1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Lundqvist MH, Pereira MJ, Wiklund U, Hetty S, Eriksson JW. Autonomic nervous system responses to hypo- and hyperglycemia in type 2 diabetes and prediabetes. Eur J Endocrinol 2024; 191:499-508. [PMID: 39454629 DOI: 10.1093/ejendo/lvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE Previous research points to a role of the brain in the regulation of glucose and pathogenesis of type 2 diabetes (T2D) via modulation of counter-regulatory hormone secretion and activity in the autonomic nervous system (ANS). The aim of this study was to investigate glucose-dependent responses of catecholamines and ANS activity in individuals with T2D, prediabetes (PD), and normoglycemia (NG). DESIGN Cross-sectional. METHODS Individuals with T2D (n = 19, 7 men, HbA1c 49 mmol/mol), PD (n = 18, 8 men), and NG (n = 17, 3 men) underwent 1 stepwise hyperinsulinemic-euglycemic-hypoglycemic and 1 hyperglycemic clamp with repeated measurements of catecholamines, symptoms, heart rate variability (HRV), and hemodynamics. RESULTS The hypoglycemic response of adrenaline was augmented in T2D and PD vs NG (both P < .05), and there was a strong association with insulin resistance (P < .05 for M-value). In relation to achieved glucose levels in both clamps, noradrenaline exhibited a steeper rise during hypoglycemia in T2D vs NG and PD (both P < .05). There were trends toward more marked autonomic hypoglycemic symptoms in T2D vs PD and NG. By contrast, insulin resistance was associated with attenuated responses of heart rate and HRV indices PLF and PHF at the target glucose plateau of 2.7 mmol/L (P < .05), independent of BMI and HbA1c. CONCLUSION Alterations in glucose-dependent responses of counter-regulatory hormones and the ANS appear before, and probably contribute to, the onset of T2D. Together with other reported alterations in neuroendocrine pathways, the findings suggest that a maladaptation of the brain's responses to glucose fluctuations is important in T2D progression.
Collapse
Affiliation(s)
- Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Urban Wiklund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 85 Umeå, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
3
|
Rabotin A, Schwarz Y, Pinhas-Hamiel O, Amir O, Derazne E, Tzur D, Chodick G, Afek A, Tsur AM, Twig G. Stuttering in adolescence and the risk for dysglycemia in early adulthood. Diabetes Metab Res Rev 2024; 40:e3828. [PMID: 38859687 DOI: 10.1002/dmrr.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
AIMS To investigate the association between stuttering during adolescence and the onset of dysglycemia (prediabetes or type 2 diabetes) in early adulthood among men and women. MATERIALS AND METHODS This cohort study included Maccabi Health Services members assessed for mandatory military service at ages 16-19 during 1990-2019 and followed until 31 December 2020. Stuttering status was recorded in the baseline medical evaluation. Incident cases of dysglycemia were identified systematically using prediabetes and diabetes registries. Cox proportional hazard models were applied for men and women separately, adjusting for sociodemographics and medical status. RESULTS The study cohort comprised 866,304 individuals (55% men; 0.21% with stuttering) followed for a total of 12,696,250 person-years. During the study period, 7.6% (n = 36,603) of men and 9.0% (n = 34,723) of women were diagnosed with dysglycemia. The mean ages at diagnosis were 34 and 32 years for men and women, respectively. Women with stuttering exhibited the highest dysglycemia incidence rate (102.3 per 10,000 person-years) compared with the other groups (61.4, 69.0, and 51.9 per 10,000 person-years for women without stuttering, men with stuttering, and men without stuttering, respectively). For both men and women, those with stuttering showed an increased risk of being diagnosed with dysglycemia compared with those without (adjusted hazard ratios 1.18 [1.01-1.38] and 1.61 [1.15-2.26], respectively). The associations persisted in extensive sub-analyses. CONCLUSIONS Stuttering in adolescence is associated with a higher risk of dysglycemia in early adulthood for men and women. Screening and targeted prevention in this population, especially women, may be beneficial.
Collapse
Affiliation(s)
- Alexandra Rabotin
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yair Schwarz
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Pinhas-Hamiel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Ofer Amir
- Department of Communication Disorders, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Estela Derazne
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Tzur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Gabriel Chodick
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Arnon Afek
- Central Management, Sheba Medical Center, Ramat Gan, Israel
| | - Avishai M Tsur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Department of Medicine B, Sheba Medical Center, Ramat Gan, Israel
- Department of Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Twig
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat Gan, Israel
- Department of Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
4
|
Hecquet SK, Ballegaard S, Eldrup E, Hansen CS, Hansen TW, Harboe GS, Rossing P, Pichat CSH, Watt T, Gyntelberg F, Ørsted N, Faber JO. New Diabetic Treatment by Alleviation of Autonomic Nervous System Dysfunction Measured as Periosteal Pressure Sensitivity at Sternum Improves Empowerment, Treatment Satisfaction, and Self-Reported Health of People with Type 2 Diabetes: A Randomized Trial. Diabetes Metab Syndr Obes 2024; 17:2519-2531. [PMID: 38910915 PMCID: PMC11193981 DOI: 10.2147/dmso.s455216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Autonomic nervous system dysfunction (ANSD), for which presently no treatment exists, has a negative impact on prognosis in people with type 2 diabetes (T2D). Periosteal pressure sensitivity (PPS) on sternum may be a measure of autonomic nervous system dysfunction (ANSD). We tested if a non-pharmacological PPS-feedback-guided treatment program based on non-noxious sensory nerve stimulation, known to reduce PPS, changed empowerment, treatment satisfaction, and quality of life in people with T2D, compared to usual treatment. Patients and Methods Analysis of secondary endpoints in a single center, two-armed, parallel-group, observer-blinded, randomized controlled trial of individuals with T2D. Participants were randomized to non-pharmacological intervention as an add-on to treatment as usual. Endpoints were evaluated by five validated questionnaires: Diabetes specific Empowerment (DES-SF), Diabetes Treatment Satisfaction (DTSQ), quality of life (QOL) (WHO-5), clinical stress signs (CSS), and self-reported health (SF-36). Sample size calculation was based on the primary endpoint HbA1c. Results We included 144 participants, 71 allocated to active intervention and 73 to the control group. Active intervention compared to control revealed improved diabetes-specific empowerment (p = 0.004), DTSQ (p = 0.001), and SF-36 self-reported health (p=0.003) and tended to improve quality of life (WHO-5) (p = 0.056). The findings were clinically relevant with a Cohen's effect size of 0.5 to 0.7. Conclusion This non-pharmacological intervention, aiming to reduce PPS, and thus ANSD, improved diabetes-specific empowerment, treatment satisfaction, and self-reported health when compared to usual treatment. The proposed intervention may be a supplement to conventional treatment for T2D.
