1
|
Perez ES, Ribeiro RA, Zanella BT, Almeida FLA, Blasco J, Garcia de la Serrana D, Dal-Pai-Silva M, Duran BO. Proteome of amino acids or IGF1-stimulated pacu muscle cells offers molecular insights and suggests FN1B and EIF3C as candidate markers of fish muscle growth. Biochem Biophys Res Commun 2025; 757:151648. [PMID: 40107112 DOI: 10.1016/j.bbrc.2025.151648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Study of fish skeletal muscle is essential to understand physiological or metabolic processes, and to develop programs searching for increased muscle mass and meat production. Amino acids (AA) and IGF1 stimulate processes that lead to muscle growth, but their signaling pathways and molecular regulation need further clarification in fish. We obtained the proteome of pacu (Piaractus mesopotamicus) cultured muscle cells treated with AA or IGF1, which induced the differential abundance of 67 and 53 proteins, respectively. Enrichment analyses showed that AA modulated histone methylation, cell differentiation, and metabolism, while IGF1 modulated ATP production and protein synthesis. In addition, we identified molecular networks with candidate markers that commonly regulate fish muscle cells: FN1B and EIF3C, respectively up- and down-regulated by both treatments. FN1B was related to cell proliferation, protein synthesis, and muscle repair, while EIF3C connected with negative regulators of muscle growth. Their gene expression was evaluated in pacu and Nile tilapia (Oreochromis niloticus) after nutrient manipulation, with fn1b increased during refeeding and eif3c increased during fasting in both species. Our work helps clarify the molecular regulation by AA or IGF1 and suggests that FN1B and EIF3C could be potential stimulatory and inhibitory biomarkers of fish muscle growth.
Collapse
Affiliation(s)
- Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafaela A Ribeiro
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Bruna Tt Zanella
- Department of Morphophysiology, Institute of Biosciences, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Fernanda LA Almeida
- Department of Morphological Sciences, Center of Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Os Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Marhuenda-Egea FC, Sanchez-Jerez P. Metabolomic Insights into Wild and Farmed Gilthead Seabream ( Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations. Molecules 2025; 30:770. [PMID: 40005081 PMCID: PMC11857973 DOI: 10.3390/molecules30040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study explores the metabolic adaptations and quality differences between wild and farmed gilthead seabream (Sparus aurata), with a particular focus on lipid composition and metabolite profiles. These differences are examined in the context of varying environmental conditions, feeding regimes, and post-harvest processes. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy was employed to perform the metabolomic analysis. RESULTS Farmed seabream exhibited higher lipid content and PUFA levels (e.g., DHA and EPA) due to aquaculture diets, while wild seabream showed lower lipid concentrations and elevated levels of polar metabolites. Metabolic trade-offs in wild seabream reflected greater physical activity and environmental adaptation. The K-value indicated faster spoilage in farmed seabream, particularly from Greece, linked to handling conditions. HR-MAS provided precise, reproducible results, allowing direct quantification of key metabolites without altering sample integrity. METHODS HR-MAS NMR was employed to analyze muscle tissue from wild and farmed seabream (produced in Spain and imported from Greece), providing high-resolution spectra without requiring sample extraction. Metabolite quantification included polyunsaturated fatty acids (PUFAs), creatine, taurine, lactate, and trimethylamine N-oxide (TMAO). Freshness was monitored using the K-value index, calculated from ATP derivative levels in samples stored at 4 °C. CONCLUSIONS The study highlights the influence of diet and environment on the metabolic profiles of seabream. HR-MAS NMR emerges as a robust method for metabolomic studies and freshness assessment. Findings emphasize the potential for dietary adjustments to optimize aquaculture practices and fish quality while underscoring the importance of sustainable production strategies. Further research into lipid metabolism genes and environmental factors is recommended to deepen understanding of these adaptations.
