinic in Basel, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Steady-State Pupil Size Varies with Circadian Phase and Sleep Homeostasis in Healthy Young Men. Clocks Sleep 2019; 1:240-258. [PMID: 33089167 PMCID: PMC7445830 DOI: 10.3390/clockssleep1020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pupil size informs about sympathovagal balance as well as cognitive and affective processes, and perception. It is also directly linked to phasic activity of the brainstem locus coeruleus, so that pupil measures have gained recent attention. Steady-state pupil size and its variability have been directly linked to sleep homeostasis and circadian phase, but results have been inconsistent. Here, we report robust changes in steady-state pupil size during 29 h of continuous wakefulness in healthy young men (N = 20; 18–30 years old) maintained in dim-light in strictly controlled constant routine conditions. These variations were associated with variations in motivation and sustained attention performance. Pupil size variability did not significantly change during the protocol. Yet, pupil size variability was linearly associated with subjective fatigue, sociability, and anguish. No associations were found between neither steady-state pupil size nor pupil size variability, and objective EEG measure of alertness and subjective sleepiness. Our data support therefore the notion that, compared with its variability, steady-state pupil size is strongly influenced by the concomitant changes in sleep need and circadian phase. In addition, steady-state pupil size appears to be related to motivation and attention, while its variability may be related to separate affective dimensions and subjective fatigue.
Collapse
|