Collapse
Affiliation(s)
- Sofie Korsgaard Hecquet
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
- Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Søren Ballegaard
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Ebbe Eldrup
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Stevns Hansen
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
- Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tine Willum Hansen
- Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Sommer Harboe
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Peter Rossing
- Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Torquil Watt
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Finn Gyntelberg
- The National Research Center for the Working Environment, Copenhagen, Denmark
| | - Nanna Ørsted
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Jens Oscar Faber
- Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Nickel A, Buresh R, McLester C, Canino A, Wilner G, Vaughan K, Chung P, Kliszczewicz B. The relationship between heart rate variability and glucose clearance in healthy men and women. PLoS One 2024; 19:e0303346. [PMID: 38837971 DOI: 10.1371/journal.pone.0303346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
Heart rate variability (HRV) is a non-invasive indicator of the activity of the autonomic nervous system, which regulates many physiological functions including metabolism. The purpose of this study was to quantify the relationship between resting markers of HRV and oral glucose tolerance test (OGTT) response. Eighteen healthy individuals (10 males, 8 females, (23.8±2.9 years) underwent a 10-minute resting HRV recording. The final five minutes were evaluated via Kubios HRV Standard for: root mean square of successive differences (RMSSD), standard deviation of normal-to-normal sinus beats (SDNN), high frequency (HF), and low frequency (LF). A standard 2-hour OGTT was then administered. Glucose was measured via finger stick before, 30-minutes post, 1-hour post, and 2-hours post OGTT. Pearson correlations demonstrated that RMSSD, SDNN, HF and LF were strongly correlated to fasting blood glucose (FBG) for the group (p<0.05) but not for glucose area under the curve (AUC). When analyzed by sex, only males demonstrated significant correlations between AUC and RMSSD, SDNN, and LF (p<0.05). An independent samples t-test revealed no sex differences for FBG, AUC, RMSSD, SDNN, HF and LF. These findings provide new and interesting insights into the relationship of autonomic activity and glucose uptake, highlighting sex-based relationships.
Collapse
Affiliation(s)
- Abigail Nickel
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Robert Buresh
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Cherilyn McLester
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Andre Canino
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Gabe Wilner
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Keilah Vaughan
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Pedro Chung
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Brian Kliszczewicz
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia, United States of America
| |
Collapse
|
6
|
Yang T, Wu W, Liu X, Xiang B, Sun Q, Zhang S, Zhuang Y, Yin Z, Zhang Q, Cao Y, Ye H. Clinical Characteristics of Adipsic Diabetes Insipidus. Endocr Pract 2024; 30:141-145. [PMID: 38029928 DOI: 10.1016/j.eprac.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Adipsic diabetes insipidus (ADI) is a life-threatening disease. It is characterized by arginine vasopressin deficiency and thirst absence. Data about clinical characteristics of ADI were scarce. This study investigated the clinical features of hospitalized ADI patients. METHODS A retrospective study was conducted of hospitalized ADI patients admitted to the Endocrinology Department of Huashan Hospital between January 2014 and December 2021, and compared with central diabetes insipidus (CDI) patients with normal thirst. RESULTS During the study period, there were a total of 507 hospitalized CDI patients, among which 50 cases were ADI, accounting for 9.9%. Forty percent of ADI patients were admitted due to hypernatremia, but there were no admissions due to hypernatremia in the control group. The lesions of ADI patients were more likely to be located in the suprasellar area (100% vs 66%, P < .05). Higher prevalence of hypothalamic dysfunction (76% vs 8%, P < .001), central hypothyroidism (100% vs 90%, P = .031), hyperglycemia (66% vs 32%, P < .001), dyslipidemia (92% vs 71%, P = .006), and hyperuricemia (64% vs 37%, P = .003) was found in the ADI group than in the control group. The proportions of hypernatremia were higher in the ADI group both at admission and at discharge (90% vs 8%, 68% vs 8%, respectively, both with P < .001), contributing to higher prevalence of complications, such as renal insufficiency, venous thrombosis, and infection. CONCLUSION ADI patients were found with higher prevalence of hypernatremia, hypopituitarism, hypothalamic dysfunction, metabolic disorders, and complications, posing a great challenge for comprehensive management.