Collapse
Affiliation(s)
- Frutos C. Marhuenda-Egea
- Department of Biochemistry and Molecular Biology and Agricultural Chemistry and Edafology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Pablo Sanchez-Jerez
- Department of Marine Sciences and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain;
| |
Collapse
|
3
|
Wang L, Wang L, Liu C, Ma F, Huang J, Jin Z, Zhang L, Feng D, Zhang M, Yu M, Jiang H, Qiao Z. Multi-omics reveals the molecular mechanism of muscle quality changes in common carp (Cyprinus carpio) under two aquaculture systems. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101290. [PMID: 38996693 DOI: 10.1016/j.cbd.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Preliminary experiments in our laboratory have demonstrated that common carp (Cyprinus carpio) cultivated for two months in land-based container recirculating aquaculture systems (C-RAS) exhibit superior muscle quality compared to those raised in traditional pond systems (TP). To elucidate the molecular mechanisms underlying muscle quality variations in common carp cultured under two aquaculture systems, transcriptomic and metabolomic analyses were performed on muscle tissues of specimens aged 11 to 23 months. Comparison of muscle histological sections between the two groups indicated a significantly lower long diameter of muscle fibers in the C-RAS group compared to the TP group (P < 0.01). Conversely, the muscle fiber density was significantly higher in the C-RAS group than in the TP group (P < 0.05). Transcriptomic and metabolomic analyses identified 3390 differentially expressed genes (DEGs)-1558 upregulated and 1832 downregulated-and 181 differentially expressed metabolites (DEMs)-124 upregulated and 57 downregulated-between the groups. Based on integrated transcriptomic and metabolomic analyses, the significant differences focus on metabolic pathways involving glycolysis/gluconeogenesis, arginine and proline metabolism, arginine biosynthesis, and purine metabolism. The study revealed that the muscle quality of common carp in two aquaculture systems is primarily regulated through improvements in energy metabolism, amino acid metabolism, fatty acid metabolism, and purine metabolism. These metabolic processes play significant roles in promoting muscle fiber hyperplasia and hypertrophy, enhancing muscle flavor, and increasing muscle antioxidant capacity. This study provides new insights into the molecular and metabolic pathways that control muscle quality in common carp under different environmental factors.
Collapse
Affiliation(s)
- Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China.
| | - Lingran Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Chang Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Fangran Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jintai Huang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhan Jin
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lan Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Di Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Miao Yu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| |
Collapse
|
4
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Schrama D, Raposo de Magalhães C, Cerqueira M, Carrilho R, Revets D, Kuehn A, Engrola S, Rodrigues PM. Fish Processing and Digestion Affect Parvalbumins Detectability in Gilthead Seabream and European Seabass. Animals (Basel) 2022; 12:ani12213022. [PMID: 36359146 PMCID: PMC9654892 DOI: 10.3390/ani12213022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Consumption of aquatic food, including fish, accounts for 17% of animal protein intake. However, fish consumption might also result in several side-effects such as sneezing, swelling and anaphylaxis in sensitized consumers. Fish allergy is an immune reaction to allergenic proteins in the fish muscle, for instance parvalbumin (PV), considered the major fish allergen. In this study, we characterize PV in two economically important fish species for southern European aquaculture, namely gilthead seabream and European seabass, to understand its stability during in vitro digestion and fish processing. This information is crucial for future studies on the allergenicity of processed fish products. PVs were extracted from fish muscles, identified by mass spectrometry (MS), and detected by sandwich enzyme-linked immunosorbent assay (ELISA) after simulated digestion and various food processing treatments. Secondary