Collapse
Affiliation(s)
- Tingjun Yang
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China; School of Nursing, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; School of Life Sciences, Fudan University, Shanghai, China; College of Life Science, Inner Mongolia University, Inner Mongolia, China
| | - Boni Xiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanya Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Yin
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yanpei Cao
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lundqvist MH, Pereira MJ, Almby K, Hetty S, Eriksson JW. Regulation of the Cortisol Axis, Glucagon, and Growth Hormone by Glucose Is Altered in Prediabetes and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e675-e688. [PMID: 37708362 PMCID: PMC10795937 DOI: 10.1210/clinem/dgad549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
CONTEXT Insulin-antagonistic, counter-regulatory hormones have been implicated in the development of type 2 diabetes (T2D). OBJECTIVE In this cross-sectional study, we investigated whether glucose-dependent regulation of such hormones differ in individuals with T2D, prediabetes (PD), and normoglycemia (NG). METHODS Fifty-four individuals with or without T2D underwent one hyperinsulinemic-normoglycemic-hypoglycemic and one hyperglycemic clamp with repeated hormonal measurements. Participants with T2D (n = 19) were compared with a group-matched (age, sex, BMI) subset of participants without diabetes (ND, n = 17), and also with participants with PD (n = 18) and NG (n = 17). RESULTS In T2D vs ND, glucagon levels were higher and less suppressed during the hyperglycemic clamp whereas growth hormone (GH) levels were lower during hypoglycemia (P < .05). Augmented ACTH response to hypoglycemia was present in PD vs NG (P < .05), with no further elevation in T2D. In contrast, glucagon and GH alterations were more marked in T2D vs PD (P < .05).In the full cohort (n = 54), augmented responses of glucagon, cortisol, and ACTH and attenuated responses of GH correlated with adiposity, dysglycemia, and insulin resistance. In multilinear regressions, insulin resistance was the strongest predictor of elevated hypoglycemic responses of glucagon, cortisol, and ACTH. Conversely, fasting glucose and HbA1c were the strongest predictors of low GH levels during hypoglycemia and elevated, i.e. less suppressed glucagon levels during hyperglycemia, respectively. Notably, adiposity measures were also strongly associated with the responses above. CONCLUSIONS Altered counter-regulatory hormonal responses to glucose variations are observed at different stages of T2D development and may contribute to its progression by promoting insulin resistance and dysglycemia.
Collapse
Affiliation(s)
- Martin H Lundqvist
- Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria J Pereira
- Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Kristina Almby
- Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Susanne Hetty
- Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan W Eriksson
- Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
8
|
Pretz D, Heyward PM, Krebs J, Gruchot J, Barter C, Silcock P, Downes N, Rizwan MZ, Boucsein A, Bender J, Burgess EJ, Boer GA, Keerthisinghe P, Perry NB, Tups A. A dahlia flower extract has antidiabetic properties by improving insulin function in the brain. LIFE METABOLISM 2023; 2:load026. [PMID: 39872248 PMCID: PMC11749471 DOI: 10.1093/lifemeta/load026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 01/30/2025]
Abstract
Butein, a rare chalcone found in the toxic plant Toxicodendron vernicifluum, has been shown to regulate glucose homeostasis via inhibition of the nuclear factor kappa-B kinase subunit beta (IKKβ)/nuclear factor kappa B (NF-κB) pathway in the brain. Here, we investigated whether the nonpoisonous plant Dahlia pinnata could be a source of butein as a potential treatment for type 2 diabetes (T2D). In mice fed a high-fat diet (HFD) to induce glucose intolerance, an oral D. pinnata petal extract improved glucose tolerance at doses of 3.3 mg/kg body weight and 10 mg/kg body weight. Surprisingly, this effect was not mediated by butein alone but by butein combined with the closely related flavonoids, sulfuretin and/or isoliquiritigenin. Mechanistically, the extract improved systemic insulin tolerance. Inhibition of phosphatidylinositol 3-kinase to block insulin signaling in the brain abrogated the glucoregulatory effect of the orally administered extract. The extract reinstated central insulin signaling and normalized astrogliosis in the hypothalamus of HFD-fed mice. Using NF-κB reporter zebrafish to determine IKKβ/NF-κB activity, a potent anti-inflammatory action of the extract was found. A randomized controlled crossover clinical trial on participants with prediabetes or T2D confirmed the safety and efficacy of the extract in humans. In conclusion, we identified an extract from the flower petals of D. pinnata as a novel treatment option for T2D, potentially targeting the central regulation of glucose homeostasis as a root cause of the disease.
Collapse
Affiliation(s)
- Dominik Pretz
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Philip M Heyward
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jeremy Krebs
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- Department of Medicine, University of Otago, Wellington, Wellington South 6242, New Zealand
- Centre for Endocrine Diabetes and Obesity Research, Wellington Regional Hospital, Newtown, Wellington 6021, New Zealand
| | - Joel Gruchot
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Charles Barter
- Department of Medicine, University of Otago, Wellington, Wellington South 6242, New Zealand
| | - Pat Silcock
- Product Development Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Nerida Downes
- Product Development Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Mohammed Zubair Rizwan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Alisa Boucsein
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Julia Bender
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Elaine J Burgess
- Department of Chemistry, The New Zealand Institute for Plant and Food Research, University of Otago, Dunedin 9054, New Zealand
| | - Geke Aline Boer
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Pramuk Keerthisinghe
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Nigel B Perry
- Department of Chemistry, The New Zealand Institute for Plant and Food Research, University of Otago, Dunedin 9054, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Faber J, Ballegaard S, Ørsted N, Eldrup E, Karpatschof B, Gyntelberg F, Hecquet SK, Gjedde A. In Type 2 Diabetes Mellitus, normalization of hemoglobin A1c accompanies reduced sensitivity to pressure at the sternum. Front Neurosci 2023; 17:1067098. [PMID: 37389368 PMCID: PMC10303981 DOI: 10.3389/fnins.2023.1067098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 07/01/2023] Open
Abstract
Background The autonomic nervous system (ANS) maintains glucose homeostasis. While higher than normal glucose levels stimulate the ANS toward reduction, previous findings suggest an association between sensitivity to, or pain from, pressure at the chest bone (pressure or pain sensitivity, PPS) and activity of the ANS. A recent randomized controlled trial (RCT) of type 2 diabetes (T2DM) suggested that addition of an experimental, non-pharmacological intervention more effectively than conventional treatment lowered the levels of both PPS and HbA1c. Materials and analyses We tested the null hypothesis that conventional treatment (n = 60) would reveal no association between baseline HbA1c and normalization of HbA1c in 6 months, related to change of PPS. We compared the changes of HbA1c in PPS reverters who experienced a minimum reduction of 15 units of PPS and in PPS non-reverters who experienced no reduction. Depending on the result, we tested the association in a second group of participants with addition of the experimental program (n = 52). Results In the conventional group, PPS reverters experienced normalization of HbA1c that corrected the basal increase, thus disproving the null hypothesis. With the addition of the experimental program, PPS reverters experienced similar reduction. The reduction of HbA1c among reverters averaged 0.62 mmol/mol per mmol/mol increase of baseline HbA1c (P < 0.0001 compared to non-reverters). For baseline HbA1c ≥ 64 mmol/mol, reverters averaged 22% reduction of HbA1c (P < 0.01). Conclusion In consecutive analyses of two different populations of individuals with T2DM, we demonstrated that the higher the baseline HbA1c, the greater the reduction of HbA1c but only in individuals with a concomitant reduction of sensitivity to PPS, suggesting a homeostatic effect of the autonomic nervous system on glucose metabolism. As such, ANS function, measured as PPS, is an objective measure of HbA1c homeostasis. This observation may be of great clinical importance.
Collapse
Affiliation(s)
- Jens Faber
- Department of Endocrinology, Herlev-Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Ballegaard
- Department of Endocrinology, Herlev-Gentofte University Hospital, Herlev, Denmark
| | - Nanna Ørsted
- Department of Endocrinology, Herlev-Gentofte University Hospital, Herlev, Denmark
| | - Ebbe Eldrup
- Department of Endocrinology, Herlev-Gentofte University Hospital, Herlev, Denmark
| | - Benny Karpatschof
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gyntelberg
- The National Research Center for the Working Environment, Copenhagen, Denmark
| | | | - Albert Gjedde
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Fanni G, Kagios C, Roman E, Sundbom M, Wikström J, Haller S, Eriksson JW. Effects of gastric bypass surgery on brain connectivity responses to hypoglycemia. Endocrine 2023; 79:304-312. [PMID: 36459336 PMCID: PMC9892147 DOI: 10.1007/s12020-022-03253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) leads to beneficial effects on glucose homeostasis, and attenuated hormonal counterregulatory responses to hypoglycemia are likely to contribute. RYGB also induces alterations in neural activity of cortical and subcortical brain regions. We aimed to characterize RYGB-induced changes in resting-state connectivity of specific brain regions of interest for energy homeostasis and behavioral control during hypoglycemia. METHOD Ten patients with BMI > 35 kg/m2 were investigated with brain PET/MR imaging during a hyperinsulinemic normo- and hypoglycemic clamp, before and 4 months after RYGB. Hormonal levels were assessed throughout the clamp. Resting-state (RS) fMRI scans were acquired in the glucose-lowering phase of the clamp, and they were analyzed with a seed-to-voxel approach. RESULTS RS connectivity during initiation of hypoglycemia was significantly altered after RYGB between nucleus accumbens, thalamus, caudate, hypothalamus and their crosstalk with cortical and subcortical regions. Connectivity between the nucleus accumbens and the frontal pole was increased after RYGB, and this was associated with a reduction of ACTH (r = -0.639, p = 0.047) and cortisol (r = -0.635, p = 0.048) responses. Instead, connectivity between the caudate and the frontal pole after RYGB was reduced and this was associated with less attenuation of glucagon response during the hypoglycemic clamp (r = -0.728, p = 0.017), smaller reduction in fasting glucose (r = -0.798, p = 0.007) and less excess weight loss (r = 0.753, p = 0.012). No other significant associations were found between post-RYGB changes in ROI-to-voxel regional connectivity hormonal responses and metabolic or anthropometric outcomes. CONCLUSION RYGB alters brain connectivity during hypoglycemia of several neural pathways involved in reward, inhibitory control, and energy homeostasis. These changes are associated with altered hormonal responses to hypoglycemia and may be involved in the glucometabolic outcome of RYGB.
Collapse
Affiliation(s)
- Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Christakis Kagios
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Surgery, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
- CIMC-Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Diéguez E, Nieto-Ruiz A, Martín-Pérez C, Sepúlveda-Valbuena N, Herrmann F, Jiménez J, De-Castellar R, Catena A, García-Santos JA, Bermúdez MG, Campoy C. Association study between hypothalamic functional connectivity, early nutrition, and glucose levels in healthy children aged 6 years: The COGNIS study follow-up. Front Nutr 2022; 9:935740. [PMID: 36313089 PMCID: PMC9597646 DOI: 10.3389/fnut.2022.935740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Breastfeeding (BF) is the gold standard in infant nutrition; knowing how it influences brain connectivity would help understand the mechanisms involved, which would help close the nutritional gap between infant formulas and breast milk. We analyzed potential long-term differences depending on the diet with an experimental infant formula (EF), compared to a standard infant formula (SF) or breastfeeding (BF) during the first 18 months of life on children's hypothalamic functional connectivity (FC) assessed at 6 years old. A total of 62 children participating in the COGNIS randomized clinical trial (Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02094547) were included in this study. They were randomized to receive an SF (n = 22) or a bioactive nutrient-enriched EF (n = 20). BF children were also included as a control study group (BF: n = 20). Brain function was evaluated using functional magnetic resonance imaging (fMRI) and mean glucose levels were collected through a 24-h continuous glucose monitoring (CGM) device at 6 years old. Furthermore, nutrient intake was also analyzed during the first 18 months of life and at 6 years old through 3-day dietary intake records. Groups fed with EF and BF showed lower FC between the medial hypothalamus (MH) and the anterior cingulate cortex (ACC) in comparison with SF-fed children. Moreover, the BF children group showed lower FC between the MH and the left putamen extending to the middle insula, and higher FC between the MH and the inferior frontal gyrus (IFG) compared to the EF-fed children group. These areas are key regions within the salience network, which is involved in processing salience stimuli, eating motivation, and hedonic-driven desire to consume food. Indeed, current higher connectivity found on the MH-IFG network in the BF group was associated with lower simple sugars acceptable macronutrient distribution ranges (AMDRs) at 6 months of age. Regarding linoleic acid intake at 12 months old, a negative association with this network (MH-IFG) only in the BF group was found. In addition, BF children showed lower mean glucose levels compared to SF-fed children at 6 years old. Our results may point out a possible relationship between diet during the first 18 months of life and inclined proclivity for hedonic eating later in life.