structures were determined by circular dichroism (CD) after purification by anion exchange and gel filtration chromatography. In both species, PVs presented as α-helical and β-sheet structures, at room temperature, were shown to unfold at boiling temperatures. In European seabass, PV detectability decreased during the simulated digestion and after 240 min (intestinal phase) no detection was observed, while steaming showed a decrease (p < 0.05) in PVs detectability in comparison to raw muscle samples, for both species. Additionally, freezing (−20 °C) for up to 12 months continued to reduce the detectability of PV in tested processing techniques. We concluded that PVs from both species are susceptible to digestion and processing techniques such as steaming and freezing. Our study obtained preliminary results for further research on the allergenic potential of PV after digestion and processing.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
7
|
Weng M, Zhang W, Zhang Z, Tang Y, Lai W, Dan Z, Liu Y, Zheng J, Gao S, Mai K, Ai Q. Effects of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of juvenile large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 128:50-59. [PMID: 35843522 DOI: 10.1016/j.fsi.2022.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A 70-day feeding trial was conducted to investigate effects of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of juvenile large yellow croaker (Larimichthys crocea) with initial weight of 6.04 ± 0.08 g. A formulated diet containing approximately 42% crude protein and 12.5% crude lipid was used as the control diet (CON). The other three experimental diets were formulated with supplementation of 0.2%, 0.4% and 0.6% lysolecithin based on the control diet, respectively. Results showed that weight gain rate (WGR) and specific growth rate (SGR) significantly increased in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05). Fish fed diets with 0.4% and 0.6% lysolecithin had notably higher lipid content in muscle than that in the control diet (P < 0.05). When fish were fed diets with lysolecithin, serum high-density lipoprotein cholesterol (HDL-c) content was notably higher than that in the control diet (P < 0.05), while fish fed the diet with 0.6% lysolecithin had a significant lower serum low-density lipoprotein cholesterol (LDL-c) content than that in the control diet (P < 0.05). Meanwhile, serum aspartate transaminase (AST) and alanine transaminase (ALT) activities in fish fed diets with lysolecithin were remarkably lower than those in the control diet (P < 0.05). With the increase of dietary lysolecithin from 0.2% to 0.6%, mRNA expression of stearoyl-coenzyme A desaturase 1 (scd1), diacylglycerol acyltransferase 2 (dgat2) and sterol-regulatory element binding protein 1 (srebp1) showed decreasing trends. Furthermore, mRNA expression of carnitine palmitoyl transferase 1 (cpt1) and lipoprotein lipase (lpl) among each dietary lysolecithin treatment were significantly higher than those in the control diet (P < 0.05). In terms of inflammation, mRNA expression of tumor necrosis factor α (tnf-α) and interleukin-1 β (il-1β) were significantly down-regulated in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05), while the mRNA expression of interleukin-10 (il-10) was significantly higher than that in the control diet (P < 0.05). In conclusion, dietary lysolecithin could promote the growth performance, improve hepatic lipid metabolism and regulate inflammation response in juvenile large yellow croaker, and the optimal supplement level of lysolecithin was approximately 0.4% in this study.
Collapse
Affiliation(s)
- Miao Weng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Wencong Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Zhijie Dan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Shengnan Gao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
8
|
Schrama D, Czolk R, Raposo de Magalhães C, Kuehn A, Rodrigues PM. Fish Allergenicity Modulation Using Tailored Enriched Diets—Where Are We? Front Physiol 2022; 13:897168. [PMID: 35694394 PMCID: PMC9174421 DOI: 10.3389/fphys.2022.897168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of β-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
- *Correspondence: Pedro M. Rodrigues,
| |
Collapse
|
9
|
|
10
|