Collapse
Affiliation(s)
- Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Martín-Pérez
- Psychology Department, Faculty of Education, University of Valladolid, Segovia, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Jesús Jiménez
- Ordesa Laboratories, S.L., Sant Boi de Llobregat, Spain
| | | | - Andrés Catena
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain,National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain,*Correspondence: Cristina Campoy
| |
Collapse
|
12
|
Abstract
Despite decades of obesity research and various public health initiatives, obesity remains a major public health concern. Our most drastic but most effective treatment of obesity is bariatric surgery with weight loss and improvements in co-morbidities, including resolution of type 2 diabetes (T2D). However, the mechanisms by which surgery elicits metabolic benefits are still not well understood. One proposed mechanism is through signals generated by the intestine (nutrients, neuronal, and/or endocrine) that communicate nutrient status to the brain. In this review, we discuss the contributions of gut-brain communication to the physiological regulation of body weight and its impact on the success of bariatric surgery. Advancing our understanding of the mechanisms that drive bariatric surgery-induced metabolic benefits will ultimately lead to the identification of novel, less invasive strategies to treat obesity.
Collapse
Affiliation(s)
- Maigen Bethea
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA.
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Sharma M, Jha IP, Chawla S, Pandey N, Chandra O, Mishra S, Kumar V. Associating pathways with diseases using single-cell expression profiles and making inferences about potential drugs. Brief Bioinform 2022; 23:6623725. [PMID: 35772850 DOI: 10.1093/bib/bbac241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Finding direct dependencies between genetic pathways and diseases has been the target of multiple studies as it has many applications. However, due to cellular heterogeneity and limitations of the number of samples for bulk expression profiles, such studies have faced hurdles in the past. Here, we propose a method to perform single-cell expression-based inference of association between pathway, disease and cell-type (sci-PDC), which can help to understand their cause and effect and guide precision therapy. Our approach highlighted reliable relationships between a few diseases and pathways. Using the example of diabetes, we have demonstrated how sci-PDC helps in tracking variation of association between pathways and diseases with changes in age and species. The variation in pathways-disease associations in mice and humans revealed critical facts about the suitability of the mouse model for a few pathways in the context of diabetes. The coherence between results from our method and previous reports, including information about the drug target pathways, highlights its reliability for multidimensional utility.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Indra Prakash Jha
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Smriti Chawla
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Neetesh Pandey
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Omkar Chandra
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Shreya Mishra
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| | - Vibhor Kumar
- Department of computational biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi
| |
Collapse
|
14
|
Casagrande BP, Bueno AA, Pisani LP, Estadella D. Hepatic glycogen participates in the regulation of hypothalamic pAkt/Akt ratio in high-sugar/high-fat diet-induced obesity. Metab Brain Dis 2022; 37:1423-1434. [PMID: 35316448 DOI: 10.1007/s11011-022-00944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus is a major integrating centre that controls energy homeostasis and plays a major role in hepatic glycogen (HGlyc) turnover. Not only do hypothalamic and hepatic Akt levels influence glucose homeostasis and glycogen synthesis, but exposure to high-sugar/high-fat diets (HSHF) can also lead to hypothalamic inflammation and HGlyc accumulation. HSHF withdrawal overall restores energy and glucose homeostasis, but the actual relationship between hypothalamic inflammation and HGlyc after short-term HSHF withdrawal has not yet been fully elucidated. Here we investigated the short-term effects of HSHF withdrawal preceded by a 30-day HSHF intake on the liver-hypothalamus crosstalk and glucose homeostasis. Sixty-day old male Wistar rats were fed for 30 days a control chow (n = 10) (Ct), or an HSHF diet (n = 20). On the 30th day of dietary intervention, a random HSHF subset (n = 10) had their diets switched to control chow for 48 h (Hw) whilst the remaining HSHF rats remained in the HSHF diet (n = 10) (Hd). All rats were anaesthetized and euthanized at the end of the protocol. We quantified HGlyc, Akt phosphorylation, inflammation and glucose homeostasis biomarkers. We also assessed the effect of propensity to obesity on those biomarkers, as detailed previously. Hd rats showed impaired glucose homeostasis, higher HGlyc and hypothalamic inflammation, and lower pAkt/Akt. Increased HGlyc was significantly associated with HSHF intake on pAkt/Akt lowered levels. We also found that HGlyc breakdown may have prevented a further pAkt/Akt drop after HSHF withdrawal. Propensity to obesity showed no apparent effect on hypothalamic inflammation or glucose homeostasis. Our findings suggest a comprehensive role of HGlyc as a structural and functional modulator of energy metabolism, and such roles may come into play relatively rapidly.
Collapse
Affiliation(s)
- Breno P Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil.
| |
Collapse
|
15
|
Frank CJ, McNay EC. Breakdown of the blood-brain barrier: A mediator of increased Alzheimer's risk in patients with metabolic disorders? J Neuroendocrinol 2022; 34:e13074. [PMID: 34904299 PMCID: PMC8791015 DOI: 10.1111/jne.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Metabolic disorders (MDs), including type 1 and 2 diabetes and chronic obesity, are among the faster growing diseases globally and are a primary risk factor for Alzheimer's disease (AD). The term "type-3 diabetes" has been proposed for AD due to the interrelated cellular, metabolic, and immune features shared by diabetes, insulin resistance (IR), and the cognitive impairment and neurodegeneration found in AD. Patients with MDs and/or AD commonly exhibit altered glucose homeostasis and IR; systemic chronic inflammation encompassing all of the periphery, blood-brain barrier (BBB), and central nervous system; pathological vascular remodeling; and increased BBB permeability that allows transfusion of neurotoxic molecules from the blood to the brain. This review summarizes the components of the BBB, mechanisms through which MDs alter BBB permeability via immune and metabolic pathways, the contribution of BBB dysfunction to the manifestation and progression of AD, and current avenues of therapeutic research that address BBB permeability. In addition, issues with the translational applicability of current animal models of AD regarding BBB dysfunction and proposals for future directions of research that address the relationship between MDs, BBB dysfunction, and AD are discussed.
Collapse
Affiliation(s)
- Corey J Frank
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
16
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
17
|
Kaneko K, Lin HY, Fu Y, Saha PK, De la Puente-Gomez AB, Xu Y, Ohinata K, Chen P, Morozov A, Fukuda M. Rap1 in the VMH regulates glucose homeostasis. JCI Insight 2021; 6:142545. [PMID: 33974562 PMCID: PMC8262364 DOI: 10.1172/jci.insight.142545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet–induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1–positive (SF-1–positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Hsiao-Yun Lin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yukiko Fu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | - Ana B De la Puente-Gomez
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, NIH, Maryland, USA.,Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Atasoy S, Johar H, Herder C, Rathmann W, Koenig W, Roden M, Peters A, Kruse J, Ladwig KH. Generalized anxiety disorder symptoms and type 2 diabetes onset: Findings from the Prospective Cooperative Health Research in the Region of Augsburg F4 and FF4 studies. J Psychosom Res 2021; 145:110480. [PMID: 33865610 DOI: 10.1016/j.jpsychores.2021.110480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the association of generalized anxiety disorder (GAD) symptomology on the incidence of type 2 diabetes. RESEARCH DESIGN & METHODS Participants from the prospective KORA F4/FF4 German cohort were followed for a mean of 6.5 years. Generalized Anxiety Disorder Scale-7 (GAD-7) was used to assess GAD symptoms and incident type 2 diabetes cases were confirmed using a standard oral glucose tolerance test. Multivariate logistic regression models were used to estimate the effect of GAD symptoms on the incidence of type 2 diabetes. RESULTS The present study included 1694 participants (51.8% women, 48.2% men) with a mean age of 51.2 years, among whom 113 (6.7%) had high GAD symptoms. During the follow-up period (11,102 person/years), 113 (6.5%) type 2 diabetes cases were confirmed. Participants with GAD symptoms had 2-fold higher incidence of type 2 diabetes than participants without GAD (17.7 vs. 8.7 cases/1000 person-years). Correspondingly, GAD symptoms independently increased the risk of type 2 diabetes by an odds ratio of 2.09 [95%CI 1.02-4.32, p = 0.04] after adjustment for concurrent sociodemographic, lifestyle and cardiometabolic risk factors, high sensitivity C-reactive protein, depression, and the use of antidepressant medications. Additionally, GAD symptoms had an even larger impact on the onset of type 2 diabetes incidence following additional adjustment for prediabetes at baseline (2.68 [1.23-5.88], p=0.01). CONCLUSIONS Participants with GAD symptoms had 2-times higher odds of type 2 diabetes incidence during 6.5 years of follow-up, highlighting the significant role of dysregulated stress mechanisms in the pathway to developing type 2 diabetes.
Collapse
Affiliation(s)
- Seryan Atasoy
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Helmholtz Zentrum München, Germany
| | - Hamimatunnisa Johar
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Helmholtz Zentrum München, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Helmholtz Zentrum München, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Partner Helmholtz Zentrum München, Germany
| | - Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Helmholtz Zentrum München, Germany.
| |
Collapse
|
19
|
Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, Gingnell M, Karlsson FA, Fanni G, Sundbom M, Wiklund U, Haller S, Lubberink M, Wikström J, Eriksson JW. Effects of Gastric Bypass Surgery on the Brain: Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia. Diabetes 2021; 70:1265-1277. [PMID: 33674408 PMCID: PMC8275889 DOI: 10.2337/db20-1172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by 18F-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
Collapse
Affiliation(s)
- Kristina E Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Niclas Abrahamsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sofia Kvernby
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neurosciences and Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. The Impact of High Glucose or Insulin Exposure on S100B Protein Levels, Oxidative and Nitrosative Stress and DNA Damage in Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22115526. [PMID: 34073816 PMCID: PMC8197274 DOI: 10.3390/ijms22115526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid β metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aβ-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
21
|
Suneja S, Gangopadhyay S, Saini V, Dawar R, Kaur C. Emerging Diabetic Novel Biomarkers of the 21st Century. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractDiabetes is a growing epidemic with estimated prevalence of infected to reach ~592 million by the year 2035. An effective way to approach is to detect the disease at a very early stage to reduce the complications and improve lifestyle management. Although several traditional biomarkers including glucated hemoglobin, glucated albumin, fructosamine, and 1,5-anhydroglucitol have helped in ease of diagnosis, there is lack of sensitivity and specificity and are inaccurate in certain clinical settings. Thus, search for new and effective biomarkers is a continuous process with an aim of accurate and timely diagnosis. Several novel biomarkers have surged in the present century that are helpful in timely detection of the disease condition. Although it is accepted that a single biomarker will have its inherent limitations, combining several markers will help to identify individuals at high risk of developing prediabetes and eventually its progression to frank diabetes. This review describes the novel biomarkers of the 21st century, both in type 1 and type 2 diabetes mellitus, and their present potential for assessing risk stratification due to insulin resistance that will pave the way for improved clinical outcome.