Schrama D, Raposo de Magalhães C, Cerqueira M, Carrilho R, Farinha AP, Rosa da Costa AM, Gonçalves A, Kuehn A, Revets D, Planchon S, Engrola S, Rodrigues PM. Effect of creatine and EDTA supplemented diets on European seabass (Dicentrarchus labrax) allergenicity, fish muscle quality and omics fingerprint. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100941. [PMID: 34814088 DOI: 10.1016/j.cbd.2021.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023]
Abstract
The relatively easy access to fish worldwide, alongside the increase of aquaculture production contributes to increased fish consumption which result in higher prevalence of respective allergies. Allergies to fish constitute a significant concern worldwide. β-parvalbumin is the main elicitor for IgE-mediated reactions. Creatine, involved in the muscle energy metabolism, and ethylenediamine tetraacetic acid (EDTA), a calcium chelator, are potential molecules to modulate parvalbumin. The purpose of this study was to test creatine (2, 5 and 8%) and EDTA (1.5, 3 and 4.5%) supplementation in fish diets to modulate β-parvalbumin expression and structure and its allergenicity in farmed European seabass (Dicentrarchus labrax) while assessing its effects on the end-product quality. Fish welfare and muscle quality parameters were evaluated by plasma metabolites, rigor mortis, muscle pH and sensory and texture analysis. Proteomics was used to assess alterations in muscle proteome profile and metabolic fingerprinting by Fourier transform infrared spectroscopy was used to assess the liver metabolic profile. In addition, IgE-reactivity to parvalbumin was analysed using fish allergic patient sera. Metabolic fingerprinting of liver tissue revealed no major alterations in infrared spectra with creatine supplementation, while with EDTA, only absorption bands characteristic of lipids were altered. Comparative proteomics showed up regulation of (tropo) myosin and phosphoglycerate mutase 2 with Creatine supplementation. In the case of EDTA proteomics showed up regulation of proteins involved in cellular and ion homeostasis. Allergenicity seems not to be modulated with creatine or EDTA supplementation as no decreased expression levels were found and IgE-binding reactivity showed no quantitative differences.
Collapse
Affiliation(s)
- Denise Schrama
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Cláudia Raposo de Magalhães
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Marco Cerqueira
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Raquel Carrilho
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana Paula Farinha
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana M Rosa da Costa
- CIQA, Algarve Chemistry Research Centre, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Amparo Gonçalves
- IPMA I.P., Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, Lisbon, Portugal
| | - Annette Kuehn
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, Rue Henri Koch, Esch-sur-Alzette, Luxembourg
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sofia Engrola
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Pedro M Rodrigues
- Universidade do Algarve, Campus de Gambelas, Faro, Portugal; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
11
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
|
13
|
Cheng X, Li M, Leng X, Wen H, Wu F, Yu L, Jiang M, Lu X, Gao W, Zhang W, Tian J. Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Food Chem 2021; 354:129498. [PMID: 33773482 DOI: 10.1016/j.foodchem.2021.129498] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Creatine improves flesh quality on mammalian but studies on crustaceans are scarce. In the present study, diets with six levels of creatine (1.23, 2.58, 5.12, 8.28, 14.12, 24.49 g kg-1 diet) were hand-fed to juvenile Litopenaeus vannamei (IBW: 1.50 ± 0.02 g) reared in freshwater for 46 days. Results showed creatine supplementation did not affect the growth performance (FBW: 17.04 ± 1.28 g) or the content of guanidinoacetic acid in muscle and hepatopancreas whereas significantly increased muscular creatine content. Diet with 8.28 g kg-1 creatine significantly increased muscular hardness and chewiness by decreasing myofiber diameter and increasing myofiber density. Additionally, creatine downregulated the mRNA expression of fast sMyHC1, sMyHC2, sMyHC6a and upregulated slow sMyHC5 and sMyHC15 mRNA expression. Muscular protein, collagen, total amino acid and flavor amino acid contents increased with creatine supplementation. In conclusion, the diet with 8.28 g kg-1 creatine improved the flesh quality of L. vannamei.
Collapse
Affiliation(s)
- Xiaoli Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Animal Science, Yangtze University, Jingzhou 434024, China
| | - Meifeng Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiangjun Leng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Weihua Gao
- College of Animal Science, Yangtze University, Jingzhou 434024, China
| | - Wenbing Zhang
- College of Animal Science, Yangtze University, Jingzhou 434024, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
14
|
Tan J, Hu X, Lü A, Liu X, Sun J, Niu Y. Skin proteome profiling of tongue sole (Cynoglossus semilaevis) challenged with Vibrio vulnificus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1052-1066. [PMID: 32950679 DOI: 10.1016/j.fsi.2020.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Vibrio vulnificus is a major pathogen of cultured Cynoglossus semilaevis and results in skin ulceration and haemorrhage, but the proteomic mechanism of skin immunity against V. vulnificus remains unclear. In this study, we investigated the histopathology and skin immune response in C. semilaevis with V. vulnificus infection at the protein levels, the differential proteomic profiling of its skin was examined by using iTRAQ and LC-MS/MS analyses. A total of 951 proteins were identified in skin, in which 134 and 102 DEPs were screened at 12 and 36 hpi, respectively. Selected eleven immune-related DEPs (pvβ, Hsp71, MLC1, F2, α2ML, HCII, C3, C5, C8β, C9 and CD59) were verified for their immune roles in the V. vulnificus infection via using qRT-PCR assay. KEGG enrichment analysis revealed that most of the identified immune proteins were significantly associated with complement and coagulation cascades, antigen processing and presentation, salivary secretion and phagosome pathways. To our knowledge, this study is the first to describe the proteome response of C. semilaevis skin against V. vulnificus infection. The outcome of this study contributed to provide a new perspective for understanding the molecular mechanism of local skin mucosal immunity, and facilitating the development of novel mucosal vaccination strategies in fish.
Collapse
Affiliation(s)
- Jing Tan
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiaoxue Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yuchen Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
The effect of pre-slaughter starvation on muscle protein degradation in sea bream (Sparus aurata): formation of ACE inhibitory peptides and increased digestibility of fillet. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
iTRAQ-based quantitative proteomic analysis of transgenic and non-transgenic maize seeds. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Current Trends in Proteomic Advances for Food Allergen Analysis. BIOLOGY 2020; 9:biology9090247. [PMID: 32854310 PMCID: PMC7563520 DOI: 10.3390/biology9090247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Food allergies are a global food challenge. For correct food labelling, the detection and quantification of allergens are necessary. However, novel product formulations and industrial processes produce new scenarios, which require much more technological developments. For this purpose, OMICS technologies, especially proteomics, seemed to be relevant in this context. This review summarises the current knowledge and studies that used proteomics to study food allergens. In the case of the allergenic proteins, a wide variety of isoforms, post-translational modifications and other structural changes during food processing can increase or decrease the allergenicity. Most of the plant-based food allergens are proteins with biological functions involved in storage, structure, and plant defence. The allergenicity of these proteins could be increased by the presence of heavy metals, air pollution, and pesticides. Targeted proteomics like selected/multiple reaction monitoring (SRM/MRM) have been very useful, especially in the case of gluten from wheat, rye and barley, and allergens from lentil, soy, and fruit. Conventional 1D and 2-DE immunoblotting have been further widely used. For animal-based food allergens, the widely used technologies are 1D and 2-DE immunoblotting followed by MALDI-TOF/TOF, and more recently LC-MS/MS, which is becoming useful to assess egg, fish, or milk allergens. The detection and quantification of allergenic proteins using mass spectrometry-based proteomics are promising and would contribute to greater accuracy, therefore improving consumer information.