Collapse
Affiliation(s)
- Shilpa Suneja
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sukanya Gangopadhyay
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Vandana Saini
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Charanjeet Kaur
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| |
Collapse
|
22
|
Faber J, Eldrup E, Selmer C, Pichat C, Hecquet SK, Watt T, Kreiner S, Karpatschof B, Gyntelberg F, Ballegaard S, Gjedde A. Reduction of Pressure Pain Sensitivity as Novel Non-pharmacological Therapeutic Approach to Type 2 Diabetes: A Randomized Trial. Front Neurosci 2021; 15:613858. [PMID: 33776633 PMCID: PMC7991917 DOI: 10.3389/fnins.2021.613858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autonomic nervous system dysfunction (ANSD) is known to affect glucose metabolism in the mammalian body. Tradition holds that glucose homeostasis is regulated by the peripheral nervous system, and contemporary therapeutic intervention reflects this convention. OBJECTIVES The present study tested the role of cerebral regulation of ANSD as consequence of novel understanding of glucose metabolism and treatment target in type 2 diabetes (T2D), suggested by the claim that the pressure pain sensitivity (PPS) of the chest bone periosteum may be a measure of cerebral ANSD. DESIGN In a randomized controlled trial of 144 patients with T2D, we tested the claim that 6 months of this treatment would reduce PPS and improve peripheral glucose metabolism. RESULTS In the active treatment group, mean glycated hemoglobin A1c (HbA1c) declined from 53.8 to 50.5 mmol/mol (intragroup p = 0.001), compared with the change from 53.8 to 53.4 mmol/mol in the control group, with the same level of diabetes treatment but not receiving the active treatment (between group p = 0.036). Mean PPS declined from 76.6 to 56.1 units (p < 0.001) in the active treatment group and from 77.5 to 72.8 units (p = 0.02; between group p < 0.001) in the control group. Changes of PPS and HbA1c were correlated (r = 0.37; p < 0.001). CONCLUSION We conclude that the proposed approach to treatment of T2D is a potential supplement to conventional therapy. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov (NCT03576430).
Collapse
Affiliation(s)
- Jens Faber
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Eldrup
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Christian Selmer
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Pichat
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Sofie Korsgaard Hecquet
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Torquil Watt
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svend Kreiner
- Institute of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Benny Karpatschof
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gyntelberg
- The National Research Center for the Working Environment, Copenhagen, Denmark
| | - Søren Ballegaard
- Endocrine Unit, Department of Medicine, Herlev Gentofte University Hospital, Herlev, Denmark
| | - Albert Gjedde
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Lundqvist MH, Almby K, Wiklund U, Abrahamsson N, Kamble PG, Pereira MJ, Eriksson JW. Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes. Diabetologia 2021; 64:641-655. [PMID: 33241460 PMCID: PMC7864814 DOI: 10.1007/s00125-020-05332-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Results from animal models and some clinical work suggest a role for the central nervous system (CNS) in glucose regulation and type 2 diabetes pathogenesis by modulation of glucoregulatory hormones and the autonomic nervous system (ANS). The aim of this study was to characterise the neuroendocrine response to various glucose concentrations in overweight and insulin-resistant individuals compared with lean individuals. METHODS Overweight/obese (HI, n = 15, BMI ≥27.0 kg/m2) and lean (LO, n = 15, BMI <27.0 kg/m2) individuals without diabetes underwent hyperinsulinaemic euglycaemic-hypoglycaemic clamps and hyperglycaemic clamps on two separate occasions with measurements of hormones, Edinburgh Hypoglycaemic Symptom Scale (ESS) score and heart rate variability (HRV). Statistical methods included groupwise comparisons with Mann-Whitney U tests, multilinear regressions and linear mixed models between neuroendocrine responses and continuous metabolic variables. RESULTS During hypoglycaemic clamps, there was an elevated cortisol response in HI vs LO (median ΔAUC 12,383 vs 4793 nmol/l × min; p = 0.050) and a significantly elevated adrenocorticotropic hormone (ACTH) response in HI vs LO (median ΔAUC 437.3 vs 162.0 nmol/l × min; p = 0.021). When adjusting for clamp glucose levels, obesity (p = 0.033) and insulin resistance (p = 0.009) were associated with elevated glucagon levels. By contrast, parasympathetic activity was less suppressed in overweight individuals at the last stage of hypoglycaemia compared with euglycaemia (high-frequency power of HRV, p = 0.024). M value was the strongest predictor for the ACTH and PHF responses, independent of BMI and other variables. There was a BMI-independent association between the cortisol response and ESS score response (p = 0.024). During hyperglycaemic clamps, overweight individuals displayed less suppression of glucagon levels (median ΔAUC -63.4% vs -73.0%; p = 0.010) and more suppression of sympathetic relative to parasympathetic activity (low-frequency/high-frequency power, p = 0.011). CONCLUSIONS/INTERPRETATION This study supports the hypothesis that altered responses of insulin-antagonistic hormones and the ANS to glucose fluctuations occur in overweight and insulin-resistant individuals, and that these responses are probably partly mediated by the CNS. Their potential role in development of type 2 diabetes needs to be addressed in future research. Graphical abstract.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | | | - Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Vallejo L, Zapater-Fajarí M, Montoliu T, Puig-Perez S, Nacher J, Hidalgo V, Salvador A. No Effects of Acute Psychosocial Stress on Working Memory in Older People With Type 2 Diabetes. Front Psychol 2021; 11:596584. [PMID: 33584433 PMCID: PMC7874042 DOI: 10.3389/fpsyg.2020.596584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) has been considered a public health threat due to its growing prevalence, particularly in the older population. It is important to know the effects of psychosocial stress and its potential consequences for some basic cognitive processes that are important in daily life. Currently, there is very little information about how people with T2D face acute psychosocial stressors, and even less about how their response affects working memory (WM), which is essential for their functionality and independence. Our aim was to characterize the response to an acute laboratory psychosocial stressor and its effects on WM in older people with T2D. Fifty participants with T2D from 52 to 77 years old were randomly assigned to a stress (12 men and 12 women) or control (12 men and 14 women) condition. Mood and physiological (cortisol, C, and salivary alpha-amylase, sAA) responses to tasks were measured. In addition, participants completed a WM test before and after the stress or control task. Our results showed that the TSST elicited higher negative affect and greater C and sAA responses than the control task. No significant differences in WM were observed depending on the exposure to stress or the control task. Finally, participants who showed higher C and sAA responses to the stressor had lower WM performance. Our results indicate that medically treated older adults with T2D show clear, typical mood and physiological responses to an acute psychosocial stressor. Finally, the lack of acute psychosocial stress effects on WM suggests that it could be related to aging and not to this disease, at least when T2D is adequately treated.
Collapse
Affiliation(s)
- Lorena Vallejo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Mariola Zapater-Fajarí
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Teresa Montoliu
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Sara Puig-Perez
- Department of Health Sciences, Valencian International University, Valencia, Spain
| | - Juan Nacher
- Valencian (VLC) Campus Research Microcluster "Technologies of Information and Control Applied to the Pathophysiology and Treatment of Diabetes," University of Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental: Spanish National Network of Research in Mental Health, Madrid, Spain
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain.,II Aragón, Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain.,Valencian (VLC) Campus Research Microcluster "Technologies of Information and Control Applied to the Pathophysiology and Treatment of Diabetes," University of Valencia, Valencia, Spain
| |
Collapse
|
25
|
Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites 2020; 10:metabo10110450. [PMID: 33171879 PMCID: PMC7695180 DOI: 10.3390/metabo10110450] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidencethat indicates that the aging of the brain results from the decline of energy metabolism. In particular, the neuronal metabolism of glucose declines steadily, resulting in a growing deficit of adenosine triphosphate (ATP) production-which, in turn, limits glucose access. This vicious circle of energy metabolism at the cellular level is evoked by a rising deficiency of nicotinamide adenine dinucleotide (NAD) in the mitochondrial salvage pathway and subsequent impairment of the Krebs cycle. A decreasing NAD level also impoverishes the activity of NAD-dependent enzymes that augments genetic errors and initiate processes of neuronal degeneration and death.This sequence of events is characteristic of several brain structures in which neurons have the highest energy metabolism. Neurons of the cerebral cortex and basal ganglia with long unmyelinated axons and these with numerous synaptic junctions are particularly prone to senescence and neurodegeneration. Unfortunately, functional deficits of neurodegeneration are initially well-compensated, therefore, clinical symptoms are recognized too late when the damages to the brain structures are already irreversible. Therefore, future treatment strategies in neurodegenerative disorders should focus on energy metabolism and compensation age-related NAD deficit in neurons. This review summarizes the complex interrelationships between metabolic processes on the systemic and cellular levels and provides directions on how to reduce the risk of neurodegeneration and protect the elderly against neurodegenerative diseases.
Collapse
Affiliation(s)
- Janusz Wiesław Błaszczyk
- Department of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
26
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
27
|
Padilla Medina JA, Herrera Ramírez CA, Cardona Torres LM, Galicia Reséndiz DA, Prado Olivares J, Pérez Pinal F. Measurement of the visual system response and its correlation with the central nervous system in patients diagnosed with type 2 diabetes mellitus (T2DM). Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
The role of spinally located dopamine D 2 receptors in the regulation of the blood glucose level in mice. Pharmacol Rep 2020; 72:1666-1675. [PMID: 32627115 DOI: 10.1007/s43440-020-00126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The possible role of dopamine D2 receptors located in the spinal cord in the regulation of the blood glucose level have not been investigated before. METHODS In the present study, the effect of D2 receptor agonist and antagonist administered intrathecal (it) injection on the blood glucose level were examined in the Institute of Cancer Research (ICR) mice. RESULTS We found that it injection with carmoxirole (D2 receptor agonist) caused an elevation of the blood glucose level in a dose-dependent manner. Carmoxirole-induced increase of the blood glucose was significantly attenuated by L-741,626 (D2 receptor antagonist). Previously, we indicated that intrathecal (it) treatment with 0.1 μg/5 μl pertussis toxin (PTX, a Gi/Go inhibitor) produces a hypoglycemic effect in ICR in a long-term manner. In the present study, it pretreatment with PTX for 6 days almost abolished the hyperglycemic effect induced by carmoxirole. The plasma insulin level was elevated by carmoxirole, and L-741,626 or PTX pretreatment reduced carmoxirole-induced increment of the insulin level. In addition, the plasma corticosterone level was increased by carmoxirole but it pretreatment with L-741,626 or PTX did not affect carmoxirole-induced increment of the corticosterone level. CONCLUSION Our results suggest that D2 receptors located in the spinal cord play an important role in the elevation of the blood glucose level. Spinally located inhibitory G-proteins appear to be involved in hyperglycemic effect induced by carmoxirole.
Collapse
|
29
|
|
30
|
Ahluwalia TS, Kilpeläinen TO, Singh S, Rossing P. Editorial: Novel Biomarkers for Type 2 Diabetes. Front Endocrinol (Lausanne) 2019; 10:649. [PMID: 31611845 PMCID: PMC6776920 DOI: 10.3389/fendo.2019.00649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|