Collapse
|
18
|
Nakharuthai C, Rodrigues PM, Schrama D, Kumkhong S, Boonanuntanasarn S. Effects of Different Dietary Vegetable Lipid Sources on Health Status in Nile Tilapia ( Oreochromis niloticus): Haematological Indices, Immune Response Parameters and Plasma Proteome. Animals (Basel) 2020; 10:E1377. [PMID: 32784430 PMCID: PMC7460521 DOI: 10.3390/ani10081377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of DLs, including palm oil (PO; an SFAs), linseed oil (LO; n-3 PUFAs) and soybean oil (SBO; n-6 PUFAs) on the health status of Nile tilapia (Oreochromis niloticus) during adulthood. Three experimental diets incorporating PO, LO or SBO were fed to adult Nile tilapia for a period of 90 days, and haematological and innate immune parameters were evaluated. Proteome analysis was also conducted to evaluate the effects of DLs on plasma proteins. The tested DLs had no significant effects on red blood cell (RBC) count, haematocrit, haemoglobin, and total immunoglobulin and lysozyme activity. Dietary LO led to increased alternative complement 50 activity (ACH50), and proteome analysis revealed that PO and SBO enhanced A2ML, suggesting that different DLs promote immune system via different processes. Dietary LO or SBO increased the expression of several proteins involved in coagulation activity such as KNG1, HRG and FGG. Increased HPX in fish fed with PO suggests that SFAs are utilised in heme lipid-oxidation. Overall, DLs with distinct fatty acids (FAs) affect several parameters corresponding to health status in Nile tilapia, and dietary LO and SBO seemed to strengthen health in this species.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Pedro M. Rodrigues
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Denise Schrama
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Suksan Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| |
Collapse
|
19
|
Klueber J, Schrama D, Rodrigues P, Dickel H, Kuehn A. Fish Allergy Management: From Component-Resolved Diagnosis to Unmet Diagnostic Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00235-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of review
Fish is a common elicitor of IgE-mediated food allergy. Fish includes a large variety of foods, in terms of species and food processing, with marked distinction in local diets around the globe. Fish-allergic patients present with phenotypic diversity and major differences in levels of clinical cross-reactivity, features that pose an important challenge for the clinical diagnosis and management.
Recent findings
Parvalbumin is the major fish allergen. However, a single molecule is not sufficient but several homologs, allergens different from parvalbumin and allergen extracts, are needed for IgE-based diagnosis.
Summary
Parvalbumin-specific IgE are markers for clinical cross-reactions. Added value is provided by IgE typing to parvalbumin homologs from distantly related fish. IgE co-sensitization profiles (parvalbumin, enolase, aldolase) are referred as severity markers. The allergen panel seems to be not yet complete why fish extracts still play a crucial role in serum IgE analysis. Further clinical validation of a multiplex approach in molecular fish allergy diagnosis is needed for striving to avoid unnecessary food restrictions and in a further sense, improved patient care.
Collapse
|
20
|
Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. Selenium deficiency induced an inflammatory response by the HSP60 - TLR2-MAPKs signalling pathway in the liver of carp. FISH & SHELLFISH IMMUNOLOGY 2019; 87:688-694. [PMID: 30769078 DOI: 10.1016/j.fsi.2019.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Selenium (Se) is one of the essential trace elements for immune regulation and antioxidant systems in fish growth. The dietary Se plays an important role in immune regulation and inflammation by regulating HSPs and TLRs in liver of many animals. The liver is an important digestive organ in carp. Liver damage can seriously affect the growth and survival of carp. This study was conducted to determine whether Se regulated liver inflammation by affecting HSPs-TLR2 signalling and the potential mechanisms of action in common carp. The gene was analysed by qPCR. The proteins of inflammatory factors were detected by ELISA. The others proteins were analysed by Western blot. The results indicated the Se concentrations in blood and liver tissues were significantly influenced by dietary Se. The Se deficiency increased the expression of HSP60 and TLR2 and the secretion of the proinflammatory factor TNF-α, IL-1β and IL-6, induced a low secretion of the anti-inflammatory TGF-β, but the Se supplements could transform these events. Further research showed that with the dose-dependently decrease of Se, the HSP60 expressions were increased, and the MAPKs pathway were significantly activated by the phosphorylation of p38, JNK and ERK in liver tissue and cell. The results provide evidence that Se deficiency induced and exacerbated inflammatory injury to the liver through the HSP60 and TLR2-MAPKs signalling pathways in carp.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Hui-Huang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zi-Gong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|